
Putting out the hardware dumpster fire
Ben Fiedler
ETH Zurich

Zurich, Switzerland

Daniel Schwyn
ETH Zurich

Zurich, Switzerland

Constantin
Gierczak–Galle

ENS Paris
Paris, France

David Cock
ETH Zurich

Zurich, Switzerland

Timothy Roscoe
ETH Zurich

Zurich, Switzerland

ABSTRACT
The immense hardware complexity of modern computers,
both mobile phones and datacenter servers, is a seemingly
endless source of bugs and vulnerabilities in system software.
Classical OSes cannot address this, since they only run

on a small subset of the machine. The issue is interactions
within the entire ensemble of firmware blobs, co-processors,
and CPUs that we term the de facto OS. The current “whac-
a-mole” approach will not solve this problem, nor will clean-
slate redesign: it is simply not possible to replace some firm-
ware components and the engineering effort is too great.

Our response, instead, is to build a high-level model of
exactly what a given real hardware and software platform
consists of, and captures for the first time the necessary and
assumed trust relationships between the software contexts
executing on different components (CPUs, devices, etc.).

This principled but pragmatic approach allows us to make
rigorous statements about the hodgepodge of soft- and firm-
ware at the heart of modern computers. We expect these
statements to be, at first, depressingly weak, but it may be
the only way to identify changes that provably increase the
trustworthiness of a real system, and quantify the benefits
of these changes.

CCS CONCEPTS
• Software and its engineering → Operating systems;
Formal methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00
https://doi.org/10.1145/3593856.3595903

KEYWORDS
operating systems, address spaces, hardware specification

ACM Reference Format:
Ben Fiedler, Daniel Schwyn, Constantin Gierczak–Galle, David
Cock, and Timothy Roscoe. 2023. Putting out the hardware dump-
ster fire. In Workshop on Hot Topics in Operating Systems (HotOS
’23), June 22–24, 2023, Providence, RI, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3593856.3595903

1 INTRODUCTION
From a security, reliability, and manageability perspective,
computer hardware is a dumpster fire.

Modern computer systems, whether phones or datacenter
servers, are composed of hundreds of different processing
cores of various designs, most of which are invisible to Linux
or whatever environment is presented to applications. These
cores execute complex firmware for devices such as security
coprocessors, radios, NICs, or storage devices, perform power
sequencing, or provide remote system management.

This is causing increasing alarm in the security and system
software communities and beyond [7, 10, 19], due to the slew
of vulnerabilities and other bugs (see section 2) appearing
based on this hardware complexity, often hidden from, or
ignored by, OSes like Linux. Indeed, these cores and their
firmware usually explicitly sandbox Linux on a corner of the
chip (the “application cores”), preventing it taking any mean-
ingful role in managing and securing the platform. On an
Android phone, Linux is effectively an application runtime.

Worse, the constant game of “whac-a-mole” fixing these
bugs in the face of rapidly changing hardware is a distrac-
tion from the deeper problem: we simply lack a coherent
framework for talking about the sum total of privileged soft-
ware running on a modern computer. If, following [19], we
take the operating system to mean the privileged software
responsible for managing and securing the hardware, it is
clear that the “de facto OS” of a modern System-on-Chip
(SoC) includes not just Linux (or another “classical” OS), but
also all firmware and “hidden” cores in the system. Critically,
many components of this de facto OS cannot practically be

46

https://orcid.org/0000-0002-7215-9147
https://orcid.org/0000-0002-4412-9004
https://orcid.org/0000-0003-2738-0974
https://orcid.org/0000-0003-2738-0974
https://orcid.org/0000-0003-2997-6560
https://orcid.org/0000-0002-8298-1126
https://doi.org/10.1145/3593856.3595903
https://doi.org/10.1145/3593856.3595903
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595903&domain=pdf&date_stamp=2023-06-22

HotOS ’23, June 22–24, 2023, Providence, RI, USA Fiedler, et al.

replaced (e.g. deeply-embedded firmware). We must, there-
fore, construct a holistic model of an operating system for
real hardware that reaches some overall security/function-
ality goal by composing mutually-untrusting (or partially-
trusting) components.
This paper advocates a radical, but realistic, approach

to this crisis. Instead of trying to fix point bugs, or to re-
design the software ecosystem from scratch, we start from
with a formal model of the semantics of the hardware
platform which can capture the full panoply of SoC and
server designs. From here, we derive a network of strong
trust statements between execution contexts: (cores, de-
vices, etc.). This is then extended to virtual contexts (pro-
cesses, privilege levels, virtual machines, enclaves, etc.).

What pops out for the first time is, for a given platform and
collection of system software, a clear statement about exactly
what must be blindly trusted by an application program. We
expect this to be, initially, “everything”, but it provides a
solid basis to replace parts of the system software stack on
a machine with components that can begin to narrow this
trust obligation down. In this way, we start to rule out a
priori whole classes of cross-SoC hardware-enabled software
bugs rather than waiting for exploits to appear.

2 THE PROBLEM
We first discuss the state of hardware-related software bugs
and vulnerabilities, the failures that led us here, and why
existing approaches are doomed to fail.

2.1 The growing threat of cross-SoC bugs
Protection in a modern computer system is about much more
than programming the MMU correctly to ensure isolation
between different user processes and the kernel: the OS must
interact with hundreds of devices that can access arbitrary
memory locations via DMA and increasingly have their own
processors, running their own system software. Mutual trust
between such devices and their drivers can lead to serious
problems, and despite the existence of IOMMUs or System
MMUs, new “cross-SoC” attacks which rely on compromising
an intelligent device are regularly demonstrated.
Some exploit incorrect or incomplete IOMMU configura-

tion [14, 17], while others exploit subtle features of how data
structures are shared with peripheral devices [16]. Prevent-
ing such bugs by verification seems hard: many years after
its introduction, seL4’s correctness proofs either rely on the
absence of DMA devices, or assume they are trusted [20].

Often, device firmware is much less rigorously engineered
than, say, the Linux kernel, and less likely to be updated. Re-
mote code execution vulnerabilities have been demonstrated
for many of the Wi-Fi chips in mobile devices [4, 11, 21];
all exploit buffer overflows using specially crafted packets.

Figure 1: A cross-SoC attack vulnerability

OS kernel’s mitigations like Kernel Address Space Layout
Randomization (KASLR) and Executable Space Protection
(ESP) [13] are often missing from peripherals [4].

Figure 1 shows this: a Wi-Fi Digital Signal Processor (DSP)
is compromised over the air, and a further bug in the device
driver allows arbitrary RAM to be mapped to the Wi-Fi DSP
via the IOMMU, allowing the DSP firmware to access the
CPU kernel’s private memory and compromise it.

The authors of these attacks all suggest that this is likely
the tip of the iceberg for these kinds of problems. Classen
et al. show exploits spreading between peripherals without
involving the OS kernel on the CPU [8], using buffers shared
between Bluetooth and Wi-Fi chips to attack one from the
other. In Figure 1, compromised Bluetooth firmware can
in turn compromise the Wi-Fi firmware since it can access
on-chip RAM containing the firmware.
The current software response is to fix each particular

bug in the device driver that allowed the exploit to spread to
the main CPU and move on – a game of “whac-a-mole” that
results in every new bug opening a window of vulnerability
in a large number of deployed devices. With new hardware
appearing all the time, this approach is doing nothing to
make the problem go away.

2.2 What’s really going on?
Stepping back from the endless sequence of vulnerabilities
and bugs, there is a fundamental problem here. In principle, it
is the function of the OS to provide, using the hardware facil-
ities, protection and isolation between application programs.
In these cases, however, the kernel has been completely by-
passed by other, highly privileged software running on the
machine. Focussing on kernel design is missing the point.

For this reason, we adopt the definition of “operating sys-
tem” used in [19] as, roughly, that body of software that
manages the machine and securely multiplexes it between
applications. This definition finesses the issue of firmware
sidestepping protection in the Linux kernel: this still con-
stitutes a bug in the OS as we define it, even if it is not
a bug in Linux per se. It also emphasizes that the OS for

47

Putting out the hardware dumpster fire HotOS ’23, June 22–24, 2023, Providence, RI, USA

modern platforms is a complex mixture of kernels, firmware
blobs, monitors, management controllers and other software
entities collectively sharing the hardware.

This is why the “whac-a-mole” approach to bugs will not
improve the situation with modern OS deployment, and may
make it worse: without a concept of the totality of the “OS”
running on a machine, one cannot even start to define what
correct or secure behavior might be, let alone provide criteria
for improving the system’s security or correctness.

Furthermore, this “de facto OS” has two important charac-
teristics: First, it has no design as such, let alone specification.
It has accreted out of parts dictated by hardware design-
ers. Second, parts of this OS simply cannot be changed (e.g.
proprietary or hard-coded firmware).

2.3 How did we get here?
The current state of affairs, where almost every production
computer runs a de facto OS which nobody designs, and
whose behavior and functionality cannot be specified, has
come about due to a set of inter-dependent factors and trends.
One is the need to reuse hardware components, macro-

cells, chiplets, etc. to cut development time and costs. This
leads to “cut’n’paste” hardware design, with additional cores
and firmware being added in any way that gets the job done.
However, most of these extra processors are also really nec-
essary for energy efficiency, performance, or simply to imple-
ment complex I/O functionality. Since it’s not clear at design
time where in a given platform these units (such as a Blue-
tooth interface) will sit, the hardware vendors ship them as
self-contained units with their own firmware. In some cases,
sealing the firmware in the device is a legal requirement, for
example for the DSPs implementing wireless basebands, or
simply desired by the vendor to protect intellectual property
or competitive advantage.
At the same time, traditional OS kernels simply avoid

engaging with these parts of the hardware. This trend started
long ago, with boot firmware and system management code
separated off from the traditional OS, but has accelerated
dramatically with the rise of complex heterogeneous SoCs.
A kernel like Linux only runs on a small fraction of the
processors in the whole system.

This is, in part, because a Unix-like OS is simply incapable
of running on more than a homogeneous set of cores sharing
a uniform physical address space, and OS developers have
preferred to retain their old architecture rather than engage
with hardware reality. The result is that, under the definition
above, Linux running on a phone is not functioning as an
OS (merely a component of one). This abdication further
incentivizes hardware vendors to move functionality out of
the kernel and into firmware.

2.4 Why a new perspective is needed
We point out that many existing approaches will not, by
themselves, solve this problem and result in a deployable OS
that is not subject to a stream of hardware-enabled bugs.

Verified kernels [12, 15] are based on a simplistic hardware
model, rendering their proofs invalid on realistic hardware.
They also, like Linux, are simply not designed to execute on
heterogeneous cores which might not fully share memory.
We discuss the role that systems like seL4 might play in a
comprehensive solution in section 3.
IOMMUs have a role in OS security, but do not solve the

problem. Modern SoCs include interconnects and devices
beyond the scope of the platform IOMMU, and IOMMU dri-
vers are themselves a constant source of OS bugs, in part (we
argue) because there is no clear model of the hardware.
Clean-slate OSes can provide insight into good design

choices, but ultimately cannot include in their purview all
the proprietary firmware in a given platform, nor feasibly
achieve compatibility with existing software. The hardware
dictates that the de facto OS on a modern hardware plat-
form is already a multikernel [6], but a new multikernel by
itself does not address firmware blobs or resource manage-
ment across heterogeneous parts of the hardware, and will
not provide application compatibility without a huge engi-
neering effort. Moreover, with no formal description of how
hardware components interact such an effort would be futile.
HW/SW co-designs like M3 [5] similarly limit both soft-

ware that can run on the OS, and hardware that can be used
with it. Future SoC designs can benefit from such insights, al-
though this is unlikely to fully solve the problem of hardware
evolution, and the frequent economic imperative to assemble
a hardware platform from existing components from diverse
vendors. That said, at least one new server company is trying
to address the problem in this manner [18].

Secure boot and attestation provide no assurance about the
security of firmware othe software, except that it was the
software supplied by the vendor. This is a useful feature, but
orthogonal to the problem this paper addresses.

Our approach, in contrast, tries to be both pragmatic and
rigorous. Rather than ignoring or bracketing the features that
characterize a de facto OS (absence of a priori design, and
components that cannot be changed), we treat them as a re-
search challenge - arguably the primary OS design challenge
today: how can we make strong security and correctness
statements about, and then improve, a real-world de facto
OS under these constraints?

3 PUTTING OUT THE FIRE
What can be done to improve de facto OSes, given that the
problems they suffer arise from the full system rather than

48

HotOS ’23, June 22–24, 2023, Providence, RI, USA Fiedler, et al.

Figure 2: Simplified view of the address spaces, con-
texts, and authorities involved in QualPwn [11]

individual components, and some of those components them-
selves may be impossible to change? The new (albeit ambi-
tious) approachwe propose is to formallymodel the structure
of entire, real-world de facto OSes. We will then use these
models to determine what components must be trusted to
make the system as a whole trustworthy, and subsequently
guide replacement of software and hardware features to prov-
ably increase the trustworthiness of the system as a whole.

3.1 Modelling a de facto OS
To reason about the behavior of a de facto OS, we need to
model it in a way amenable to formal and/or informal anal-
ysis. As it (by definition) manages the whole machine, the
model must encompass the complete platform, but it need not
be exhaustive: it’s neither necessary nor realistic to cover ev-
ery hardware detail in the presence of closed firmware blobs
and components. The problem is therefore not hopeless.
Trust relations between components in the system, both

hardware and software, are primarily mediated through
memory mapping and address spaces. Isolation between
components (this process cannot read that process’ data, the
NIC cannot modify kernel data, etc.) can be expressed in
terms of which agents (processes, DMA engines, etc.) can
read/write which RAM locations and control registers.

Decoding nets [2, 3] already provide a well-studied formal
model of the interaction of memory-mapped address spaces
on modern hardware, which enables this kind of access-
control reasoning within both Linux [1] and other, less tra-
ditional OSes. Decoding nets describe a system’s address
mapping hardware as a directed graph, where nodes are
distinct address spaces and edges are address translations
between them. Figure 2 shows a simplified net: the kernel
executes in one address space and there are translations from
this to the DRAM address space. Similarly, the DSP core has
a distinct address space, with partial mapping from this into
on-chip RAM and also the IOMMU address space.
We extend decoding nets to include configurable transla-

tion hardware whose behavior is, itself, determined by data
in memory. This way we can reason about the fact that, while

1 fn qualpwn_example(pt: PageTable) -> DecodingNet {
2 let dn = DecodingNet ::new();
3 let linux = dn.add_address_space (0, 4096);
4 let dram = dn.add_address_space (0, 4096);
5 let dsp = dn.add_address_space (0, 4096);
6 // ...
7 let iommu = IOMMU ::new(pt);
8 let iommu_as = mmu.insert_into_decoding_net (&mut dn,

dram);
9 dn.add_mapping(dsp , iommu_as , 0, 0, 4096);
10 // ...
11 dn.mark_context(linux);
12 dn.mark_context(dsp);
13 dn.mark_accepting(dram);
14 dn.mark_dependent(linux , ram , 0, 1024);
15 // ...
16 return dn;
17 }
18
19 enum PTE { Invalid , PageMapping(phys_addr) }
20 struct PageTable { addr: u128 , entries: [512] PTE }
21
22 struct IOMMU { pt: PageTable }
23 impl IOMMU {
24 fn new(pt: PageTable) -> MMU { ... }
25 fn insert_into_decoding_net(
26 &self , dn: DecodingNet , pasid: ASID
27) -> ASID {
28 let vasid = dn.add_address_space(offset , length);
29 dn.mark_map(vasid , pasid , pt.addr , page_size);
30 dn.mark_grant(pasid , pasid , pt.addr , page_size);
31 for (i, entry) in pt.entries.enumerate () {
32 let va = i * page_size;
33 match entry {
34 PTE:: PageMapping(pa) =>
35 dn.add_mapping(vasid , pasid , va , pa, page_size),
36 PTE:: Invalid => (),
37 }
38 }
39 return vasid;
40 }
41 }

Figure 3: Part of a Sockeye3 description of Figure 2

a core might be unable to access an area of memory, it might
access or compromise another core to modify in-memory
tables to grant itself access to that memory.

For this we need a specification language expressive enough
to encode, for example, the semantics of the ARMv8-A MMU.
Our language, Sockeye3, is defined as an abstract syntax and
we concretely use Rust to create abstract syntax trees (ASTs)
for it. Figure 3 shows part of the Sockeye3 description of
the system in Figure 2; address spaces and mappings are
added to the decoding net with the corresponding Rust calls.
Accepting address spaces are final destinations for reads and
writes, like DRAM or device registers, while other address
spaces translate addresses between them.

A read or write to an address is initiated by a context. CPU
cores, DMA-capable devices, or any other hardware entity
that accesses memory is viewed as a context. However, we
also extend decoding nets to virtual contexts created by hard-
ware and software running in another context: processes,

49

Putting out the hardware dumpster fire HotOS ’23, June 22–24, 2023, Providence, RI, USA

enclaves, realms, privilege levels, virtual machines, etc. are
all represented as virtual contexts.
The behavior of a context often depends on regions in

other address spaces, like the DRAM addresses which hold a
kernel’s text segment or device registers that control a NIC’s
operation. These dependencies are depicted using dashed
red arrows in Figure 3 and are expressed in Sockeye3 by the
mark_dependent primitive.
So far we have talked about the decoding net as a static

snapshot of the platform, but to model real systems with
configurable address translation we also need facilities to
create mappings and address spaces based on e.g. in-memory
data structures like page tables.

We illustrate this with a simple IOMMU design and a sin-
gle level page table. In Figure 3, we define the structure of the
page table as an array of Page Table Entries (PTEs). A PTE is
an enumeration that in this case either represents an invalid
entry or a page mapping to a physical address. The transla-
tion behavior of the IOMMU is translated to the decoding
net representation using insert_into_decoding_net.

We must also specify where the page table resides. We call
the set of address space regions determining a translation
function’s behavior its configuration space, shown with a
dash-dotted gray arrow in Figure 2. Real MMUs with multi-
level page tables or nested paging are expressed bymodelling
the effects of each translation step and composing the input
and output address spaces via decoding net mappings.
We have confidence this works: we created an extended

decoding net specification of the ARMConfidential Compute
Architecture (CCA) hardware component in Isabelle/HOL,
including execution levels, worlds, realms, and concurrent
access to the protection tables. While not fully complete, it
convinced us of the practicality of our approach, particularly
in the implications of access to translation tables.

3.2 Deriving trust relationships
From the decoding net constructed by Sockeye3 we now
derive a graph of trust relationships between contexts in the
system. For each context we extract the set of critical regions:
all address space regions which either directly influence
the behavior of a context, or are configuration regions for
translation hardware that translates reads or writes for the
given context. If context 𝐴 can access a critical region of
context 𝐵, context 𝐴 can influence context 𝐵’s behavior.

For example, a Linux kernel’s critical regions include not
only the kernel text and internal data structures in memory,
but also the page tables of anyMMU or IOMMUwhich might
grant a user process or a device access to that memory.
It follows that to trust a context 𝐴 to behave “correctly”

necessarily entails trusting, transitively, any contexts that

can have access to the critical regions of 𝐴. This might in-
clude other cores or devices in the system.

Conversely, it also makes it explicit precisely which (non-
trival) invariants the IOMMU driver must maintain to pre-
serve kernel integrity. The QualPwn bug [11] shows the
consequences of not precisely defining these invariants.

3.3 Challenges
This project comes with serious challenges. Some we can ad-
dress by extending prior work, others are more open-ended.

Firstly, hardware protectionmechanisms are recursive: the
configuration of an MMU, the page table, is itself stored in
MMU-secured memory. This is a source of security bugs, e.g.
by fooling an OS into mapping its page tables as DMA-able
memory, and introduces formal complexity but is surmount-
able. Building a secure system entails carefully layering trust
relationships such that no such insecure loops can occur.
Decoding nets so far are insufficient to capture this as

their current formulation describes only a current snapshot
of the configuration of translation units and not how the
configuration evolves over time. Figuring out exactly which
additional semantics are sufficient to write down a useable
and useful model of modern hardware is ongoing work, as
we require it to be both expressive enough (to capture non-
trivial behavior), but still allow us to derive useable trust
statements. Our current work exploiting algebraic data types
in Rust (building on an earlier version using F∗) provides a
clean solution to this problem.
Secondly, we need to express different degrees of trust

in different memory regions. For example, both page tables
and DMA buffers (e.g. filesystem blocks) are held in Linux’
kernel memory, and both are potentially vulnerable to com-
promised components. However, overwriting the page table
compromises the kernel itself (and by extension any applica-
tions relying on it), while overwriting the buffer might only
compromise the application depending on it. If that appli-
cation itself is untrusted, then from a system-level security
perspective, establishing the trust relations for the applica-
tion buffer is unnecessary. A too-conservative model (e.g.
treating all kernel memory as fully trusted) would falsely
declare most systems insecure. The right balance between
tractability (favoring a conservative model) and precision
(favoring a more fine-grained one) is a key challenge.

Finally, establishing the trust requirements for immutable
black-box components (such as a cellular baseband stack)
will be delicate, but enormously valuable. Some will be sim-
ply isolated by rigorous analysis of IOMMU configuration,
while others (e.g. power-management cores) will require
some degree of trust. A key result of this work as applied to
existing hardware will be whether it is possible to assign less-
than-complete trust to any of the black-box components in

50

HotOS ’23, June 22–24, 2023, Providence, RI, USA Fiedler, et al.

an SoC, or whether current HW design practices are incom-
patible with building secure, correct systems. Either we will
manage to answer this with: “Yes, you can build secure sys-
tems on real hardware” or, less optimistically, “This hardware
is fundamentally insecure, and something needs to change”.
In either case the answer will be an important signpost for
work on securing systems at the HW/SW boundary.

3.4 What do we do with it?
Given a Sockeye3 specification of the hardware and virtual
contexts, together with a set of explicit trust assumptions, we
can derive the guarantees the de facto OS actually provides.
We are particularly interested in the familiar concepts of
integrity (no other components can alter my memory) and
confidentiality (no other components can read my memory)
on a per-component basis. These are, for example, formally
verified for processes running under seL4.

Deriving these guarantees involves combining our hard-
and software specifications with our trust assumptions, and
establishing whether read/write access by an untrusted con-
text is possible. It can be done with modern theorem provers:
we are augmenting the existing models for describing mem-
ory addressing using decoding nets (as in Figure 3) to reason
about physical and virtual contexts, and record our trust
assumptions in the same framework, ensuring that we can
make precise and formal statements about authority and its
derivation. Ideally, this process will be mostly mechanized.
Out of the box, we expect to derive no useful guarantees

for an unmodified system without further trust assumptions
which we must introduce explicitly: they are not part of our
platform specifications, but rather supplement them.
Consider an Android phone which stores biometric data

about the user on its fingerprint reader. We want to ensure
that biometric data is not accessible by another application,
or by a compromised Wi-Fi chip. Assuming we find a suffi-
ciently powerful set of trust assumptions (e.g. the fingerprint
reader itself does not compromise the data) about the hard-
and software deployed on the system, then our model should
allow us to derive confidentiality of the biometric data, given
a correctly-configured IOMMU.

There aremany possible trust assumptionswe could choose,
ranging from very general ones, such as “the Wi-Fi chip is
trusted to never access the fingerprint reader’s memory”, to
very specific statements about the behavior of individual
components, such as Linux’ ability to correctly program the
IOMMU to isolate the Wi-Fi chip from the fingerprint reader.
No trust assumption is better or worse than any other; it is
simply a question of whether it is at all possible to derive
the guarantees we need.
The essence of our approach is a holistic model of the de

facto OS and hardware that, given a set of trust assumptions

which abstract the assumed behavior of unverified compo-
nents, allows us to establish (or refute) particular security
properties, such as integrity.

3.5 Backsolving for trust
Given such a model, we could use a range of techniques
(backsolving, parameter search, etc.) to answer “what if?”
questions. This is crucial, as without large trust assumptions,
the guarantees of an unmodified system are probably “noth-
ing”. For example what set of contexts must we trust for
biometric confidentiality, or the integrity of a DSP firmware
blob? This will guide selective verification: proving theWi-Fi
firmware correct does not help if we still need to trust a Blue-
tooth modem because it shares critical memory with it. The
key insight here is that we do not have to verify everything,
since our model can tell us the effect of verification on our
guarantees and trust assumptions.

This matters practically because (1) we cannot verify pro-
prietary firmware and probably never will, and (2) the huge
effort of verifying some contexts is likely unnecessary.

Moreover, as well as changing the software (replacing un-
trusted components with verified ones), we can also propose
changes to the hardware side. OS architects can now propose
guidelines and principles to SoC vendors which demonstra-
bly and measurably improve the trustworthiness of their
hardware platforms. We thus move stepwise towards the
goal of a reliable, trustworthy OS for an entire complex hard-
ware platform by dividing up and containing the hardware
dumpster fire.

4 NEXT STEPS
Our work was motivated by implementing a high-assurance
BaseboardManagement Controller (BMC) based on seL4 [15]
for Enzian [9], a heterogeneous research computer, which
made painfully obvious the mismatch between a traditional
OS and the de facto OS that really runs on an SoC.
We are applying our Rust-embedded language to trans-

form hardware manuals into specifications, with our first tar-
get being a complete description of the NXP i.MX8 SoC [23],
and analyzing the trust relationships between the multitude
of cores and contexts.

There are aspects of hardware platforms that we do not ad-
dress. Side channels pose challenges if our guarantees must
include information flow control. More tractable are critical
interconnects in a typical machine like Inter-Integrated Cir-
cuit (I2C) [22] and related management buses [24, 25], where
deriving trust relationships is clearer.
Nevertheless, we aim to show, for the first time, how to

formally reason about a de facto OS, the guarantees it pro-
vides on a SoC, and what can be changed to reduce the trust
assumptions needed to fulfil those guarantees.

51

Putting out the hardware dumpster fire HotOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES
[1] Reto Achermann, David Cock, Roni Haecki, Nora Hossle, Lukas Hum-

bel, Timothy Roscoe, and Daniel Schwyn. mmapx: Uniform memory
protection in a heterogeneous world. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, page 159–166, New
York, NY, USA, 2021. Association for Computing Machinery.

[2] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.
Physical Addressing on Real Hardware in Isabelle/HOL. In Proceedings
of the 9th International Conference on Interactive Theorem Proving, 2018,
Held as Part of the Federated Logic Conference, FloC 2018, ITP’18, pages
1–19, 2018.

[3] Reto Achermann, Lukas Humbel, David A. Cock, and Timothy Roscoe.
Formalizing memory accesses and interrupts. In Proceedings 2nd Work-
shop on Models for Formal Analysis of Real Systems, MARS@ETAPS 2017,
Uppsala, Sweden, 29th April 2017, volume 244 of EPTCS, pages 66–116,
2017.

[4] Nitay Artenstein. Broadpwn: Remotely compromising Android and
iOS via a bug in Broadcom’s Wi-Fi chipsets. Black Hat USA, 2017.

[5] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. M3: A hardware/operating-system co-design to
tame heterogeneous manycores. SIGARCH Comput. Archit. News,
44(2):189–203, mar 2016.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. The Multikernel: A New OS Architecture for
Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, page 29–44,
New York, NY, USA, 2009. Association for Computing Machinery.

[7] Bryan Cantrill. I have come to bury the BIOS, not to open it:
the need for holistic systems. Open Source Firmware Conference
2022, https://www.osfc.io/2022/talks/i-have-come-to-bury-the-bios-
not-to-open-it-the-need-for-holistic-systems/, September 2022.

[8] Jiska Classen, Francesco Gringoli, Michael Hermann, and Matthias
Hollick. Attacks on wireless coexistence: Exploiting cross-technology
performance features for inter-chip privilege escalation. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1229–1245, 2022.

[9] David A. Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino,
Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa
Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso,
and Timothy Roscoe. Enzian: an open, general, CPU/FPGA platform
for systems software research. In ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4 March
2022, pages 434–451. ACM, 2022.

[10] Ferhat Erata, Shuwen Deng, Faisal Zaghloul, Wenjie Xiong, Onur
Demir, and Jakub Szefer. Survey of approaches and techniques for
security verification of computer systems. 19(1), January 2023.

[11] Xiling Gong, Peter Pi, and Tencent Blade Team. Exploiting Qualcomm
WLAN and Modem Over the Air. Proceedings of the BlackHat USA
2019, page 58, 2019.

[12] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig,
Xiongnan (Newman) Wu, Vilhelm Sjöberg, and David Costanzo. Build-
ing Certified Concurrent OS Kernels. Commun. ACM, 62(10):89–99,
September 2019.

[13] C. Harini and C. Fancy. A study on the prevention mechanisms for
kernel attacks. In D. Jude Hemanth, G. Vadivu, M. Sangeetha, and
Valentina Emilia Balas, editors, Artificial Intelligence Techniques for Ad-
vanced Computing Applications, pages 11–17, Singapore, 2021. Springer
Singapore.

[14] Trammell Hudson and Larry Rudolph. Thunderstrike: EFI Firmware
Bootkits for Apple MacBooks. In Proceedings of the 8th ACM Inter-
national Systems and Storage Conference, SYSTOR ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[15] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. SeL4: Formal Verification of an OS Kernel. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, page 207–220, New York, NY, USA, 2009. Association for
Computing Machinery.

[16] A. T. Markettos, Colin Rothwell, Brett F. Gutstein, A. Pearce, P. Neu-
mann, S. Moore, and R. Watson. Thunderclap: Exploring Vulnerabili-
ties in Operating System IOMMU Protection via DMA from Untrust-
worthy Peripherals. In NDSS, 2019.

[17] BenoîtMorgan, Éric Alata, Vincent Nicomette, andMohamed Kaâniche.
Bypassing IOMMU Protection against I/O Attacks. In 2016 Seventh
Latin-American Symposium on Dependable Computing (LADC), pages
145–150, 2016.

[18] 0xide. https://oxide.computer/, February 2023.
[19] Timothy Roscoe. It’s time for operating systems to rediscover hard-

ware. Keynote, 15th USENIX Symposium on Operating Systems De-
sign and Implementation, https://www.usenix.org/conference/osdi21/
presentation/fri-keynote, July 2021.

[20] seL4 Foundation. Frequently Asked Questions on seL4. https://docs.
sel4.systems/projects/sel4/frequently-asked-questions.html, 2023. ac-
cessed on 2013-01-26.

[21] Denis Selyanin. Researching Marvell Avastar Wi-Fi: from zero knowl-
edge to over-the-air zero-touch RCE. ZeroNights, 2018.

[22] NXP Semiconductors. I2C-bus specification and user manual. https:
//www.nxp.com/docs/en/user-guide/UM10204.pdf, April 2014. Rev. 6.

[23] NXP Semiconductors. i.MX 8DualX/8DualXPlus/8QuadXPlus Applica-
tions Processor Reference Manual, June 2019.

[24] System Management Interface Forum. System Management Bus (SM-
Bus) Specification. http://www.smbus.org/specs/index.html, March
2018. v3.1.

[25] System Management Interface Forum (SMIF), Inc. PMBusTM Power
System Management Protocol Specification, revision 1.2. http://www.
powersig.org/, September 2020.

52

https://www.osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://www.osfc.io/2022/talks/i-have-come-to-bury-the-bios-not-to-open-it-the-need-for-holistic-systems/
https://oxide.computer/
https://www.usenix.org/conference/osdi21/presentation/fri-keynote
https://www.usenix.org/conference/osdi21/presentation/fri-keynote
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.smbus.org/specs/index.html
http://www.powersig.org/
http://www.powersig.org/

	Abstract
	1 Introduction
	2 The problem
	2.1 The growing threat of cross-SoC bugs
	2.2 What's really going on?
	2.3 How did we get here?
	2.4 Why a new perspective is needed

	3 Putting out the fire
	3.1 Modelling a de facto OS
	3.2 Deriving trust relationships
	3.3 Challenges
	3.4 What do we do with it?
	3.5 Backsolving for trust

	4 Next steps
	References

