
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E J A N U A R Y 2 0 1 6 43

COVER FEATURE OUTLOOK

Outlook on
Operating Systems
Dejan Milojičić, Hewlett Packard Labs

Timothy Roscoe, ETH Zurich

Will OSs in 2025 still resemble the Unix-like consensus of today,

or will a very different design achieve widespread adoption?

Seventeen years ago, six renowned technolo-
gists attempted to predict the future of OSs
for an article in the January 1999 issue of IEEE
Concurrency.1 With the benefit of hindsight,

the results were decidedly mixed. These six experts
correctly predicted the emergence of scale-out archi-
tectures, nonuniform memory access (NUMA) perfor-
mance issues, and the increasing importance of OS
security. But they failed to predict the dominance of
Linux and open source software, the decline of propri-
etary Unix variants, and the success of vertically inte-
grated Mac OS X and iOS.

The reasons to believe that OS design won’t change
much going forward are well known and rehearsed:
requirements for backward compatibility, the Unix mod-
el’s historical resilience and adaptability,2 and so on. “If
it ain’t broke, don’t fix it.”

However, we argue that OSs will change radically.
Our motivation for this argument is two-fold. The first
has been called the “Innovator’s Dilemma,” after the
book of the same name:3 a variety of interests, both com-
mercial and open source, have invested substantially in
current OS structures and view disruption with suspi-
cion. We seek to counterbalance this view. The second is

more technical: by following the argument that the OS
will change, we can identify the most promising paths
for OS research to follow—toward either a radically dif-
ferent model or the evolution of existing systems. In
research, it’s often better to overshoot (and then figure
out what worked) than to undershoot.

Current trends in both computer hardware and
application software strongly suggest that OSs will
need to be designed differently in the future. Whether
this means that Linux, Windows, and the like will be
replaced by something else or simply evolve rapidly
will be determined by a combination of various tech-
nical, business, and social factors beyond the con-
trol of OS technologists and researchers. Similarly,
the change might come from incumbent vendors and
open source communities, or from players in new
markets with requirements that aren’t satisfied by
existing designs.

Ultimately, though, things are going to have to change.

HARDWARE TRENDS
Hardware is changing at the levels of individual devices,
cores, boards, and complete computer systems, with
deep implications for OS design.

44 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

Complexity
Hardware is becoming increasingly
more complex. Today, the program-
ming manual for a system-on-chip
(SoC) part for a phone or server blade
typically runs to more than 6,000
pages, usually not including documen-
tation for the main application cores.
Large numbers of peripheral devices
are integrated onto a die, each with
complex, varying programming mod-
els. More and more of these devices—
networking adaptors, radios, graphics
processors, power controllers, and so
on—are now built as specialized pro-
cessors that execute specialized firm-
ware with little OS integration.

The OS communicates with these
peripherals via proprietary messag-
ing protocols specific to producers of
peripheral devices. This marks the
beginning of the trend toward dark
silicon, a large collection of highly
specialized processors, only a few of
which can be used at a time.4

These devices’ interconnects are
also becoming more complex. A mod-
ern machine is a heterogeneous net-
work of links, interconnects, buses,
and addressing models. Not all devices
are accessible from all general-purpose
cores, and the same is true of memory:
the cozy view of a computer as a single
cache-coherent physical address space
containing RAM and devices has been
a myth for at least the last decade.

Energy
These systems aren’t static, either. As
a system resource to be managed by
the OS, energy is now just as import-
ant as CPU cycles, bytes of RAM,
or network bandwidth, whether in
the form of cellphone battery life or
datacenter power consumption. Not
least among the many implications
for new OS design is that most of the

hardware—such as cores, devices,
and memory—can be powered up and
down at any point during execution.

Nonvolatile main memory
As technology advances, we expect
large, nonvolatile main memories
to become prevalent.5 This doesn’t
only mean that most data will per-
sist in nonvolatile memory (NVM) as
opposed to DRAM or disk, but also that
packaging, cost, and power efficiency
will make it possible to architect and
deploy far more nonvolatile RAM
(NVRAM) than DRAM. Main memory
will be mostly persistent and will have
much greater capacity than today’s
disks and disk arrays.

With large numbers of heteroge-
neous processors, this memory will be
highly distributed but perhaps not in
the way we see today. Photonic inter-
connects and high-radix switches can
expand the load-store domain (where
cores can issue cache-line reads and
writes) across multiple server units
(within a rack or even a datacenter)
and potentially flatten the switch
hierarchy, resulting in more uniform
memory access.6

This further enlarges the memory
accessible from a single CPU beyond
that supported by modern 64-bit pro-
cessors, which implement no more
than 52 bits of physical address space
and as little as 42 bits for some CPUs.
In the short term (it’ll be a few years
until processor vendors implement
more address bits), this will lead to con-
figurable apertures or windows into
available memory. Typical time scales
of general-purpose OSs span multiple
decades, whereas real-time and embed-
ded OS lifetimes are only a few years.

In the longer term, memory con-
trollers are likely to become more
intelligent and programmable at the

OS—and perhaps application—level.
They will be able to execute adaptive
algorithms subject to memory access
patterns. Memory controller functions
will be executed closer to memory
(outside CPUs), implementing optimi-
zations such as encryption, compres-
sion, and quality-of-service functions.

Systems
Taking a step back, we see that the
boundaries of today’s machines are
different from traditional scale-up
and scale-out systems. The resources
of a closely coupled cluster such as a
rack-scale InfiniBand cluster must be
managed at a timescale the OS is used
to, rather than those used for tradi-
tional middleware.

We’re so accustomed to thinking
of Linux or Windows as OSs—because
they started that way—that it’s rare to
consider a functional definition of an
OS. Consider the following traditional
definition of an OS: “an OS is a col-
lection of system software that man-
ages the complete hardware platform
and securely multiplexes resources
between tasks.”

Linux, Windows, and Mac OS all
fail this definition. A cellphone OS
is a mishmash of proprietary device
firmware, embedded real-time execu-
tives, and the Linux or iOS kernel and
its daemons that run applications and
manage a fraction of the hardware. The
OS of a datacenter or rack-scale appli-
ance is typically a collection of differ-
ent Linux installations as well as cus-
tom and off-the-shelf middleware. If
we want to examine the structure of a
real-world, contemporary OS, we need
to look elsewhere. A great deal of tra-
ditional OS functionality is now occur-
ring outside of general-purpose OSs; it’s
moved to the top-of-rack management
server, closer to memory (memory-side

 J A N U A R Y 2 0 1 6 45

controllers), to various appliances (intru-
sion detection systems, and storage), or
to specialized cores on the same die.

Diversity
Hardware is also becoming more
diverse. Beyond the complexity of any
single product line of machines, the
designs of every processor, SoC, and
complete system are different. SoCs
were always heterogeneous, but they
were used in special-purpose systems;
now they’re used in general-purpose
sys tems. Engineering a general-purpose
OS that can be used widely and evolve
as hardware changes (and with it, the
tradeoffs required for scalability, per-
formance, and energy efficiency) is a
formidable challenge.

In a remarkable change from 15
years ago, hardware adapts and diver-
sifies much faster today than system
software does—faster than the current
OS engineering practice of monolithic
kernels can keep up with. Short-term
solutions include backward-compatible
workarounds by hardware vendors
(giving up on the full potential of new
hardware features), hiding or mitigat-
ing the problem through vertical inte-
gration, or deploying huge internal
software-engineering efforts for each
new product.

APPLICATION CHANGES
The ways in which computers are used
and the applications that run on them
are also changing, calling into ques-
tion many OS designs of the last 40
years. This is both a challenge and an
opportunity. It’s a challenge because
current OSs don’t match up well with
the applications they’re called on to
support. It’s an opportunity because
the burden of history (backward com-
patibility, long-standardized APIs, and
established programming models, for

example) is light: applications are very
different now, granting us the freedom
to change the OS interface.

Rack-scale computing
One trend we’re seeing in applica-
tions is rack-scale computing, which
is sometimes deployed as software
appliances (called tin-wrapped soft-
ware). Many enterprise applications
such as file servers, relational and
nonrelational databases, and big data
analytics now come prepackaged in a
rack-scale software appliance (exam-
ples include Oracle’s Exadata and Exa-
lytics products or the SAP HANA data-
base). Such appliances usually consist
of a collection of server machines and
optional custom hardware accelera-
tors, connected by a high-bandwidth
internal network such as InfiniBand.
Customers plug in the power and net-
work cables, configure it, and go.

Tin-wrapped software is attractive
to software vendors for a number of
reasons. Because the vendor controls
the hardware platform that the OS runs
on, support costs are greatly reduced—
there’s no need to validate the soft-
ware on every conceivable PC server,
network card, or version of Windows
or Linux. Tin-wrapped software also
allows vendors to introduce custom
hardware that doesn’t have to be com-
patible with every customer’s existing
systems. The market for such enter-
prise software appliances is huge.

Because the appliance only runs
one software package, one might
think OS issues are simplified, but this
isn’t true in practice. Enterprise soft-
ware packages are highly complex ser-
vices with many different tasks run-
ning at the same time and competing
for resources. In addition to the tradi-
tional application resources an OS has
to manage, there’s also the appliance’s

backplane network. Allocating inter-
connect bandwidth be comes import-
ant in these machines: a skewed hash
join in a large relational database can
easily saturate 100 gigabits per second
(Gbps) FDR InfiniBand links inside the
appliance and significantly impact
performance. Distributed coordina-
tion of CPU scheduling, combined
with careful interconnect manage-
ment, is essential.

In an effort to optimize perfor-
mance, rack-scale applications often
exploit the lowest-latency communi-
cation mechanisms available, such as
remote direct memory access (RDMA)
one-side operations. This means that
memory management and protection
in the OS becomes a distributed sys-
tems problem.

Large-scale persistent main mem-
ories are likely to be adopted first in
the appliance space because most data
processing in such systems is already
done in main memory (either RAM or
with a large cache of memory-mapped
flash memory). Being able to support
very large, persistent physical memory
within a given power envelope could
greatly increase the capacity of enter-
prise data-processing appliances.

Datacenter challenges
Beyond the scale of information appli-
ances are enterprises and service pro-
viders who operate applications across
entire datacenters.

Datacenter challenges include app-
lication deployment, upgrades, and
maintenance. Unlike tin-wrapped soft-
ware, datacenter applications can’t be
coupled to a controlled hardware plat-
form. Instead, code must be upgraded
across thousands of machines in a
coordinated manner, often without
suffering from downtime. Provision-
ing capacity for such applications is an

46 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

ongoing problem: workloads change
and new processing nodes must be
acquired, installed, and added to the
running system without adversely
affecting computation.

Datacenters run many applications
at a time—sharing single conventional
OSs, packaged into containers, or run-
ning on virtual machines (and poten-
tially over virtual networks). In all
cases, performance isolation is a crit-
ical concern. Indeed, for many com-
mercial applications, adequate pre-
dictable performance is a correctness
issue, albeit in a very different manner
from classical real-time systems.

Although applications require pro-
per allocation of interconnect band-
width in rack-scale systems, cloud ser-
vices in datacenters often have much
more complex requirements from
the infrastructure, both in their use
of dynamically instantiated virtual
machines and with the increase in
software-defined networks (SDNs) and
network function virtualization.

These applications’ security require-
ments have also radically changed—
not only do the requirements apply to
network traffic, but these applications
can have hundreds of millions of users.
In many cases, as we’ve seen recently,
such applications’ security is best
expressed in terms of complex security
policies governing information flow to
prevent leakage of sensitive data, not as
simple resource access control.

Finally, these applications increas-
ingly span centralized datacenter ser-
vices, individual users’ mobile devices,
and a growing number of embedded
sensors and actuators in the Inter-
net of Things. A look at recent media
reports and research papers strongly
suggests that no one has a good handle
on how to manage the interconnected
security, reliability, and software

up date issues posed by this new kind
of environment.

In the early days of computers, an
OS existed to manage a competing
set of complete applications sharing
a machine. The basic OS abstractions
that evolved to represent applications
(for example, processes) have long been
inadequate: applications grew to in-
clude many processes in the same
OS. Today, a single application spans
potentially thousands of OS instan-
ces on hardware platforms rang-
ing from sensors and smartphones to
high- performance datacenter server
machines. It shouldn’t be surpris-
ing, then, that existing OSs, whose
core abstractions have changed little
over the last three decades, don’t pro-
vide a clear match to this application
structure.

WHAT’S BROKEN?
It’s remarkable how many assump-
tions about OS design embodied in
modern systems like Linux and Win-
dows are either violated or irrelevant,
in light of the modern trends in hard-
ware and application models previ-
ously mentioned.7 We’re being delib-
erately provocative in this article, but
we’re also serious.

We’re certainly not the first to point
out the deficiencies of current OS
designs. Also note that the following
issues are not “bugs”—they arise from
the fundamental structures on which
an OS like Unix or Windows is based.
If you fixed them, you’d have a dif-
ferent OS. This naturally begs the
question: However it ends up being
branded, what will such an OS look
like?

Single monolithic kernel
Modern OS designs share the con-
cept of a single, multithreaded,

shared- memory program that runs in
kernel mode and handles interrupts
and system calls. This simply doesn’t
work on a machine with heteroge-
neous pro cessors; different instruction
sets; and memory that’s not completely
coherent, exists at different addresses
as seen by different cores, and might
not even be shared. All of these are
features of modern machines that are
likely to continue in the future.

A single large kernel raises other
concerns, such as trust. Viewing a sin-
gle monolithic kernel as the trusted
computing base is one thing on a
machine with a few gigabytes of mem-
ory and a handful of cores, but is very
different on a machine with a peta-
byte of main memory and thousands
of cores. With hardware at this scale,
transient or persistent failures are
common (as they are in clusters), and
it’s no longer reasonable for one core
to depend on, let alone trust, code run-
ning in kernel mode on another core
on the other side of the machine.

Recognizing this situation forces an
OS designer into a much more distrib-
uted design. The interesting question
moving forward is to what extent this
scenario resembles a classical distrib-
uted system and to what extent it will
be something new. At least two features
distinguish large, modern computers
from the distributed systems of yore:
they have regions of partially shared
memory as well as message chan-
nels, and the message latency between
nodes (or cores) is close to the cost of a
last-level cache miss on a single core.

Authorization and security
Unsurprisingly, an authorization and
security model designed for a small
workgroup of trusted interactive users
(such as POSIX) or human members of
a larger organization (such as Kerberos

 J A N U A R Y 2 0 1 6 47

or Windows Active Directory) is inap-
propriate for online cloud services,
application stores, virtual infrastruc-
ture platforms, single-user handheld
devices, and distributed applications.

The security challenges we face
today concern privacy, information
flow, untrusted applications running
with user privileges, and social net-
works with billions of users. At the OS
layer, it might not make much sense to
talk about traditional users—human
users installing and running programs
they don’t understand from third par-
ties are the wrong security principals.
A fine-grained authorization mecha-
nism like that afforded by capabilities,
perhaps combined with a concept of
distributed information flow control at
scale, could be the way forward.

Scheduling
Modern OS schedulers manage pro-
cesses or threads as a basic unit of CPU
allocation. But for modern multicore
hardware and typical applications,
this is irrelevant. The recent increase
in containers—and virtual machines
before them—is a response to the fact
that, astonishingly, no mainstream
OS in the mid-1990s had an abstrac-
tion corresponding either to a com-
plete application installation or to a
running application instance. On a
single machine, an application spans
multiple processes and threads, and
calls out to server processes it shares
with other programs. Moreover, dyna-
mic migration of threads to balance
the load across cores (as in Linux,
for example) makes no sense when
cores are radically heterogeneous,
and where the objective is to optimize
energy usage subject to fixed perfor-
mance goals, rather than raw interac-
tive response time or bulk throughput.
Effective spatial scheduling, rather

than temporal scheduling, becomes
the key challenge.

Worse, in rack-scale machines, an
application is inherently distributed.
In larger systems, it runs on behalf of
millions of individual users. As with
security, we need scheduling entities

that make sense. Containers are a step
in the right direction, but they don’t yet
make sense in a distributed machine.
Building the right CPU scheduler for
the future will be challenging: early
experience with cluster-level schedul-
ers suggests that a loosely coupled, dis-
tributed approach is essential. There’s
simply too much important, fine-
grained, and time-sensitive schedul-
ing information to be effectively aggre-
gated in a single centralized scheduler.

Virtual memory
Virtual memory is another strong
candidate for change.8 Page-based
address translation hardware was
originally designed to allow applica-
tions to use more memory than was
physically present in the machine
via demand paging. The OS abstrac-
tion corresponding to this hardware
was a virtual address space magically
backed with (uniform) physical RAM.

Paging almost never happens today,
and large machines in the future are
likely to have much more memory
than can be represented in the vir-
tual address space. The translation

hardware (memory managing unit;
MMU) has proven to be incredibly use-
ful for a variety of purposes: relocation
of code and data, simplified memory
allocation, copy-on-write of regions,
detecting reads and writes to certain
locations, and so on.

However, this has all been achieved
in spite of, rather than using, the basic
virtual address space abstraction,
which hides physical memory charac-
teristics. Moreover, the physical mem-
ory backing an application increasingly
matters to the application. For example,
RDMA reads and writes are stored in
physical memory, data structures are
allocated in NUMA-aware ways, and
physical memory exists in different
forms (DRAM, scratchpad, persistent,
and so on). This rich functionality is
accessed by a motley collection of func-
tions that punch holes in the clean vir-
tual address space abstraction.

Network stack
The network stack is also looking a
bit tired. Network bandwidth to an
adaptor is still increasing, but the
speed of individual processing cores
is decreasing. The solution is to de-
multiplex network flows between end-
system cores in the network inter-
face controller (NIC) hardware, using
direct memory access (DMA) to write
into a large number of different ring
buffers (some modern NICs already

THE WAYS IN WHICH COMPUTERS AND
APPLICATIONS ARE USED ARE CHANGING,

CALLING INTO QUESTION MANY OS
DESIGNS OF THE PAST 40 YEARS.

48 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

support several thousand of these).
The kernel is therefore bypassed by
the data plane because it constitutes
a serial bottleneck even in modern,
highly optimized network stacks, and
because it avoids expensive kernel
crossings—slower cores relative to the
network mean that every CPU cycle on
the data path counts. This happened
first in virtual machine monitors and
spurred the adoption of technologies
such as Single-Root I/O Virtualization
(SR-IOV), but recent research shows
the benefits of structuring a general-
purpose OS this way as well.9

The key change in perspective
comes with the realization that the
NIC is no longer an interface, per se—
it’s a network switch. Specifically, it’s
an asymmetric switch with a very high
port count—every send and receive
queue constitutes a port as well as the
physical layer—that makes forward-
ing decisions at all layers of the tradi-
tional protocol stack. The role of the
future OS is to implement the control
plane for this switch.

Data storage
Finally, POSIX-like files don’t make
sense at scale. Large-scale data pro-
cessing applications access data-
sets through distributed parallel file

systems like the Hadoop Distributed
File System (HDFS) that expose how
data is sharded across storage nodes,
or through higher-level record-oriented
distributed object stores. Files also dis-
appear at the small end of the scale:
phone applications store their data in
isolated containers through an API
that hides any underlying Linux or
iOS file systems, and in practice can
transparently replicate such data
across crowd services that use the
data. The file as a concrete vector of
bytes on local storage means little to
most application programmers, let
alone users. Its deserialized structure
is what’s important.

Recently, it has been recognized
that data durability doesn’t neces-
sarily imply writing to stable stor-
age. Once the necessary availability
mechanisms are in place to replicate
application data structures across
active nodes in a large online service
(including across datacenters), some
data can even be permanently held in
main memory. With the rise of per-
sistent main memory, a great deal of
long-lived application data will never
be serialized to disk. Applications
will deal with persistent state differ-
ently, and the OS must support this in
a useful way.

OUTLOOK
We conclude with a few bold—perhaps
reckless—predictions, and some reflec-
tions on the process by which OS designs
are created and evolve over time. Figure
1 visually summarizes our predictions.
For more information, see the “Oppor-
tunities for a New OS” sidebar.

Architecture
The future OS will be distributed in
architecture. A single kernel isn’t
going to work with heterogeneous
processors, memory that isn’t acces-
sible from all cores, or partial cache
coherence. There will be multiple
kernels in a single machine, and some
kind of message passing is inevitable.
The result will be something between
a single machine and a traditional
cluster—the low message latencies
of future hardware and performance
requirements of parallel applications
will necessitate much more global
coordination in scheduling, memory
allocation, and bandwidth allocation
than is achievable in current clusters.
This shouldn’t be confused with tra-
ditional embedded system architec-
ture, which is similar because it runs
dedicated kernels and applications
compared to general -purpose OSs
and applications.

Application trends

What’s broken? OS outlook

Hardware trends

Perpetual
delivery

Energy
constrained

Increasing
complexity

Dark
silicon

SoCs

Rack-size
appliances

Nonvolatile
memories

In-network
computing

In-memory

Automated

Noise
free

Data intensive

Complex

Virtualized

Power aware

Heterogeneity

Virtual memory
durability

NUMA
awareness

Authorization and
security model Files

Network
stack

Capability
extensions Containers Reduction of

API compatibility

Off critical path

Main memory
will become
critical

Persistent
data structures

Multikernel

Programmable
MMUs

Distributed OS
architecture

Trust
model

Partially shared memory
vs. message passing

Process / threads
as computing units;
scheduling

Single monolithic
kernel

Large
address
spaces

Photonics
switches

FIGURE 1. Impact of application and hardware trends on OSs, what’s broken in current OS design, and the OS outlook. SoCs: systems on
chip; NUMA: nonuniform memory access; MMUs: memory managing units.

 J A N U A R Y 2 0 1 6 49

OPPORTUNITIES FOR A NEW OS

Figure A represents a bell-curve distribution of the
number of deployed instances of Linux versus the

system size. On the high-end system side (laptops
through supercomputers), the bell curve reaches a
maximum for the two-socket Intel computer, the most
commonly deployed Linux machine. The market is
much more fragmented on the low-end system side
(such as Linux deployed as Android on mobile phones),
so we focus primarily on the high end, acknowledg-
ing that the number of mobile phones has surpassed
the number of mobile computers. Sensors in cyber-
physical systems connected to the Internet of Things
(IoT) are shown on the far left side of the curve (small
systems), and the largest Linux deployments (ranging
from high-performance computing systems to exa-
scale systems) are on the far right.

The Linux OS is optimized for a sweet spot—
the maximum of the bell curve covering the area
bounded by the extremes. Going outside these zones
will compromise the optimizations for this sweet
spot. Thus, the Linux community has less interest in
going outside the current zones, where innovation
can happen.

In the 1980s and 1990s, there were many
different OS versions, each bringing a certain degree

of innovation. However, this also caused a fragmen-
tation of customers followed by some consolidation,
such as that around the Open Software Foundation
and Unix International. Eventually, the open source
community prevailed and Linux started dominating.

Linux—which purely followed the Innovator’s
Dilemma model (C.M. Christensen, The Innovator’s
Dilemma, Harper Business, 2011)—was absorbing
innovation from earlier systems (such as Digital Unix,
HP-UX, and IBM AIX) until about 5 years ago, when
innovation started happening within Linux itself.
Most recently, innovation has occurred within the
IoT and high-end spectrums of the bell curve. New
OSs are being created with seemingly opposite yet
symmetrically similar requirements. This is illus-
trated in Figure A by the new OSs listed on each side
of the curve.

Power savings is equally needed at the lower end
(such as battery lifetime) and the higher end (such
as recurrent costs). Real-time requirements and
synchronicity have similar goals in both domains, as
well as low-latency communication, code size, and
minimal APIs. The same minimal kernel can be de-
ployed on both ends of the bell curve, meeting similar
demands from different types of applications.

IoT High end

Sensors,
industrial,

etc.

New apps and tools

Innovation

In
no

va
tio

n

FreeRTOS
Contiki
Riot
TinyOS
OpenWSN
MantisNan
ano-RK
LiteOS
nesC
AbacusOS
Ant Nut/OS
SOS
RIOT OS
....
.......

Exa (node,
enclave,

global)
mOS

Catamount
CNK

Kitten/
Palacios
ZeptoOS

K42
LibraOS
Hobbes

NIX
...

.........

Linux Cloud + NFV,
exascale,
etc.

New apps and tools

Scale (cores, memory, persistency)
APIs
Synchronicity (1/noise)
Bandwidth
Responsiveness (1/latency)

Open source

Net-BSD

Unix International

Unix V

SCO Xenix

New kernels

BSD

Solaris

HP-UX
Digital Unix

AIXMach
OSF

Sequent, etc.

New kernels

Innovation Legacy Innovation

Power
APIs
Real-time
Latency
Generality
Size

Figure A. Number of deployed OS instances on computers (excluding phones). NFV is network function virtualization.

50 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

An interesting question is whether
this can be solved by architecting a new
multikernel OS structure or by evolv-
ing current cluster middleware into
a different performance regime. We
favor the former. Today’s datacenters
are coordinated by an ad hoc collection
of schedulers, resource allocators, SDN
controllers, application deployment
tools, configuration management sys-
tems, and so on. In a marketing con-
text, this is sometimes referred to as a
“datacenter OS,” but it lacks any coher-
ent architecture to date. We believe
this ecosystem won’t work well with
tightly coupled clusters.

An objection to this view is that
the world is moving toward a large
collection of per-application virtual
machines or containers, which are
easy to support on existing OSs. This
is arguably an issue of perspective: the
virtual machines or containers still
need a hypervisor underneath, which
is an OS. Moreover, we’ve already
observed that applications are increas-
ingly parallel and distributed.

Containers are important: they
make it easy to deploy traditional ap pli-
cations in a virtualized traditional
OS environment. Their low overhead
allows applications to be restructured
into much more scalable microservices,
and enables a model of continuous
re-engineering, refactoring, and rede-
ployment. However, they don’t yet ade-
quately address the challenges of future
hardware and scalable applications.

Memory
We predict that main memory will
become critical compared to all other
resources because it’ll be the big-
gest influence on application perfor-
mance. In most application scenarios,
main memories will be very large and
mostly persistent, and only cold data

will be kept on disk. This is already
a trend in databases and key-value
stores (such as SAP HANA, Redis, and
Memcached), and memory technology
trends make this likely to continue.
Memory and storage will converge.

Memory contents will persist across
reboots, and files will be partially
replaced with persistent in-memory
data structures. This doesn’t necessar-
ily make life easier, though: a future
OS is going to have to provide some-
thing like a sophisticated transac-
tional facility to make persistent main
memory usable. Sometimes remem-
bering all the data isn’t desirable
across reboot.

Because main memory itself will
be heterogeneous and distributed, we
expect that the OS memory manage-
ment interface will change. Instead of
a virtual address space, applications
will be given a much more explicit han-
dle on the regions of physical memory
allocated to them, and more freedom
in safely programming the MMU to
exploit hardware translation features
from application runtimes. Demand
paging is likely to be an optional
library rather than a fundamental part
of the OS.

Networking
Our third prediction concerns net-
working, both inside a machine and at
the interface between a machine and
the wider network. OS software will
increasingly get off the critical data
path between application threads,
replaced by sophisticated “user-safe”
hardware multiplexing/de-multiplexing
and filtering functionality, and library
code to interface to it. The OS will func-
tion as the control plane of a heteroge-
neous network of smart NICs, queues,
cores, and DMA engines. The internal
OS abstractions for this will resemble

a more advanced form of those being
formulated for SDNs.

Security
Current real-world computer security
at all stack levels is in a poor state.
Low-level primitives that will scale
up to very large numbers of princi-
pals seem like a good place to start;
for example, capability extensions
to existing machine architectures,10
which have repercussions that propa-
gate up the software stack. We believe
it’s imperative to completely rethink
the implementation of system secu-
rity, and several research systems look
very promising.

Applications
The OS interface will have to change,
but it’s unreasonable to expect appli-
cation developers to start afresh. We
believe the differences will start to
appear in application platforms and
language runtimes. For example, rela-
tional databases have already recog-
nized the need to re-architect how
they’re written for modern hardware
without replacing SQL.

FUTURE DIRECTIONS
These challenges make for an excit-
ing time in OS research—a lot is up
for grabs. Changes in hardware and
applications have necessitated a shift
in thinking not only about resource
management in computers, but also
about many of the constraints that OS
designers have worked under.

These constraints have included
the need to conform to whatever
the hardware provides. OS system
issues have been mostly ignored by
hardware folks—computer scientist
and professor Andrew Tanenbaum
lamented that “no hardware designer
should be allowed to produce any

 J A N U A R Y 2 0 1 6 51

piece of hardware until three software
guys have signed off on it”—but the
OS community’s response has been at
best mildly passive-aggressive. How-
ever, this is changing: systems soft-
ware people are becoming more asser-
tive,11 hardware is becoming easier to
change, and the boundary between
the two is becoming blurred through
the increased use of field-programma-
ble gate arrays and complex SoCs. In
addition, the hardware product cycle
is getting shorter and simulation tools
are becoming more powerful, giving
systems software developers earlier
access to new hardware.

The need for API compatibility is
also declining and moving higher
up the stack. To perform well, strict
POSIX compliance in an OS practically
forces the implementation to resemble
Unix internally, but many applications
today are written to a much higher-
level interface, which can be made por-
table across different low-level APIs.
In cases where POSIX (or Windows)
compatibility is necessary, virtual
machines or library OSs can perform
well without needing to natively sup-
port a legacy API.

This article concerns what the
new OS should look like and
what it should do, not how to

engineer it. The latter is just as inter-
esting a topic and broad enough to
warrant a separate article. However,
the challenges facing engineering
OSs are similar. For example, formal
methods are approaching the point
where they can effectively be used to
design and implement a uniproces-
sor microkernel with strong correct-
ness proofs,12 and OS researchers have
enthusiastically embraced such tools
and techniques. The key question

moving forward is whether such ideas
can catch up with the complexity, het-
erogeneity, and concurrency of mod-
ern hardware.

ACKNOWLEDGMENTS
We thank Kirk Bresniker, Nigel Edwards,
Paolo Faraboschi, Alexander Merritt, and
Gerd Zellweger for reviewing this arti-
cle and providing valuable comments.
The feedback from anonymous reviewers
helped us substantially improve the article.

REFERENCES
1. D. Milojičić, “Operating Systems—

Now and in the Future,” IEEE Concur-
rency, vol. 7, no. 1, 1999, pp. 12–21.

2. D.M. Ritchie and K. Thompson, “The
Unix Time-Sharing System,” Comm.
ACM, vol. 17, no. 7, 1974, pp. 365–375.

3. C.M. Christensen, The Innovator’s
Dilemma, Harper Business, 2011.

4. H. Esmaeilzadeh et al., “Dark Silicon
and the End of Multicore Scaling,”
IEEE Micro, vol. 32, no. 3, 2012,
pp. 122–134.

5. K.M. Bresniker, S. Singhal, and R.S.
Williams, “Adapting to Thrive in
a New Economy of Memory Abun-
dance,” Computer, vol. 48, no. 12,
2015, pp. 44–53.

6. D. Vantrease et al., “Corona: System
Implications of Emerging Nanopho-
tonic Technology,” Proc. 35th Int’l
Symp. Computer Architecture (ISCA
08), 2008, pp. 153–164.

7. P. Faraboschi et al., “Beyond Proces-
sor-centric Operating Systems,” Proc.
15th USENIX Conf. Hot Topics in Oper-
ating Systems (HotOS 15), 2015; http://
dl.acm.org/citation.cfm?id=2831107.

8. S. Gerber et al., “Not Your Parents’
Physical Address Space,” Proc. 15th
USENIX Conf. Hot Topics in Operating
Systems (HotOS 15), 2015; www
.usenix.org/system/files/conference
/hotos15/hotos15-paper-gerber.pdf.

9. S. Peter et al., “Arrakis: The Oper-
ating System Is the Control Plane,”
ACM Trans. Computer Systems, vol. 33,
no. 4, 2015, article 11.

10. R.N.M. Watson et al., “CHERI: A
Hybrid Capability-System Architec-
ture for Scalable Software Compart-
mentalization,” Proc. IEEE Symp.
Security and Privacy (SP 15), 2015,
pp. 20–37.

11. J.C. Mogul et al., “Mind the Gap:
Reconnecting Architecture and
OS Research,” Proc. 13th USENIX
Conf. Hot Topics in Operating Systems
(HotOS 13), 2013; http://dl.acm.org
/citation.cfm?id=1991596.1991598.

12. K. Gerwin et al., “seL4: Formal Veri-
fication of an OS Kernel,” Proc. ACM
SIGOPS 22nd Symp. Operating System
Principles (SOSP 09), 2009, pp. 207–220.

ABOUT THE AUTHORS

DEJAN MILOJIČIĆ is a senior researcher at Hewlett Packard Labs in Palo Alto,
California. His research interests include OSs, distributed systems, and systems
management. Milojičić received a PhD in computer science from the University
of Kaiserslautern. He was the 2014 IEEE Computer Society president. Contact
him at dejan.milojicic@hpe.com.

TIMOTHY ROSCOE is a professor of computer science at ETH Zurich. His
research interests include networks, OSs, and distributed systems. Roscoe
received a PhD from the University of Cambridge. Contact him at timothy
.roscoe@inf.ethz.ch.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

