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Abstract composed at user level in an application-specific manner.

This paper argues a new relevance for an old idea: deWe suspect that this small set of transport protocols
composing transport protocols into a set of resuable bui(@ong with DCCP [10]) covers the needs of almost all
ing blocks that can be recomposed in different ways deeint-to-point applications; that is, applications based
pending on application requirements. We conjecture tfiie concept of two end-points communicating.
point-to-point applications may well be adequately served

by the existing suite of monolithic protocol implementa- However, in this paper we argue that widely-distributed
tions, but widely-distributed peer-to-peer systems sisch¥/stems, including structured and unstructured overlays,
overlays are not: the design space of transport protoceinge this situation and introduce problems that com-
between nodes in a large, highly coordinated systemP@nentized transport protocol mechanisms are uniquely
much larger. We provide several examples of existiig§luipped to solve.

systems that have implemented a diverse range of trans- )

port protocols, and show how a building-block approach In the last few years, considerable research has been
covers these systems well, enabling simple specificatféfvoted to both structured and unstructueserlay and

of hybrids and variants of the protocols. In particular, weeer-to-peer applications. As distributed systems, these
show how all of our examples can be implemented in tﬁgpl_lcatmns generally include their own techniques for
networking stack of P2, a multipurpose system for buil§oUting messages on an overlay. Many such deployed

ing overlay networks from declarative specifications.  SyStéms, including Bamboo [24], MIT Chord [26], and
P2 [20], use custom transport protocols which provide

TCP-friendly congestion control behavior, but over UDP.
1 Introduction In Section 2, we attempt to explain this design shift

by examining features of P2P applications and overlays

There has been a steady stream of research over the YRafis motivate their designers to adopt custom transport
into componentized protocols: protocol implementations protocols, and the way in which these applications differ

assembled from a variety of building blocks. A promisgqn traditional network-based applications. With exam-

of such frameworks has generally been flexibility: a proyes from specific applications, we highlight more generic

tocol stack tailored for a particular application can be ear%quirements for transporting data in these settings.

ily assembled, usually without writing any new code, by

binding protocol objects together. In the end, however, our message is not simply that the
Despite its conceptual elegance, protocol implementaatures of modern distributed systems require a rethink-

tions based on this approach have never caught on, pagr of transport protocols. We also argue that these fea-

ticularly at the transport level. Most applications todayires greatly widen the design space for such protocols

use a kernel-provided IP stack, and usually TCP for trargd require an ability to easily customize transport proto-
port. The consensus is that for both bulk-transfer of daigls for various distributed applications.

and RPC-like call semantics, TCP appears to be perfectly
adequate, and it is not worth inventing something new.  To support this argument, we describe the transport pro-
Of course, a few applications have been identifi@dcol portion of P2, a declarative overlay processor we
where a radically different transport protocol is apprepinave built [20]. P2 allows custom transport protocols to
ate, and in these cases a new, complete, and different fp®assembled from reusable dataflow building blocks. We
tocol has been devised (e.g. RTP [12] for multimediahow how a variety of diverse but important application
or SCTP [25] for PSTN-like signalling traffic) rather tharbehaviors can be achieved naturally within P2’'s frame-
composing a protocol from building blocks. The use ofork, in ways that are hard or impossible to achieve with
these standard protocols has further diminished the matienolithic kernel implementations of transport protocols
vation for transport protocols whose functionality can tmich as TCP, RTP, SCTP or DCCP.
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2 What'sdifferent? selection (e.g., the lookup in Bamboo’s routing table) now
takes place downstream of retries, since successivesetrie
We have asserted that new, distributed, UDP-based apfgii-a message can be sent to different destinations.
cations behave in ways that are not well served by tra-
ditional transport protocols. In this section we identifzongestion control aggregation:
several featur_es of such ap_plications that distinguismthe |, aqdition to having flexibility in the choice of destina-
from, say, typical web services. tion, some P2P applications have the additional property
First we note that at a node-to-node level, P2P cog¢choosing among a very large set of such destinations—
munication often requires different subsets of the TGPset whose size and contents are typically not known in
fUnCtionality set—in-order delivery, I’ellablllty, conge€Sgdvance. A good examp|e is the iterative routing em-
tion control. DCCP [10] explicitly addresses this desighloyed by MIT Chord [9] and the Kademlia [21] variants
space, defining an additional kernel datagram protog@ed in eDonkey [2] and trackerless BitTorrent [1].
providing congestion control and flexible packet acknowl- p problem thus arises maintaining congestion windows
edgement. for a large and unpredictable number of destinations,
However, in this paper we argue that a more genefahny of which are only needed for a single lookup RPC.
approach than DCCP is required. We present use-casefdmaddress this problem, DHash++ uses a custom trans-
P2P systems where implementation is not possible usiigtt protocol called STP [9] that maintains aggregate con-
DCCP, and cases which require substantial implemenggstion state for all nodes, rather than the per-node state
tion in addition to DCCP. While most of our examples afigaintained by TCP, DCCP, etc. Consequently, all outgo-
from structured P2P overlays, we stress that the principlag packets traverse a single congestion-control instance
here are by no means limited to the DHT space. We alséfore being sent to a variety of destinations.
note that DCCP iS a pr0t0C0| I’athel‘ than an implementa-ThiS technique represents a different Change in the
tion per se. The question of whether DCCP itself is natiansport stack implementation from the Bamboo exam-
rally implementable within the framework of section 3 iﬁle above. Here, congestion control is performed inde-
beyond the scope of this paper. pendently of the destination of messages. Indeed, the de-

Some of our example distinctions below relate to deision of where to send the message may be deferred until
sired protocobehavior, while others concern the designhe congestion window allows it to be sent.

of a suitable protocoAPI for end-systems. However, both
affect how the protocol is implemented. Application buffer management:

The designers of DCCP point out the benefits to appli-
cations of fate data choice, where the application com-
Widely-distributed applications have many choicesits to sending a particular piece of data very late in the
about where to forward a message. Unlike traditionsénding process” [19] and suggest using familiar ring-
client-server applications, there may be several equivasfer techniques for queueing packets rather than the tra-
lent end-points for a message (e.g., to retrieve a repliiional Unix API. This change allows latency-sensitive
of some object). Moreover, P2P systems usually incorpapplications to revise or replace outgoing packets up un-
rate some kind of overlay network, even if itis not expliciil the time when the protocol implementation can send
in the design (e.g., the structured overlay of a DHT, or tiieem.
link-state overlay of an enterprise network of Microsoft A good motivating example is the use of in-network ag-
Exchange servers). This provides options not only for teegation techniques for disributed query processors such
destination of a message, but also the overlay path tak&/PIER [14] and [27]. Data is sent up an aggregation tree
to get there. to the root, and aggregation computation is performed at
Designers exploit this new-found freedom to achiewny intermediate node holding more than one datum at a
high performance (latency, throughput, reliability, gtoy time. Ideally, each node would send data up the tree ea-
implementing sophisticated adaptive policies for forwarderly (whenever congestion control allowed it), but other-
ing data in the system. For example, a node in the Bamhwise aggregate it with any new data arriving from below.
DHT [24] constantly measures minimum round-trip times In practice, traditional protocol implementations (such
to nodes in its routing table, sets aggressive timeouts, aUnix TCP) thwart this, since outgoing data may be held
rapidly resends messages to alternate neighbors if thasea node in a buffer (before being sent, or for retry pur-
timeouts are exceeded. This performs dramatically bptses), without being available to the query processor for
ter under churn, since Bamboo can rapidly route aroufidtther aggregation. This limitation can result in situa-
failures and transient load spikes [24]. tions where stale results are sent even though a fresher
In terms of the implementation, this inverts a traditionalne is available.
ordering of functionality in a transport stack: destinatio We therefore embrace DCCP’s notion of late data

Application-level routing freedom:



choice, but extend it further: in addition to being able t&
revise outgoing packets, widely distributed applicatiors

such as distributed query processors benefit from late C:Ee- - H e L
ation of the packets themselves; an APl which provides ag joe - Y
upcall to request the next packet to send allows intelligent j H L .

just-in-time creation of packets.

Furthermore, our approach integrates well with systerigs
that exploit routing freedom to dynamically vary message
destinations, as in our first example: a query processor
may have several potential “parents” to which it can senﬁ Retry ) m

partial aggregates [23]. D 8

Figure 1: Persistent retries (top) vs. rerouting.

Alternative congestion control algorithms:

Finally, TCP’s window-based, sender-driven conges-
tion control algorithm may not be the most appropriate for
Emll apdpllcatlc_ms. cllF!oyd :et al. El_l] gqu!oose TFRC: a Lat%ﬂgorithms (e.g., for congestion control).

ased, receiver-driven "TCP-friendly” congestion cohtro These are precisely the facilities promised by compo-

algorithm for flows that benefit from slower changes in, i : : -
. . ; ) ntized protocol implementations, suggesting they ma
sending rate, such as some multimedia traffic. DCCP ; P P 99 g they may

Aave a compelling area of applicability after all.
lows for selection of several different congestion contro peting PP y
algorithms, of which TFRC is one. Our own experience

with overlay network implementations have shown signi 1

icant advantages to TFRC-like approaches, particularly$n P2'str ansport stack
latency-sensitive overlays that exhibit high loss or unpr,

. B2 [20] is an overlay construction and maintenance fa-
dictable message delays.

_ ) ) ._cility that uses a high-level declarative query language
Selection of particular congestion control algonthm[% specify properties of overlay networks. P2 dynami-

can, of course, be achieved via a parameter to the kel yransiates overlay specifications into Click-lik&]1

nel protocol stack, but when combined with the applic@zafiow networks, which are executed to maintain the

tion routing behavior described above, it becomes hardoR?erlay network. A P2 dataflow network on a particular

build a monolithic protocol implementation that can aGode consists of C++ objects representing dataflow ele-

comodate different congestion control algorithms, thergsa s with bindings between such objects corresponding
selves occupying different positions in the data path. arcs on the dataflow graph.

more natural construction factors out congestion COI’]tI’O|Like Click, dataflow arcs between elements pass data

into a replaceable module, a concept we return to beIOWems via “push” or “pull” function calls. However, P2

is primarily a query processor rather than an IP router.
Unlike Click, P2 passes relational tuples rather than IP
Taken as an ensemble, the issues above show thatghekets. Furthermore, since P2 elements often produce
solution space for overlay networks is much wider thaand consume tuples via computation rather than passing
that for client-server applications. This is in part simplhem through, P2 dataflows stop and start more frequently
because they are distributed, and hence must interact withl thus have more complex inter-element synchroniza-
and adapt to the network as a whole rather than to a sintiig and scheduling mechanims.
path through it, blurring the boundary between the appli-P2 has a wide repertoire of dataflow element classes,
cation and protocol implementation. including operators necessary for performing relational
The situation is further complicated by heterogeneogsery plan operations (joins, aggregations, etc.) over tu-
requirementsithin an application: different parts of anples in both streams (e.g., from the network) and local
application may require different transport charactesst soft-state tables.
For example, a storage service may have one set of reP2 extends the dataflow model into the network
quirements for retrieving blocks or fragments, and anothstack, which is responsible for inter-node tuple transfer.
for performing lookups. Dataflow elements handle congestion control, marshaling,
The challenge is to provide such flexible functionalitpacket scheduling, and demultiplexing. Our initial moti-
in a reusable form. We identify two patterns of reconfigrations for this novel design were ease of implementation
uration in the examples above: (fg-ordering of func- and consistency with the rest of the system, but we have
tionality in the receive and transmit data paths of the imeme to recognize its value as an abstraction for configur-
plementation, and (Zubstitution of one of a family of ing transport protocols. In the following sections we show

Discussion:



examples of the use of P2 dataflow elements to addres<the
issues identified in Section 2 by selective reordering afd
substitution. g

Sending Retries Down Alternate Paths:

Our first example allows an application to retry trang-igure 3: Shared congestion-control state for all destina-
mission of a message to a potentially different destingans.
tion. Fig. 1 shows two dataflow graphs, each of which
represents a possible configuration of transport proto€ol
elements in P2. Broadly, packets to be sent move frgm
left to right, and received packets move from right to Iet%.
For simplicity we do not show whether bindings betwe Retry HBuﬁeredH Route/ L ‘
elements are “push” or “pull,” and in some cases we ha A9 Demux |-,
collapsed chains of elements into a single box where keep- :
ing them separate would not have aided comprehension.
The upper diagram in Fig. 1 shows conventional TCP- Figure 4: Late data choice.
like behavior for a P2P system. A packet to be sent first
passes through a “route/demux” element which uses the ) ) )
overlay’s routing table to pick a next-hop destination, afxtreme, but it at least serves to isolate the effect of this
hands the packet to a per-neighbor retry element whighange to the transport protocol. o .
enqueues it. A packet is removed from the head of thisThe results are unsurprising, and in line with much
queue by a per-neighbor transmit-side congestion contfre rigorous studies [9, 24]: moving retries ahead of
element (“CC Tx"), which in turn is scheduled by a globdPuting causes more hops to be traversed (since the path
round-robin element that pulls packets from the “CC T2y not be the best one available in the routing table), but
elements and sends them to the socket. the latency is reduced (since we fail over links quickly).
Conversely, incoming packets from the network a@gure 2 (c) clearly ShQWS that this is achieyed_by ”?duc'
pushed to a receive-side congestion control element (“5@ the number of retries, since the lossy link is quickly

Rx"). Incoming application data is acknowledged Vigvmded.
the element’s path back to the round-robin scheduler,
pushed to the application. Incoming acknowledgements
from peers are demultiplexed and sent to the appropriaté\n overlay STP-like behavior [9], where a single con-
“CC Tx” elements (to maintain congestion state), whicgestion window is maintained for all destinations can also
subsequently signal the retry elements (to remove dagagenerated without writing any additional code. Fig-
from the retry queue). ure 3 illustrates how the same elements used above can be
The lower diagram in Fig. 1 shows how to achieve p&earranged to provide the functionality of STP using a sin-
havior more like Bamboo, where successive retries m@k queue and congestion control strand for all outgoing
be sent to different destinations. We simply move ttRgckets regardless of destination.
retry element to the head of the dataflow ahead of theNote that the dataflow model makes it easy to combine
route/demux element, which causes each retransmis$¥fiogonal functionality: we could have elected to per-
to perform a new route lookup. Not shown is the logic igrm retries ahead of routing as above without requiring
which the route lookup has access to congestion and 188¥ new code.
statistics about neighbors — this information is maintdine ) )
as a P2 table, and the policy by which the route/demux £/99r €gation and late data choice:
ement uses this information to select a destination isylikel Figure 4 shows an example of late data choice for a
to be application-specific. Note, however, that apart frogistributed aggregation scenario, such as computing the
expressing such preferences, no new code has to be whigximum or mean of a distributed set of values. We move
ten to achieve the desired behavior. all buffering in the data flow graph “upstream,” next to the
Figure 2 shows the results of a highly artificial expeapplication.
iment comparing the performance of the two dataflow This simple change in the dataflow means that the num-
graphs. We build a very small (32-node) Chord networker of aggregate values sent by a node over time is equal
One particular node in the network performs 1 lookup ptr the load the network is willing to handle. When band-
second to a random key. A lossy link (50% drop rate) veidth is available, values are sent out of the buffer as soon
placed between that lookup node and its furthest finger é&-they are produced, minizing the latency with which the
ble entry. This experiment is, of course, simplistic in theartial aggregates arrive at the next level of the aggrega-

ared Congestion Control State:
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cations moreeadable, Kohler et al. developed the Pro-
lac Protocol Language [17]. Prolac is an expression
language, intended as for developing complete protocols
(e.g., TCP).

Sharing our high-level goals but taking a completely
different approach, Braden et al. [6] propose a heap
based protocol abstraction in their Role-Based Architec-
ture (RBA). In RBA, messages are addressed to role ac-
tors, instead of end-hosts. This allows middle boxes (e.g.,
firewalls, NAT boxes, caches, etc.), running as roles, to
be addressed in message headers. Conceivably, RBA is

an alternative to our dataflow architecture for transport
protocols although it seems ultimately intended for larger
granularity actors, compared to our finer-grained plumb-
ing of protocol components before or after a multiplexer.

tion tree. In the event of congestion, values remain in thelnStead of offering flexibility via componentization,
application buffers and are aggregating with any new v&-number of approaches expose the internals of mono-

ues that arrive, reducing bandwidth usage. lithic protocol specifications, making it easier to pick and
choose which flexibility to enable and which to suppress.

Mogul et al. [22] describe a put/get interface to the trans-
ort layer that allows for the setting and querying of net-

'Ourfinal exe}mp!e briefly illustraies the ease With whi ork protocol state. The Datagram Congestion Control
different gomp|nat|0ns Of tra_nspprt proto_col behavions “Protocol (DCCP) [16] builds a transport “suite” that can
be coFmblnedSm r?n apﬁllcag%n n ? str;’:}lghtforwat;d Mafaxibly alter its behavior while remaining TCP-friendly.
Ner. Figure S Shows how ditferent poliCies can b€ COffy )y, cases, the resulting protocol instantiations are

bined at runtime, and choices made on a per-packet baﬁésared towards point-to-point communication, and keep

all pieces of the transport functionality within the same
4 Reated work “shell,” making it harder to effect the flexible reordering
of components across traditional layer boundaries that we

An early contribution in the decomposition of networRfOPOSe in our work.

protocols came from the x-Kernel operating system [15], The software dataflow abstraction has long been used
in which network services are handled by composabte, model data movement in the database literature, in
user-level protocol objects. To specify such objectsarticular in networked and stream query engines [5, 8],
the project team developed the Morpheus [3] progranvhich have an intimate relation to data-intensive network-
ming language, which codifies valid protocol object coning. More recently it has been embraced for network
positions and enables overhead-reducing optimizatiorsuters [13,18]. Many of the optimizations found in these
Unlike our lightweight elements, protocol objects in xsystems are a direct result of using a dataflow model,
Kernel are complete protocol implementations (i.e., TC&hd the flexibility thereof. Network transport protocols
Psync, BLAST), restricting their flexibility to stacks thatan also benefit from a dataflow model, and in this paper
layer objects on top of one another. With the slighthwe have presented a few such examples. An interesting
different motivation of making network protocol specifisynergy may also exist between the flexibility we have

Figure 5: Different, concurrent transport policies.

Heterogeneous transports:



seen in this paper and database query optimization tech-

niques, particularlyadaptive approaches to reoptimizing

live dataflows [4, 8].

5 Conclusion

Overlay networks offer a new network model that appli-

(6]

(7]

(8]

cations are beginning to demand. This new communica-
tion medium brings with it a number of design decisions
that go beyond the scope of a small number of monolithi€!

transport protocol services. Component based transport

protocols provide a natural replacement of black box prae]

tocol implementations, with small processing units that

can be arranged to form the desired semantics. Besia&
nts

flexibility, designing a system around small compone

promotes good code reuse.

We embrace a dataflow architecture for our componeR#!

based transport protocols. Dataflows have been shown to
provide good data independence properties in many othgf

systems, and are certainly capable of supporting high-
performance operation [7]. The flexibility of a datafloi4!
abstraction makes the rich set of optimizations afforded
by overlay networks easier to attain. Moreover, it pro-

vides an ideal glue layer between the application and niéfl
work, one which we have shown to support fresh results

and good synchronization properties.

(16]

In the future, it may become important to ensure that
component-based transport protocols mimic the wire for-

mats of existing transports, particularly TCP. This woufd

ease interoperation with existing middleboxes, allowingg)
for example firewalls and NATs to maintain per-flow state
obliviously. Mimicking the particular timing characteris

tics of specific TCP implementations, however, may pro

more challenging.

Finally, a particularly challenging and ambitious nexg0]
step for our exploration of this space is the specifica-

tion in a high-level language afesired properties for a
particular instantiation of protocol components.

In P&Z,l]

we define and compile entire application-level overld§2]
dataflows from such declarative language specifications.
Consequently, this approach would allow us to redraw tﬁ@]

boundary between the overlay and the transport.
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