
Handling Churn in a DHT

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz
University of California, Berkeley and Intel Research, Berkeley

{srhea,geels,kubitron}@cs.berkeley.edu, troscoe@intel-research.net

Abstract

This paper addresses the problem of churn—the continu-
ous process of node arrival and departure—in distributed
hash tables (DHTs). We argue that DHTs should perform
lookups quickly and consistently under churn rates at least
as high as those observed in deployed P2P systems such
as Kazaa. We then show through experiments on an em-
ulated network that current DHT implementations cannot
handle such churn rates. Next, we identify and explore
three factors affecting DHT performance under churn: re-
active versus periodic failure recovery, message timeout
calculation, and proximity neighbor selection. We work
in the context of a mature DHT implementation called
Bamboo, using the ModelNet network emulator, which
models in-network queuing, cross-traffic, and packet loss.
These factors are typically missing in earlier simulation-
based DHT studies, and we show that careful attention
to them in Bamboo’s design allows it to function effec-
tively at churn rates at or higher than that observed in P2P
file-sharing applications, while using lower maintenance
bandwidth than other DHT implementations.

1 Introduction

The popularity of widely-deployed file-sharing services
has recently motivated considerable research into peer-to-
peer systems. Along one line, this research has focused
on the design of better peer-to-peer algorithms, especially
in the area of structured peer-to-peer overlay networks or
distributed hash tables (e.g. [20, 22, 24, 27, 30]), which we
will simply call DHTs. These systems map a large iden-
tifier space onto the set of nodes in the system in a deter-
ministic and distributed fashion, a function we alternately
call routing or lookup. DHTs generally perform these
lookups using only O(log N) overlay hops in a network
of N nodes where every node maintains only O(log N)
neighbor links, although recent research has explored the
tradeoffs in storing more or less state.

A second line of research into P2P systems has focused
on observing deployed networks (e.g. [5, 9, 13, 25]). A
significant result of this research is that such networks are
characterized by a high degree of churn. One metric of

churn is node session time: the time between when a node
joins the network until the next time it leaves. Median
session times observed in deployed networks range from
as long as an hour to as short as a few minutes.

In this paper we explore the performance of DHTs in
such dynamic environments. DHTs may be better able
to locate rare files than existing unstructured peer-to-peer
networks [18]. Moreover, it is not hard to imagine that
other proposed uses for DHTs will show similar churn
rates to file-sharing networks—application-level multicast
of a low-budget radio stream, for example. In spite of this
promise, we show that short session times cause a vari-
ety of negative effects on two mature DHT implementa-
tions we tested. Both systems exhibit dramatic latency
growth when subjected to increasing churn, and in one
implementation the network eventually partitions, causing
subsequent lookups to return inconsistent results. The re-
mainder of this paper is dedicated to determining whether
a DHT can be built such that it continues to perform well
as churn rates increase.

We demonstrate that DHTs can in fact handle high
churn rates, and we identify and explore several factors
that affect the behavior of DHTs under churn. The three
most important factors we identify are:

• reactive versus periodic recovery from failures

• calculation of message timeouts during lookups

• choice of nearby over distant neighbors

By reactive recovery, we mean the strategy whereby a
DHT node tries to find a replacement neighbor immedi-
ately upon noticing that an existing neighbor has failed.
We show that under bandwidth-limited conditions, reac-
tive recovery can lead to a positive feedback cycle that
overloads the network, causing lookups to have high la-
tency or to return inconsistent results. In contrast, a DHT
node may recover from neighbor failure at a fixed, pe-
riodic rate. We show that this strategy improves perfor-
mance under churn by allowing the system to avoid posi-
tive feedback cycles.

The manner in which a DHT chooses timeout values
during lookups can also greatly affect its performance un-
der churn. If a node performing a lookup sends a message

to a node that has left the network, it must eventually time-
out the request and try another neighbor. We demonstrate
that such timeouts are a significant component of lookup
latency under churn, and we explore several methods of
computing good timeout values, including virtual coordi-
nate schemes as used in the Chord DHT.

Finally, we consider proximity neighbor selection
(PNS), where a DHT node with a choice of neighbors
tries to select those that are most nearby itself in net-
work latency. We compare several algorithms for discov-
ering nearby neighbors—including algorithms similar to
those used in the Chord, Pastry, and Tapestry DHTs—to
show the tradeoffs they offer between latency reduction
and added bandwidth.

We have augmented the Bamboo DHT [23] such that
it can be configured to use any of the design choices
described above. As such, we can examine each de-
sign decision independently of the others. Moreover, we
examine the performance of each configuration by run-
ning it on a large cluster with an emulated wide-area net-
work. This methodology is particularly important with
regard to the choice of reactive versus periodic recovery
as described above. Existing studies of churn in DHTs
(e.g. [7, 8, 16, 19]) have used simulations that—unlike
our emulated network—did not model the effects of net-
work queuing, cross traffic, or message loss. In our ex-
perience, these effects are primary factors contributing to
DHTs’ inability to handle churn. Moreover, our measure-
ments are conducted on an isolated network, where the
only sources of queuing, cross traffic, and loss are the
DHTs themselves; in the presence of heavy background
traffic, we expect that such network realities will exacer-
bate the ability of DHTs to handle even lower levels of
churn.

Of course, this study has limitations. Building and test-
ing a complete DHT implementation on an emulated net-
work is a major effort. Consequently, we have limited our-
selves to studying a single DHT on a single network topol-
ogy using a relatively simple churn model. Furthermore,
we have not yet studied the effects of some implementa-
tion decisions that might affect the performance of a DHT
under churn, including the use of alternate routing table
neighbors as in Kademlia and Tapestry, or the use of it-
erative versus recursive routing. Nevertheless, we believe
that the effects of the factors we have studied are dramatic
enough to present them as an important early study in the
effort to build a DHT that successfully handles churn.

The rest of this paper is structured as follows: in the
next section we review how DHTs perform routing or
lookup, with particular reference to Pastry, whose routing
algorithm Bamboo also uses. In Section 3, we review ex-
isting studies of churn in deployed file-sharing networks,
describe the way we model such churn in our emulated
network, and quantify the performance of mature DHT

111...

110...
0...

10...

Figure 1: Neighbors in Pastry and Bamboo. A node’s
neighbors are divided into its leaf set, shown as dashed
arrows, and its routing table, shown as solid arrows.

implementations under such churn. In Section 4, we study
each of the factors listed above in isolation, and describe
how Bamboo uses these techniques. In Section 5, we sur-
vey related work, and in Section 6 we discuss important
future work. We conclude in Section 7.

2 Introduction to DHT Routing

In this section we present a brief review of DHT rout-
ing, using Pastry [24] as an example. The geometry and
routing algorithm of Bamboo are identical to Pastry; the
difference (and the main contribution of this paper) lies in
how Bamboo maintains the geometry as nodes join and
leave the network and the network conditions vary.

DHTs are structured graphs, and we use the term geom-
etry to mean the pattern of neighbor links in the overlay
network, independent of the routing algorithms or state
management algorithms used [12].

Each node in Pastry is assigned a numeric identifier in
[0, 2160), derived either from the SHA-1 hash of the IP
address and port on which the node receives packets or
from the SHA-1 hash of a public key. As such, they are
well-distributed throughout the identifier space.

In Pastry, a node maintains two sets of neighbors, the
leaf set and the routing table (see Figure 1). A node’s
leaf set is the set of 2k nodes immediately preceding and
following it in the circular identifier space. We denote this
set by L, and we use the notation Li with −k ≤ i ≤ k to
denote the members of L, where L0 is the node itself.

In contrast, the routing table is a set of nodes whose
identifiers share successively longer prefixes with the
source node’s identifier. Treating each identifier as a se-
quence of digits of base 2b and denoting the routing ta-
ble entry at row l and column i by Rl[i], a node chooses
its neighbors such that the entry at Rl[i] is a node whose
identifier matches its own in exactly l digits and whose

if (L
−k ≤ D ≤ Lk)

next hop = Li s.t. |D − Li| is minimal
else if (Rl[D[l]] 6= null)

next hop = Rl[D[l]]
else

next hop = Li s.t. |D − Li| is minimal

Figure 2: The Bamboo routing algorithm. The code
shown chooses the next routing hop in for a message with
destination D, where D matches the identifier of the local
node in the first l digits.

(l + 1)th digit is i. In the experiments in this paper, Bam-
boo uses binary digits (b = 1), though it can be configured
to use any base.

The basic operation of a DHT is to consistently map
identifiers onto nodes from any point in the system, a
function we call routing or lookup. Pastry achieves con-
sistent lookups by directing each identifier to the node
with the numerically closest identifier. Algorithmically,
routing proceeds as shown in Figure 2. To route a message
with key D, a node first checks whether D lies within its
leaf set, and if so, forwards it to the numerically closest
member of that set (modulo 2160). If that member is the
local node, routing terminates. If D does not fall within
the leaf set, the node computes the length l of the longest
matching prefix between D and its own identifier. Let
D[i] denote the ith digit of D. If Rl[D[l]] is not empty,
the message is forwarded on to that node. If neither of
these conditions is true, the message is forwarded to the
member of the node’s leaf set numerically closest to D.
Once the destination node is reached, it sends a message
back to the originating node with its identifier and network
address, and the lookup is complete.

We note that a node can often choose between many
different neighbors for a given entry in its routing ta-
ble. For example, a node whose identifier begins with a
1 needs a neighbor whose identifier begins with a 0, but
such nodes make up roughly half of the total network. In
such situations, a node can choose between the possible
candidates based on some metric. Proximity neighbor se-
lection is the term used to indicate that nodes in a DHT
use network latency as the metric by which to choose be-
tween neighbor candidates.

Using this design, Pastry and Bamboo perform lookups
in O(log N) hops [24], while the leaf set allows forward
progress (in exchange for potentially longer paths) in the
case that the routing table is incomplete. Moreover, the
leaf set adds a great deal of static resilience to the geom-
etry; Gummadi et al. [12] show that with a leaf set of 16
nodes, even after a random 30% of the links are broken
there are still connected paths between all node pairs in a

111...

00...

010...

011...

Figure 3: Recursive lookup. To find the node closest to
identifier 011, the node whose identifier starts with 111
sends a lookup message to its neighbor whose first digit
is 0. This node then forwards the query to its neighbor
whose first two digits are 01, and from there the node is
forwarded to the neighbor whose first three digits are 011.

010...

00...

111...

011...

Figure 4: Iterative lookup. An iterative lookup involves
the same nodes as a recursive one, but instead of forward-
ing the message, each intermediate node responds to the
source with the address of the next hop.

network of 65,536 nodes. This resilience is important in
handling failures in general and churn in particular, and
was the reason we chose the Pastry geometry for use in
Bamboo. We could also have used a pure ring geome-
try as in Chord, extending it to account for proximity in
neighbor selection as described in [12].

The manner in which we have described routing so
far is commonly called recursive routing (Figure 3). In
contrast, lookups may also be performed iteratively. As
shown in Figure 4, an iterative lookup involves the same
nodes as a recursive one, but the entire process is con-
trolled by the source of the lookup. Rather than asking
a neighbor to forward the lookup through the network on
its behalf, the source asks that neighbor for the network
address of the next hop. The source then asks the newly-
discovered node the same question, repeating the process
until no further progress can be made, at which point the
lookup is complete.

Join Leave Join Leave

Session
Time time

Lifetime

Figure 5: Metrics of churn. With respect to the routing
and lookup functionality of a DHT, the session times of
nodes are more relevant than their lifetimes.

3 The Problem of Churn

There have been very few large-scale DHT-based applica-
tion deployments to date, and so it is hard to derive good
requirements on churn-resilience. However, P2P file-
sharing networks provide a useful starting point. These
systems provide a simple indexing service for locating
files on those peer nodes currently connected to the net-
work, a function which can be naturally mapped onto a
DHT-based mechanism. For example, the Overnet file-
sharing system uses the Kademlia DHT to store such an
index. While some DHT applications (such as file stor-
age as in CFS [10]) might require greater client availabil-
ity, others may show similar churn rates to file-sharing
networks (such as end-system multicast or a rendezvous
service for instant messaging). As such, we believe that
DHTs should at least handle churn rates observed in to-
day’s file-sharing networks. To that end, in this section we
survey existing studies of churn in deployed file-sharing
networks, describe the way we model such churn in our
emulated network, and quantify the performance of ma-
ture DHT implementations under such churn.

Studies of existing file-sharing systems mainly use two
metrics of churn (see Figure 5). A node’s session time is
the elapsed time between it joining the network and subse-
quently leaving it. In contrast, a node’s lifetime is the time
between it entering the network for the first time and leav-
ing the network permanently. The sum of a node’s session
times divided by its lifetime is often called its availabil-
ity. One representative study [5] observed median session
times on the order of tens of minutes, median lifetimes on
the order of days, and median availability of around 30%.

With respect to the lookup functionality of a DHT, we
argue that session time is the most important metric. Even
temporary loss of a routing neighbor weakens the cor-
rectness and performance guarantees of a DHT, and un-
available neighbors reduce a node’s effective connectivity,
forcing it to choose suboptimal routes and increasing the
destructive potential of future failures. Since nodes are of-
ten unavailable for long periods, remembering neighbors
that have failed is of little value in performing lookups.
While remembering neighbors is useful for applications
like storage [6], it is of little value for lookup operations.

First Author Systems Observed Session Time
Saroiu [25] Gnutella, Napster 50% ≤ 60 min.
Chu [9] Gnutella, Napster 31% ≤ 10 min.
Sen [26] FastTrack 50% ≤ 1 min.
Bhagwan [5] Overnet 50% ≤ 60 min.
Gummadi [13] Kazaa 50% ≤ 2.4 min.

Table 1: Observed session times in various peer-to-peer
systems. The median session time ranges from an hour to
a minute.

3.1 Empirical studies

Elsewhere [23] we have surveyed published studies of de-
ployed file-sharing networks. Table 1 shows a summary
of observed session times. At first sight, some of these
values are surprising, and may be due to methodological
problems with the study in question or malfunctioning of
the system under observation. However, it is easy to im-
age a user joining the network, downloading a single file
(or failing to find it), and leaving, making session times
of a few minutes at least plausible. To be conservative,
then, we would like a DHT to be robust for median ses-
sion times from as much as an hour to as little as a minute.

3.2 Experimental Methodology

Our platform for measuring DHT performance under
churn is a cluster of 40 IBM xSeries PCs, each with
Dual 1GHz Pentium III processors and 1.5GB RAM, con-
nected by Gigabit Ethernet, and running either Debian
GNU/Linux or FreeBSD. We use ModelNet [28] to im-
pose wide-area delay and bandwidth restrictions, and the
Inet topology generator [3] to create a 10,000-node wide-
area AS-level network with 500 client nodes connected to
250 distinct stubs by 1 Mbps links. To increase the scale
of the experiments without overburdening the capacity of
ModelNet by running more client nodes, each client node
runs two DHT instances, for a total of 1,000 DHT nodes.

Our control software uses a set of wrappers which com-
municate locally with each DHT instance to send requests
and record responses. Running 1000 DHT instances on
this cluster (12.5 nodes/CPU) produces CPU loads below
one, except during the highest churn rates. Ideally, we
would measure larger networks, but 1000-node systems
already demonstrate problems that will surely affect larger
ones.

In an experiment, we first bring up a network of 1000
nodes, one every 1.5 seconds, each with a randomly as-
signed gateway node to distribute the load of bootstrap-
ping newcomers. We then churn nodes until the system
performance levels out; this phase normally lasts 20-30
minutes but can take an hour or more. Node deaths are
timed by a Poisson process and are therefore uncorrelated
and bursty. A new node is started each time one is killed,

maintaining the total network size at 1000. This model
of churn is similar to that described by Liben-Nowell et
all [17]. In a Poisson process, an event rate λ corresponds
to a median inter-event period of ln 2/λ. For each event
we select a node to die uniformly at random, so each
node’s session time is expected to span N events, where
N is the network size. Therefore a churn rate of λ corre-
sponds to a median node session time of

tmed = N ln 2/λ.

For example, a 1000-node network churning with median
session times of one hour will see one node arrive (and
one leave) every 5.2 seconds. In our experiments, we used
churn rates ranging from 8/second to 4/minute, equal to
median session times from 1.4 minutes to 3 hours.

Each live node continually performs lookups for identi-
fiers chosen uniformly at random, timed by a Poisson pro-
cess with rate 0.1/second, for an aggregate system load of
100 lookups/second. Each lookup is simultaneously per-
formed by ten nodes, and we report both whether it com-
pletes and whether it is consistent with the others for the
same key. If there is a majority among the ten results for a
given key, all nodes in the majority are said to see a con-
sistent result, and all others are considered inconsistent.
If there is no majority, all nodes are said to see inconsis-
tent results. This metric of consistency is more strict than
that required by some DHT applications. However, both
MIT’s Chord and our Bamboo implementation show at
least 99.9% consistency under 47-minute median session
times [23], so it does not seem unreasonable.

There are two ways in which lookups fail in our tests.
First, we do not perform end-to-end retries, so a lookup
may fail to complete if a node in the middle of the lookup
path leaves the network before forwarding the lookup re-
quest to the next node. We observed this behavior primar-
ily in FreePastry as described below. Second, a lookup
may return inconsistent results. Such failures occur either
because a node is not aware of the correct node to forward
the lookup to, or because it erroneously believes the cor-
rect node has left the network (because of congestion or
poorly chosen timeouts). All DHT implementations we
have tested show some inconsistencies under churn, but
carefully chosen timeouts and judicious bandwidth usage
can minimize them.

3.3 Existing DHTs

In this section we report the results of testing two ma-
ture DHT implementations under churn. Our intent here
is not to place a definitive bound on the performance of
either implementation. Rather, it is to motivate our work
by demonstrating that handling churn in DHTs is both an
important and a non-trivial problem. While we have dis-
cussed these experiments extensively with the authors of

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Pe
rc

en
t o

f
L

oo
ku

ps

Time (minutes)

6.2 h

3.1 h

1.6 h

47 min

23 minConsistent
Completed

Figure 6: FreePastry under churn. The percentage of suc-
cessful lookups in a 1000-node FreePastry network under
churn. Session times for each 30-minute churn period are
indicated by arrows, and each churn period is separated
from the next by 10 minutes of no churn. The churn rate
doubles with each successive period.

both systems, it is still possible that alternative configu-
rations could have improved their performance. More-
over, both systems have seen subsequent development,
and newer versions may show improved resilience under
churn.

FreePastry We tested FreePastry 1.3, the Rice Univer-
sity implementation of Pastry [1]. Figure 6 shows one
effect of churn on a network of 1000 FreePastry nodes,
which we ran using the default 24-node leaf sets and log-
arithm base of 16. We do not enforce proximity between a
new node and its gateway, as suggested for best FreePas-
try performance; this decision only effects the proximity
of a node’s neighbors, not the efficiency of its routing.

It is clear from Figure 6 that while successful lookups
are mostly consistent, FreePastry fails to complete a ma-
jority of lookup requests under heavy churn. A likely
explanation for this failure is that nodes wait so long on
lookup requests to time out that they frequently leave the
network with several requests still in their queues. This
behavior is probably exacerbated by FreePastry’s use of
Java RMI over TCP as its message transport, and the way
that FreePastry nodes handle the loss of their neighbors.
We present evidence to support these ideas in Section 4.1.

We make a final comment on this graph. FreePas-
try generally recovers well between churn periods, once
again correctly completing all lookups. The difficulty
with real systems is that there is no such quiet period; the
network is in a continual state of churn.

MIT Chord We tested MIT’s Chord implementa-
tion [4] using a CVS snapshot from 8/4/2003, with the de-
fault 10-node successor lists and with the location cache
disabled (using the -F option), since the cache causes poor
performance under churn.

 0

 1

 2

 3

 4

 5

 8 16 32 64 128

M
ea

n
L

at
en

cy
 (

s)

Median Session Time (min)

Chord
Bamboo (No PNS)

Bamboo (PNS)

Figure 7: Chord under churn. Shown is the mean latency
of lookups in a 1000-node MIT Chord network under in-
creasing levels of churn. Churn increases to the left.

In contrast to FreePastry, almost all lookups in a Chord
network complete and return consistent results. Chord’s
shortcoming under churn is in lookup latency, as shown
in Figure 7, which shows the result of running Chord un-
der the same workload as shown in Figure 6, but where
we have averaged the lookup latency over each churn pe-
riod. Shown for comparison are two lines representing
Bamboo’s performance in the same test, with and with-
out proximity neighbor selection (PNS). Under all churn
rates, Bamboo is using slightly under 750 bytes per sec-
ond per node, while Chord is using slightly under 2,400.

We discuss in detail the differences that enable Bamboo
to outperform Chord in Sections 4.2 and 4.3, but some of
the difference in latency between Bamboo and Chord is
due to their routing styles. Bamboo performs lookups re-
cursively, whereas Chord routes iteratively. Chord could
easily be changed to route recursively; in fact, newer ver-
sions of Chord support both recursive routing and PNS.
Note, however, that Chord’s latency grows more quickly
under increasing churn than does Bamboo’s. In Sec-
tion 4.2, we will show evidence to support our belief that
this growth is due to Chord’s method of choosing time-
outs for lookup messages and is independent of the lookup
style employed.

3.3.1 Summary

To summarize this section, we note that we have observed
several effects of churn on existing DHT implementa-
tions. A DHT may fail to complete lookup requests al-
together, or it may complete them but return inconsistent
results for the same lookup launched from different source
nodes. On the other hand, a DHT may continue to return
consistent results as churn rates increase, but it may suffer
from a dramatic increase in lookup latency in the process.

4 Handling Churn

Having briefly described the way in which DHTs perform
lookups, and having given evidence indicating that their
ability to do so is hindered under churn, we now turn to
the heart of this paper: a study of the factors contribut-
ing to this difficulty, and a comparison of solutions that
can be used to overcome them. In turn, we discuss re-
active versus periodic recovery from neighbor failure, the
calculation of good timeout values for lookup messages,
and techniques to achieve proximity in neighbor selection.
The remainder of this paper focuses only on the Bamboo
DHT, in which we have implemented each alternative de-
sign choice studied here. Working entirely within a sin-
gle implementation allows us to minimize the differences
between experiments comparing one design choice to an-
other.

4.1 Reactive vs. Periodic Recovery

Early implementations of Bamboo suffered performance
degradation under churn similar to that of FreePastry.
MIT Chord’s performance, however, does not degrade in
the same way. A significant difference in its behavior is a
design choice about how to handle detected node failures.
We will call the two alternative approaches reactive and
periodic recovery.

Reactive recovery In reactive recovery, a node reacts to
the loss of one if its existing leaf set neighbors (or the ap-
pearance of a new node that should be added to its leaf
set) by sending a copy of its new leaf set to every node
in it. To save bandwidth, a node can only send differ-
ences from the last message, but the total number of mes-
sages is still O(k2) for a leaf set of k nodes. This algo-
rithm converges quickly, is used in FreePastry, and was
used in early versions of Bamboo. MSPastry uses a more
bandwidth-efficient, but more complex, variant of reactive
recovery [7].

Periodic recovery In contrast, in periodic recovery a
node periodically shares its leaf set with each of the mem-
bers of that set, each of whom responds in kind with its
own leaf set. The process takes place independently of
the node detecting changes in its leaf set. As a simple op-
timization, a node picks one random member of its leaf
set to share state with in each period. This change saves
bandwidth, but still converges in O(log k) phases, where
k is the size of the leaf set. (Further details can be found
elsewhere [23].) This algorithm is the one currently used
by Bamboo, and the periodic nature of this algorithm is
shared by Chord’s method of keeping its successor list
correct.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50

B
an

dw
id

th
 (

kB
/s

/n
od

e)

Time (minutes)

47 min 23 min

Reactive
Periodic

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50

95
th

 P
er

ce
nt

ile
 L

at
en

cy
 (

s)

Time (minutes)

47 min 23 min

Reactive
Periodic

Figure 8: Reactive versus periodic recovery. Without churn, reactive recovery is very efficient, as messages are only
sent in response to actual changes. At reasonable churn rates, however, periodic recovery uses less bandwidth, and
lower contention for the network leads to lower latencies.

4.1.1 Positive feedback cycles

Reactive recovery runs the risk of creating a positive feed-
back cycle as follows. Consider a node whose access
link to the network is sufficiently congested that timeouts
cause it to believe that one of its neighbors has failed. If
the node is recovering reactively, recovery operations be-
gin, and the node will add even more packets to its al-
ready congested network link. This added congestion will
increase the likelihood that the node will mistakenly con-
clude that other neighbors have failed. If this process con-
tinues, the node will eventually cause congestion collapse
on its access link.

Observations of these cycles in early Bamboo (and ex-
amination of the Chord code) originally led us to pro-
pose periodic recovery for handling churn. By decou-
pling the rate of recovery from the discovery of failures,
periodic recovery prevents the feedback cycle described
above. Moreover, by lengthening the recovery period with
the observation of message timeouts, we can introduce a
negative feedback cycle, further improving resilience.

Another way to mitigate the instability associated with
reactive recovery is to be more conservative when detect-
ing node failure. We have found one effective approach
to be to conclude failure only after 15 consecutive mes-
sage timeouts to a neighbor. Since timeouts are backed
off multiplicatively to a maximum of five seconds, it is un-
likely that a node will conclude failure due to congestion.
One drawback with this technique, however, is that neigh-
bors that have actually failed remain in a node’s routing
table for some time. Lookups that would route through
these neighbors are thus delayed, resulting in long lookup
latencies. To remedy this problem, a node stops routing
through a neighbor after seeing five consecutive message
timeouts to that neighbor. We have found these changes
make reactive recovery feasible for small leaf sets and
moderate churn.

4.1.2 Scalability

Experiments show little difference in correctness between
periodic and reactive recovery. To see why, consider a
node A that joins a network, and let B be the node in the
existing network whose identifier most closely matches
that of A. As in Pastry, A retrieves its initial leaf set by
contacting B, and B adds A to its leaf set immediately af-
ter confirming its IP address and port (with a probe mes-
sage). Until A’s arrival propagates through the network,
another node C may still route messages that should go
to A to B instead, but B will just forward these messages
on to A. Likewise, should A fail, B will still be in C’s
leaf set, so once routing messages to A time out, C and
other nearby nodes will generally all agree that B is the
next best choice.

While both periodic and reactive recovery achieve
roughly identical correctness, there is a large difference in
the bandwidth consumed under different churn rates and
leaf set sizes. (A commonly accepted rule of thumb is
that to provide sufficient resilience to massive node fail-
ure, the size of a node’s leaf set should be logarithmic
in the system size.) Under low churn, reactive recovery
is very efficient, as messages are only sent in response
to actual changes, whereas periodic recovery is wasteful.
As churn increases, however, reactive recovery becomes
more expensive, and this behavior is exacerbated by in-
creasing leaf set size. Not only does a node see more fail-
ures when its leaf set is larger, but the set of other nodes
it must notify about the resulting changes in its own leaf
set is larger. In contrast, periodic recovery aggregates all
changes in each period into a single message.

Figure 8 shows this contrast in Bamboo using leaf sets
of 24 nodes, the default leaf set size in FreePastry. In
this figure, we ran Bamboo using both configurations for
two 20-minute churn periods of 47 and 23 minute median
session times separated by five minutes with no churn.

We note that during the periods of the test where there

is no churn, reactive recovery uses less than half of the
bandwidth of periodic recovery. On the other hand, under
churn its bandwidth use jumps dramatically. As discussed
above, Bamboo does not suffer from positive feedback cy-
cles on account of this increased bandwidth usage. Never-
theless, the extra messages sent by reactive recovery com-
pete with lookup messages for the available bandwidth,
and as churn increases we see a corresponding increase
in lookup latency. Although not shown in the figure, the
number of hops per lookup is virtually identical between
the two schemes, implying that the growth in bandwidth is
most likely due to contention for the available bandwidth.

Since our goal is to handle median session times down
to a few minutes with low lookup latency, we do not ex-
plore reactive recovery further in this work. The remain-
der of the Bamboo results we present are all obtained us-
ing periodic recovery.

4.2 Timeout Calculation

In this section, we discuss the role that timeout calculation
on lookup messages plays in handling churn.

To understand the relative importance of timeouts in a
DHT as opposed to a more traditional networked system,
consider a traditional client-server system such as the net-
worked file system (NFS). In NFS, the server does not
often fail, and when it does there are generally few op-
tions for recovery and no alternative servers to fail over
to. If a response to an NFS request is not received in the
expected time, the client will usually try again with an ex-
ponentially increasing timeout value.

In a peer-to-peer system under churn, in contrast, re-
quests will be frequently sent to a node that has left the
system, possibly forever. At the same time, a DHT with
routing flexibility (static resilience) has many alternate
paths available to complete a lookup. Simply backing
off the request period is thus a poor response to a request
timeout; it is often better to retry the request through a
different neighbor.

A node should ensure that the timeout for a request was
judiciously selected before routing to an alternate neigh-
bor. If it is too short, the node to which the original was
sent may be yet to receive it, may be still processing it, or
the response may be queued in the network. If so, inject-
ing additional requests may result in the use of additional
bandwidth without any beneficial result—for example, in
the case that the local node’s access link is congested.
Conversely, if the timeout is too long, the requesting node
may waste time waiting for a response from a node that
has left the network. If the request rate is fixed at too low
a value, these long waits cause unbounded queue growth
on the request node that might be avoided with shorter
timeouts.

For these reasons, nodes should accurately choose

timeouts such that a late response is indicative of node
failure, rather than network congestion or processor load.

4.2.1 Techniques

We discuss and study three alternative timeout calculation
strategies. In the first, we fix all timeouts at a conser-
vative value of five seconds as a control experiment. In
the second, we calculate TCP-style timeouts using direct
measurement of past response times. Finally, we explore
using indirect measurements from a virtual coordinate al-
gorithm to calculate timeouts.

TCP-style timeouts: If a DHT routes recursively, it
rarely communicates with nodes other than its direct
neighbors in the overlay network. Since the number of
these neighbors is logarithmic in the size of the network,
and since each node periodically probes each neighbor
for availability, a node can easily maintain a past history
of each neighbor’s response times for use in calculating
timeouts. In Bamboo, we have implemented this strat-
egy following the style of the early TCP work [15], where
each node maintains an exponentially weighted mean and
variance of the response time for each neighbor. Specifi-
cally, the estimate round-trip timeout (RTO) for a neigh-
bor is calculated as

RTO = AVG + 4 × VAR,

where AVG is the observed average round-trip time and
VAR is the observed mean variance of that time.

Timeouts from virtual coordinates: In contrast to re-
cursive routing, with iterative routing a node must poten-
tially have a good timeout for any other node in the net-
work. However, in some scenarios iterative routing does
have attractive properties. For example, since the source
of a lookup request controls the entire process of itera-
tive routing, it is easy to explore several different lookup
paths in parallel. For only a constant increase in band-
width used, this technique prevents a single timeout from
delaying a lookup ??.

Virtual coordinates provide one approach to computing
timeouts without previously measuring the response time
to every node in the system. In this scheme, a distributed
machine learning algorithm is employed to assign to each
node coordinates in a virtual metric space such that the
distance between two nodes in the space is proportional
to their latency in the underlying network.

Bamboo includes an implementation of the Vivaldi co-
ordinate system employed by Chord [11]. Vivaldi keeps
an exponentially-weighted average of the error of past
round-trip times calculated with the coordinates, and com-
putes the RTO as

RTO = v + 6 × α + 15

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256

M
ea

n
L

at
en

cy
 (

s)

Median Session Time (min)

Fixed 5s
Vivaldi

TCP-style

Figure 9: TCP-style versus virtual coordinate-based time-
outs in Bamboo. Timeouts chosen using Vivaldi are com-
petitive with TCP-style timeouts for moderate churn rates.

where v is the predicted round-trip time and α is the aver-
age error. The constant term of 15 milliseconds is added to
avoid unnecessary retransmissions when the destination is
the local host.

4.2.2 Results

TCP-style timeouts assume a recursive routing algorithm,
and a virtual coordinate system is necessary only when
routing iteratively. While we would ideally compare the
two approaches by measuring each in its intended envi-
ronment, this would prevent us from isolating the effect
of timeouts from the differences caused by routing styles.

Instead, we study both schemes under recursive rout-
ing. If timeouts calculated with virtual coordinates pro-
vide performance comparable to those calculated in the
TCP-style under recursive routing, we can expect the
virtual coordinate scheme to not be prohibitively expen-
sive under iterative routing. While other issues may re-
main with iterative routing under churn (e.g. congestion
control—see Section 6), this result would be a useful one.

Figure 9 shows a direct comparison of the three timeout
calculation methods under increasing levels of churn. In
all cases in this experiment, the Bamboo configurations
differed only in choice of timeout calculation method.
Proximity neighbor selection was used, but the latency
measurements for PNS used separate direct probing and
not the virtual coordinates.

Even under light levels of churn, fixing all timeouts
at five seconds causes lookup timeouts to pull the mean
latency up to more than twice that of the other configu-
rations, confirming our intuition about the importance of
good timeout values in DHT routing under churn. More-
over, by comparing Figure 9 to Figure 7, we note that un-
der high churn timeout calculation has a greater effect on
lookup latency than the use of PNS.

Virtual coordinate-based timeouts achieve very similar
mean latency to TCP-style timeouts at low churn. Fur-

thermore, they perform within a factor of two of TCP-
style measurements until the median churn rate drops to
23 minutes. Past this point, their performance quickly di-
verges, but virtual coordinates continue to provide mean
lookup latencies under two seconds down to twelve-
minute median session times.

Finally, we note the similarity in shape of Figure 9 to
Figure 7, where we compared the performance of Chord
to Bamboo, suggesting that the growth in lookup latency
under Chord at high churn rates is due to timeout calcula-
tion based on virtual coordinates.

4.3 Proximity Neighbor Selection

Perhaps one of the most studied aspects of DHT design
has been proximity neighbor selection (PNS), the process
of choosing among the potential neighbors for any given
routing table entry according to their network latency to
the choosing node. This research is well motivated. The
stretch of a lookup operation is defined as the latency of
the lookup divided by the round-trip time between the
lookup source and the node discovered by the lookup in
the underlying IP network. Dabek et al. present an argu-
ment and experimental data that suggest that PNS allows
a DHT of N nodes to achieve median stretch of only 1.5,
independent of the size of the network and despite using
O(log N) hops [11]. Others have proved that PNS can be
used to provide constant stretch in locating replicas un-
der a restricted network model [21]. This is the first study
of which we are aware, however, to compare methods of
achieving PNS under churn. We first take a moment to
discuss the common philosophy and techniques shared by
each of the algorithms we study.

4.3.1 Commonalities

One of the earliest insights in DHT design was the sepa-
ration of correctness and performance in the distinction
between neighbors in the leaf set and neighbors in the
routing table [24, 27]. So long as the leaf sets in the
system are correct, lookups will always return correct re-
sults, although they may take O(N) hops to do so. Leaf
set maintenance is thus given priority over routing table
maintenance by most DHTs. In the same manner, we note
that so long as each entry in the routing table has some
appropriate neighbor (i.e. one with the correct identifier
prefix), lookups will always complete in O(log N) hops,
even though they make take longer than if the neighbors
had been chosen for proximity. We say such lookups are
efficient, even though they may not have low stretch. By
this argument, we reason that it is desirable to fill a routing
table entry quickly, even with a less than optimal neigh-
bor; finding a nearby neighbor is a lower priority.

There is a further argument to treating proximity as a

lower priority in the presence of churn. Since we expect
our set of neighbors to change over time as part of the
churn process, it makes little sense to work too hard to
find the absolute closest neighbor at any given time; we
might expend considerable bandwidth to find them only
to see them leave the network shortly afterward. As such,
our general approach is to run each of the algorithms de-
scribed below periodically. In the case where churn is
high, this technique allows us to retune the routing table
as the network changes. When churn is low, rerunning
the algorithms makes up for latency measurement errors
caused by transient network conditions in previous runs.

Our general approach to finding nearby neighbors thus
takes the following form. First, we use one of the algo-
rithms below to find nodes that may be near to the local
node. Next, we measure the latency to those nodes. If
we have no existing neighbor in the routing table entry
that the measured node would fill, or if it is closer than
the existing routing table entry, we replace that entry, oth-
erwise we leave the routing table unchanged. Although
the bandwidth cost of multiple measurements is high, the
storage cost to remember past measurements is low. As a
compromise, we perform only a single latency measure-
ment to each discovered node during any particular run of
an algorithm, but we keep an exponentially weighted av-
erage of past measurements for each node, and we use
this average value in deciding the relative closeness of
nodes. This average occupies only eight bytes of mem-
ory for each measured node, so we expect this approach
to scale comfortably to very large systems.

4.3.2 Techniques

The techniques for proximity neighbor selection that we
study here are global sampling, sampling of our neigh-
bors’ neighbors, and sampling of the nodes that have our
neighbors as their neighbors. We describe each of these
techniques in turn.

Global sampling In global sampling (called global tun-
ing in our earlier work [23]), we use the lookup function-
ality of the DHT to find new neighbors. For a routing table
entry that requires a neighbor with prefix p, we perform a
lookup for a random identifier with prefix p. The node re-
turned by this lookup will almost always have the desired
prefix. (As an example of why this is not always the case,
note that a lookup of identifier 0 may return a node whose
identifier starts with 1 if the node with the largest iden-
tifier in the ring is numerically closer to 0 than the node
with the smallest identifier.) Given enough samples, all
nodes with prefix p will eventually be probed. The moti-
vation for this technique comes from Gummadi et al., who
showed that sampling only around 16 nodes for each rout-
ing table entry provides almost optimal proximity [12].

A
B

C D

Figure 10: Sampling neighbors’ neighbors. If A joins us-
ing D as its gateway, its initial level-0 neighbors are the
same as those of D; assume that these are all within the
dashed line. A contacts a level-0 neighbor, e.g. C, and
asks it for its level-0 neighbors. A would learn about B in
this manner. However, there may be no path from the D’s
ideal neighbors to those of A.

There are some cases, however, where global sampling
will take unreasonably long to find the closest possible
neighbor. For example, consider two nodes separated
from the core Internet by the same, high latency access
link, as shown in Figure 11. The relatively high latency
seen by these two nodes to all other nodes in the network
makes them attractive neighbors for each other; if they
have different first digits in a network with logarithm base
two, they can drastically reduce the cost of the first hop
of many routes by learning about each other. However,
the time for these nodes to find each other using global
sampling is proportional to the size of the total network,
and so they may not find each other before their sessions
end. It is this drawback of global sampling that leads us
to consider other techniques.

Neighbors’ neighbors The next technique we consider
is sampling our neighbors neighbors, a process called
routing table maintenance in the Pastry work [24] or lo-
cal tuning in our earlier work [23]. In this technique, we
contact an existing routing table neighbor at level l of our
routing table and ask for its level l neighbors. Like us,
these nodes share a prefix of l − 1 digits with the con-
tacted neighbor and are thus appropriate for use in our
routing table as well. As in global sampling, having dis-
covered these new nodes, we probe them for latency and
use them if they are closer than our existing neighbors.

The motivation for sampling neighbors’ neighbors is
illustrated in Figure 10; it relies on the expectation that
proximity in the network is roughly transitive. If a node
discovers one nearby node, then that node’s neighbors are
probably also nearby. In this way, we expect that a node
can “walk” through the graph of neighbor links to the set
of nodes most near it.

To see one possible shortcoming of sampling our neigh-
bors’ neighbors, consider again Figure 11. While the two
isolated nodes would like to discover each other, it is un-
likely that any other nodes in the network would prefer
them as neighbors; their isolation makes them unattrac-
tive for routing lookups that originate elsewhere, except

A

B

C

100 ms

Figure 11: Sampling neighbors’ inverse neighbors. Nodes
A and B are isolated from the remainder of the network
by a long latency, and are initially unaware of each other.
Such a situation is possible if, for example, two Euro-
pean nodes join a network of primarily North American
nodes. As such, they make unattractive neighbors for
other nodes, but they would still like to find each other. If
they both have C as a neighbor, they can find each other
by asking C for its inverse neighbors.

in the rare case that they are the result of those lookups.
As such, since neighbor links in DHTs are rarely symmet-
ric, it is unlikely that there is a path through the graph of
neighbor links that will lead one isolated node to the other,
despite their relative proximity.

Neighbors’ inverse neighbors The latter argument
presents an obvious alternative approach. Instead of sam-
pling our neighbors’ neighbors, why not sample those
nodes which have the same neighbors as the local node?
This technique was originally proposed in the Tapestry
nearest neighbor algorithm [14]; we call it sampling our
neighbors’ inverse neighbors. To motivate this technique,
consider again Figure 11. Although the two remote nodes
are unlikely to be neighbors of many other nodes, given
that their existing neighbors are mostly nearby, they are
likely to choose the same neighbors from outside their iso-
lated domain. For this reason, they are likely to find each
other in the set of their neighbors’ inverse neighbors.

Normally, a DHT node would not record the set of
nodes that use it as a neighbor. Actively managing such a
list, in fact, requires additional probing bandwidth. Cur-
rently, the Bamboo implementation does actively manage
this set, but it could be easily approximated at each node
by keeping track of the set of nodes which have sent it
liveness probes in the last minute or so. We plan to imple-
ment this optimization in our future work.

Recursive sampling Consider Figure 11 one final time,
and assume that we are using a single-bit digits and that
the two remote nodes begin with different digits, i.e. 0
and 1 respectively. The node whose identifier starts with 0
will have only one neighbor whose identifier begins with 1
(its level-0 neighbor). Likewise, the node whose identifier
starts with 1 will have only one neighbor that starts with
0. The set of neighbors in whose inverse neighbor sets
the two isolated neighbors can find each other is thus very
small. As such, until the two isolated nodes have found

(1) function nearest neighbors () =
(2) S = highest nonempty rt level ();
(3) l = longest matching prefix (S);
(4) while l >= 0
(5) forall n in S

(6) T = n.get inverse rt neighbors (l);
(7) S = closest (k, S ∪ T);

Figure 12: The Tapestry nearest neighbor algorithm.

very nearby level-0 neighbors, they will be unlikely to find
each other among their neighbors’ inverse neighbors.

To remedy this final problem, we can perform the sam-
pling of nodes in a manner similar to that used by the
Tapestry nearest neighbor algorithm (and the Pastry op-
timized join algorithm). Pseudo-code for this technique
is shown in Figure 12. Starting with the highest level l
in its routing table, a node contacts the neighbors at that
level and retrieves their neighbors (or inverse neighbors).
The latency to each newly discovered nodes is measured,
and all but the k closest are discarded. The node then
decrements l and retrieves the level-l neighbors from each
non-discarded node. This process is repeated until l < 0.
Along the way, each discovered neighbor is considered as
a candidate for use in the routing table. To keep the cost of
this algorithm low, we limit it to having at most three out-
standing messages (neighbor requests or latency probes)
at any time.

Note that although this process starts by sampling from
the routing table, the set of nodes on which it recurses is
not constrained by the prefix-matching structure of that ta-
ble. As such, it does not suffer from the small rendezvous
set problem discussed above. In fact, under certain net-
work assumptions, it has been proved that this process
finds a node’s nearest neighbor in the underlying network.

4.3.3 Results

In order to compare the techniques described above, it is
important to consider not only effective they are at finding
nearby neighbors, but also at what bandwidth cost they do
so. For example, global sampling at a high enough rate
relative to the churn rate would achieve perfect proxim-
ity, but at the cost of a very large number of lookups and
latency probes. To make this comparison, then, we ran
each algorithm (and some combinations of them) at var-
ious periods, then plotted the mean lookup latency under
churn versus bandwidth used. The results for median ses-
sion times of 47 minutes are shown in Figure 13, which is
split into two graphs for clarity.

Figure 13(a) shows several interesting results. First, we
note that only a little bit of global sampling is necessary
to produce a drastic improvement in latency versus the

 250

 300

 350

 400

 450

 500

 600 800 1000 1200 1400

M
ea

n
L

at
en

cy
 (

m
s)

Bandwidth (bytes/s/node)

No PNS
NN

NIN
Global

NN Recursive
NIN Recursive

(a)

 240

 260

 280

 300

 320

 340

 600 800 1000 1200 1400

M
ea

n
L

at
en

cy
 (

m
s)

Bandwidth (bytes/s/node)

Global
Rand+NN

Rand+NIN
Rand+NN Recur

Rand+NIN Recur

(b)

Figure 13: Comparison of PNS techniques. “No PNS” is the control case, where proximity is ignored. “Global
Sampling” uses the lookup function to sample all nodes in the DHT. “NN” is sampling our neighbor’s neighbors, and
“NIN” is sampling their inverse neighbors. The recursive versions of “NN” and “NIN” mimic the nearest-neighbor
algorithms of Pastry and Tapestry, respectively. Note that the scales are different between the two figures.

configuration that is not using PNS. With virtually no in-
crease in bandwidth, global sampling drops the mean la-
tency from 450 ms to 340 ms.

Next, much to our surprise, we find that simple sam-
pling of our neighbor’s neighbors or inverse neighbors is
not terribly effective. As we argued above, this result may
be in part due to the constraints of the routing table, but
we did not expect the effect to be so dramatic. On the
other hand, the recursive versions of both algorithms are
at least as effective as global sampling, but not much more
so. This result agrees with the contention of Gummadi et
al. that only a small amount of global sampling is neces-
sary to achieve near-optimal PNS.

Figure 13(b) shows several combinations of the vari-
ous algorithms. Global sampling plus sampling of neigh-
bors’ neighbors—the combination used in our earlier
work [23]—does well, offering a small decrease in la-
tency without much additional bandwidth. However, the
other combinations offer similar results. At this point, it
seems prudent to say that the most effective technique is to
combine global sampling with any other technique. While
there may be other differences between the techniques not
revealed by this analysis, we see no clear reason to prefer
one over another as yet.

5 Related Work

As we noted at the start of this paper, while DHTs have
been the subject of much research in the last 4 years or
so, there have been few studies of the resilience of real
implementations at scale, perhaps because of the difficulty
of deploying, instrumenting, and creating workloads for
such deployments. However, there has been a substantial
amount of theoretical and simulation-based work.

Gummadi et al. [12] present a comprehensive analysis
of the static resilience of the various DHT geometries. As
we have argued earlier in this work, static resilience is an
important first step in a DHT’s ability to handle failures in
general and churn in particular.

Liben-Nowell et al. [17] present a theoretical analysis
of structured peer-to-peer overlays from the point of view
of churn as a continuous process. They prove a lower
bound on the maintenance traffic needed to keep such
networks consistent under churn, and show that Chord’s
algorithms are within a logarithmic factor of this bound.
This paper, in contrast, has focused more on the systems
issues that arise in handling churn in a DHT. For example,
we have observed what they call “false suspicions of fail-
ure”, the appearance that a functioning node has failed,
and shown how reactive failure recovery can exacerbate
such conditions.

Mahajan et al. [19] present a simulation-based analysis
of Pastry in which they study the probability that a DHT
node will forward a lookup message to a failed node as
a function of the rate of maintenance traffic. They also
present an algorithm for automatically tuning that rate for
a given failure rate. Since this algorithm increases the
rate of maintenance traffic in response to losses, we are
concerned that it may cause positive feedback cycles like
those we have observed in reactive recovery. Moreover,
we believe their failure model is pessimistic, as they do
not consider hop-by-hop retransmissions of lookup mes-
sages. By acknowledging lookup messages on each hop,
a DHT can route around failed nodes in the middle of a
lookup path, and in this work we have shown that good
timeout values can be computed to minimize the cost of
such retransmissions.

Castro et al. [7] presented a number of optimizations

they have performed in MSPastry, the Microsoft Research
implementation of Pastry, using simulations. Also, Li et
al. [16] performed a detailed simulation-based analysis of
several different DHTs under churn, varying their parame-
ters to explore the latency-bandwidth tradeoffs presented.
It was their work that inspired our analysis of different
PNS techniques.

As opposed to the emulated network used in this study,
simulations do not usually consider such network issues
as queuing, packet loss, etc. By not doing so, they either
simulate far larger networks than we have studied here as
in [7, 19], or they are able to explore a far larger space
of possible DHT configurations as in [16]. On the other
hand, they do not reveal subtle issues in DHT design,
such as the tradeoffs between reactive and periodic recov-
ery. Also, they do not reveal the interactions of lookup
traffic and maintenance traffic in competing for network
bandwidth. We are interested in whether a useful middle
ground exists between these approaches.

Finally, a number of useful features for handling churn
have been proposed, but are not implemented by Bamboo.
For example, Kademlia [20] maintains several neighbors
for each routing table entry, ordered by the length of time
they have been neighbors. Newer nodes replace existing
neighbors only after failure of the latter. This design deci-
sion is aimed at mitigating the effects of the high “infant
mortality” observed in peer-to-peer networks.

Another approach to handling churn is to introduce a
hierarchy into the system, through stable “superpeers” [2,
29]. While an explicit hierarchy is a viable strategy for
handling load in some cases, this work has shown that
a fully decentralized, non-hierarchical DHT can in fact
handle high rates of churn at the routing layer.

6 Future Work

As discussed in the introduction, there are several other
limitations of this study that we think provide for impor-
tant future work. At an algorithmic level, we would like
to study the effects of alternate routing table neighbors as
in Kademlia and Tapestry. We would also like to con-
tinue our study of iterative versus recursive routing. As
discussed by others [11], congestion control for iterative
lookups is a challenging problem. We have implemented
Chord’s STP congestion control algorithm and are cur-
rently investigating its behavior under churn, but we do
not yet have definitive results about its performance.

At a methodological level, we would like to broaden
our study to include better models of network topology
and churn. We have so far used only a single network
topology in our work, and so our results should be not
be taken as the last word on PNS. In particular, the dis-
tribution of internode latencies in our ModelNet topology

is more Gaussian than the distribution of latencies mea-
sured on the Internet. Unfortunately for our purposes,
these measured latency distributions do not include topol-
ogy information, and thus cannot be used to simulate the
kind of network cross traffic that we have found important
in this study. The existence of better topologies would be
most welcome.

In addition to more realistic network models, we would
also like to include more realistic models of churn in our
future work. One idea that was suggested to us by an
anonymous reviewer was to scale traces of session times
collected from deployed networks to produce a range of
churn rates with a more realistic distribution. We would
like to explore this approach. Nevertheless, we believe
that the effects of the factors we have studied are dramatic
enough that they will remain important even as our mod-
els improve.

Finally, in this work we have only shown the resistance
of the Bamboo routing layer to churn, an important first
step verifying that DHTs are ready to become the domi-
nant building block for peer-to-peer systems, but a limited
one. Clearly other issues remain. Security and possibly
anonymity are two such issues, but we are unclear about
how they relate to churn. We are currently studying the re-
silience to churn of the algorithms used by the DHT stor-
age layer. We hope that the existence of a routing layer
that is robust under churn will provide a useful substrate
on which these remaining issues may be studied.

7 Conclusion

In this work we have summarized the rates of churn ob-
served in deployed peer-to-peer systems and shown that
existing DHTs exhibit less than desirable performance at
the higher end of these churn rates. We have presented
Bamboo and explored various design tradeoffs and their
effects on its ability to handle churn.

The design tradeoffs we studied in this work fall into
three broad categories: reactive versus periodic recov-
ery from neighbor failure, the calculation of timeouts on
lookup messages, and proximity neighbor selection. We
have presented the danger of positive feedback cycles in
reactive recovery and discussed two ways to break such
cycles. First, we can make the DHT much more cautious
about declaring neighbors failed, in order to limit the pos-
sibility that we will be tricked into recovering a non-faulty
node by network congestion. Second, we presented the
technique of periodic recovery. Finally, we demonstrated
that reactive recovery is less efficient than periodic recov-
ery under reasonable churn rates when leaf sets are large,
as they would be in a large system.

With respect to timeout calculation, we have shown that
TCP-style timeout calculation performs best, but argued

that it is only appropriate for lookups performed recur-
sively. It has long been known that recursive routing pro-
vides lower latency lookups than iterative, but this result
presents a further argument for recursive routing where
the lowest latency is important. However, we have also
shown that while they are not as effective as TCP-style
timeouts, timeouts based on virtual coordinates are quite
reasonable under moderate rates of churn. This result in-
dicates that at least with respect to timeouts, iterative rout-
ing should not be infeasible under moderate churn.

Concerning proximity neighbor selection, we have
shown that global sampling can provide a 24% reduc-
tion in latency for virtually no increase in bandwidth used.
By using an additional 40% more bandwidth, a 42% de-
crease in latency can be achieved. Other techniques are
also effective, especially our adaptations of the Pastry and
Tapestry nearest-neighbor algorithms, but not much more
so than simple global sampling. Merely sampling our
neighbors’ neighbors or inverse neighbors is not very ef-
fective in comparison. Some combination of global sam-
pling an any of the other techniques seems to provide the
best performance at the least cost.

8 Acknowledgments

We would like to thank a number of people for their help
with this work. Our shepherd, Atul Adya, and the anony-
mous reviewers all provided valuable comments and guid-
ance. Frank Dabek helped us tune our Vivaldi implemen-
tation, and he and Emil Sit helped us get Chord up and
running. Likewise, Peter Druschel provided valuable de-
bugging insight for FreePastry. David Becker helped us
with ModelNet. Sylvia Ratnasamy, Scott Shenker, and
Ion Stoica provided valuable guidance at several stages of
this paper’s development.

References
[1] Freepastry 1.3.

http://www.cs.rice.edu/CS/Systems/Pastry/.

[2] Gnutella. http://www.gnutella.com/.

[3] Inet topology generator.
http://topology.eecs.umich.edu/inet/.

[4] MIT Chord. http://www.pdos.lcs.mit.edu/chord/.

[5] R. Bhagwan, S. Savage, and G. Voelker. Understanding availabil-
ity. In Proc. IPTPS, Feb. 2003.

[6] C. Blake and R. Rodrigues. High availability, scalable storage,
dynamic peer networks: Pick two. 2003.

[7] M. Castro, M. Costa, and A. Rowstron. Performance and depend-
ability of structured peer-to-peer overlays. Technical Report MSR-
TR-2003-94, Microsoft, 2003.

[8] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of scal-
able application-level multicast built using peer-to-peer overlays.
Apr. 2003.

[9] J. Chu, K. Labonte, and B. N. Levine. Availability and locality
measurements of peer-to-peer file systems. In Proc. of ITCom:
Scalability and Traffic Control in IP Networks, July 2002.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. ACM SOSP,
Oct. 2001.

[11] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Mor-
ris. Designing a DHT for low latency and high throughput. In
Proc. NSDI, 2004.

[12] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of DHT routing geometry on resilience
and proximity. In Proc. ACM SIGCOMM, Aug. 2003.

[13] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan. Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In Proc. ACM SOSP, Oct. 2003.

[14] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed
object location in a dynamic network. In Proc. SPAA, 2002.

[15] V. Jacobson and M. J. Karels. Congestion avoidance and control.
In Proc. ACM SIGCOMM, 1988.

[16] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek. Com-
paring the performance of distributed hash tables under churn. In
Proc. IPTPS, 2004.

[17] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of
the evolution of peer-to-peer systems. In Proc. ACM PODC, July
2002.

[18] B. T. Loo, R. Huebsch, I. Stoica, and J. Hellerstein. The case for a
hybrid P2P search infrastructure. In Proc. IPTPS, 2004.

[19] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of
reliability in peer-to-peer overlays. In Proc. IPTPS, Feb. 2003.

[20] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the XOR metric. In Proc. IPTPS, 2002.

[21] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In Proc. of ACM
SPAA, June 1997.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. ACM SIGCOMM,
Aug. 2001.

[23] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn
in a DHT. Technical Report UCB//CSD-03-1299, University of
California, Berkeley, December 2003.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large scale peer-to-peer systems. In Proc.
of IFIP/ACM Middleware, Nov. 2001.

[25] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. MMCN, Jan.
2002.

[26] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large net-
works. In Proc. of ACM SIGCOMM Internet Measurement Work-
shop, Nov. 2002.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proc. ACM SIGCOMM, Aug. 2001.

[28] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a large-scale
network emulator. In Proc. OSDI, Dec. 2002.

[29] B. Y. Zhao, Y. Duan, L. Huang, A. D. Joseph, and J. D. Kubiatow-
icz. Brocade: Landmark routing on overlay networks. In Proc.
IPTPS, March 2002.

[30] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for
service deployment. IEEE JSAC, 22(1):41–53, Jan. 2004.

