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Abstract

This paper argues a new relevance for an old idea: de-
composing transport protocols into a set of resuable build-
ing blocks that can be recomposed in different ways de-
pending on application requirements. We conjecture that
point-to-point applications may well be adequately served
by the existing suite of monolithic protocol implementa-
tions, but widely-distributed peer-to-peer systems such as
overlays are not: the design space of transport protocols
between nodes in a large, highly coordinated system is
much larger. We provide several examples of existing
systems that have implemented a diverse range of trans-
port protocols, and show how a building-block approach
covers these systems well, enabling simple specification
of hybrids and variants of the protocols. In particular, we
show how all of our examples can be implemented in the
networking stack of P2, a multipurpose system for build-
ing overlay networks from declarative specifications.

1 Introduction

There has been a steady stream of research over the years
into componentized protocols: protocol implementations
assembled from a variety of building blocks. A promise
of such frameworks has generally been flexibility: a pro-
tocol stack tailored for a particular application can be eas-
ily assembled, usually without writing any new code, by
binding protocol objects together.

Despite its conceptual elegance, protocol implementa-
tions based on this approach have never caught on, par-
ticularly at the transport level. Most applications today
use a kernel-provided IP stack, and usually TCP for trans-
port. The consensus is that for both bulk-transfer of data
and RPC-like call semantics, TCP appears to be perfectly
adequate, and it is not worth inventing something new.

Of course, a few applications have been identified
where a radically different transport protocol is appropri-
ate, and in these cases a new, complete, and different pro-
tocol has been devised (e.g. RTP [12] for multimedia,
or SCTP [25] for PSTN-like signalling traffic) rather than
composing a protocol from building blocks. The use of
these standard protocols has further diminished the moti-
vation for transport protocols whose functionality can be

composed at user level in an application-specific manner.

We suspect that this small set of transport protocols
(along with DCCP [10]) covers the needs of almost all
point-to-point applications; that is, applications basedon
the concept of two end-points communicating.

However, in this paper we argue that widely-distributed
systems, including structured and unstructured overlays,
change this situation and introduce problems that com-
ponentized transport protocol mechanisms are uniquely
equipped to solve.

In the last few years, considerable research has been
devoted to both structured and unstructuredoverlay and
peer-to-peer applications. As distributed systems, these
applications generally include their own techniques for
routing messages on an overlay. Many such deployed
systems, including Bamboo [24], MIT Chord [26], and
P2 [20], use custom transport protocols which provide
TCP-friendly congestion control behavior, but over UDP.

In Section 2, we attempt to explain this design shift
by examining features of P2P applications and overlays
that motivate their designers to adopt custom transport
protocols, and the way in which these applications differ
from traditional network-based applications. With exam-
ples from specific applications, we highlight more generic
requirements for transporting data in these settings.

In the end, however, our message is not simply that the
features of modern distributed systems require a rethink-
ing of transport protocols. We also argue that these fea-
tures greatly widen the design space for such protocols
and require an ability to easily customize transport proto-
cols for various distributed applications.

To support this argument, we describe the transport pro-
tocol portion of P2, a declarative overlay processor we
have built [20]. P2 allows custom transport protocols to
be assembled from reusable dataflow building blocks. We
show how a variety of diverse but important application
behaviors can be achieved naturally within P2’s frame-
work, in ways that are hard or impossible to achieve with
monolithic kernel implementations of transport protocols
such as TCP, RTP, SCTP or DCCP.
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2 What’s different?

We have asserted that new, distributed, UDP-based appli-
cations behave in ways that are not well served by tra-
ditional transport protocols. In this section we identify
several features of such applications that distinguish them
from, say, typical web services.

First we note that at a node-to-node level, P2P com-
munication often requires different subsets of the TCP
functionality set—in-order delivery, reliability, conges-
tion control. DCCP [10] explicitly addresses this design
space, defining an additional kernel datagram protocol
providing congestion control and flexible packet acknowl-
edgement.

However, in this paper we argue that a more general
approach than DCCP is required. We present use-cases in
P2P systems where implementation is not possible using
DCCP, and cases which require substantial implementa-
tion in addition to DCCP. While most of our examples are
from structured P2P overlays, we stress that the principles
here are by no means limited to the DHT space. We also
note that DCCP is a protocol rather than an implementa-
tion per se. The question of whether DCCP itself is natu-
rally implementable within the framework of section 3 is
beyond the scope of this paper.

Some of our example distinctions below relate to de-
sired protocolbehavior, while others concern the design
of a suitable protocolAPI for end-systems. However, both
affect how the protocol is implemented.

Application-level routing freedom:

Widely-distributed applications have many choices
about where to forward a message. Unlike traditional
client-server applications, there may be several equiva-
lent end-points for a message (e.g., to retrieve a replica
of some object). Moreover, P2P systems usually incorpo-
rate some kind of overlay network, even if it is not explicit
in the design (e.g., the structured overlay of a DHT, or the
link-state overlay of an enterprise network of Microsoft
Exchange servers). This provides options not only for the
destination of a message, but also the overlay path taken
to get there.

Designers exploit this new-found freedom to achieve
high performance (latency, throughput, reliability, etc.) by
implementing sophisticated adaptive policies for forward-
ing data in the system. For example, a node in the Bamboo
DHT [24] constantly measures minimum round-trip times
to nodes in its routing table, sets aggressive timeouts, and
rapidly resends messages to alternate neighbors if these
timeouts are exceeded. This performs dramatically bet-
ter under churn, since Bamboo can rapidly route around
failures and transient load spikes [24].

In terms of the implementation, this inverts a traditional
ordering of functionality in a transport stack: destination

selection (e.g., the lookup in Bamboo’s routing table) now
takes place downstream of retries, since successive retries
for a message can be sent to different destinations.

Congestion control aggregation:

In addition to having flexibility in the choice of destina-
tion, some P2P applications have the additional property
of choosing among a very large set of such destinations—
a set whose size and contents are typically not known in
advance. A good example is the iterative routing em-
ployed by MIT Chord [9] and the Kademlia [21] variants
used in eDonkey [2] and trackerless BitTorrent [1].

A problem thus arises maintaining congestion windows
for a large and unpredictable number of destinations,
many of which are only needed for a single lookup RPC.
To address this problem, DHash++ uses a custom trans-
port protocol called STP [9] that maintains aggregate con-
gestion state for all nodes, rather than the per-node state
maintained by TCP, DCCP, etc. Consequently, all outgo-
ing packets traverse a single congestion-control instance
before being sent to a variety of destinations.

This technique represents a different change in the
transport stack implementation from the Bamboo exam-
ple above. Here, congestion control is performed inde-
pendently of the destination of messages. Indeed, the de-
cision of where to send the message may be deferred until
the congestion window allows it to be sent.

Application buffer management:

The designers of DCCP point out the benefits to appli-
cations of “late data choice, where the application com-
mits to sending a particular piece of data very late in the
sending process” [19] and suggest using familiar ring-
buffer techniques for queueing packets rather than the tra-
ditional Unix API. This change allows latency-sensitive
applications to revise or replace outgoing packets up un-
til the time when the protocol implementation can send
them.

A good motivating example is the use of in-network ag-
gregation techniques for disributed query processors such
as PIER [14] and [27]. Data is sent up an aggregation tree
to the root, and aggregation computation is performed at
any intermediate node holding more than one datum at a
time. Ideally, each node would send data up the tree ea-
gerly (whenever congestion control allowed it), but other-
wise aggregate it with any new data arriving from below.

In practice, traditional protocol implementations (such
as Unix TCP) thwart this, since outgoing data may be held
at a node in a buffer (before being sent, or for retry pur-
poses), without being available to the query processor for
further aggregation. This limitation can result in situa-
tions where stale results are sent even though a fresher
one is available.

We therefore embrace DCCP’s notion of late data
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choice, but extend it further: in addition to being able to
revise outgoing packets, widely distributed applications
such as distributed query processors benefit from late cre-
ation of the packets themselves; an API which provides an
upcall to request the next packet to send allows intelligent
just-in-time creation of packets.

Furthermore, our approach integrates well with systems
that exploit routing freedom to dynamically vary message
destinations, as in our first example: a query processor
may have several potential “parents” to which it can send
partial aggregates [23].

Alternative congestion control algorithms:

Finally, TCP’s window-based, sender-driven conges-
tion control algorithm may not be the most appropriate for
all applications. Floyd et al. [11] propose TFRC: a rate-
based, receiver-driven “TCP-friendly” congestion control
algorithm for flows that benefit from slower changes in
sending rate, such as some multimedia traffic. DCCP al-
lows for selection of several different congestion control
algorithms, of which TFRC is one. Our own experience
with overlay network implementations have shown signif-
icant advantages to TFRC-like approaches, particularly in
latency-sensitive overlays that exhibit high loss or unpre-
dictable message delays.

Selection of particular congestion control algorithms
can, of course, be achieved via a parameter to the ker-
nel protocol stack, but when combined with the applica-
tion routing behavior described above, it becomes hard to
build a monolithic protocol implementation that can ac-
comodate different congestion control algorithms, them-
selves occupying different positions in the data path. A
more natural construction factors out congestion control
into a replaceable module, a concept we return to below.

Discussion:

Taken as an ensemble, the issues above show that the
solution space for overlay networks is much wider than
that for client-server applications. This is in part simply
because they are distributed, and hence must interact with
and adapt to the network as a whole rather than to a single
path through it, blurring the boundary between the appli-
cation and protocol implementation.

The situation is further complicated by heterogeneous
requirementswithin an application: different parts of an
application may require different transport characteristics.
For example, a storage service may have one set of re-
quirements for retrieving blocks or fragments, and another
for performing lookups.

The challenge is to provide such flexible functionality
in a reusable form. We identify two patterns of reconfig-
uration in the examples above: (1)re-ordering of func-
tionality in the receive and transmit data paths of the im-
plementation, and (2)substitution of one of a family of
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Figure 1: Persistent retries (top) vs. rerouting.

algorithms (e.g., for congestion control).
These are precisely the facilities promised by compo-

nentized protocol implementations, suggesting they may
have a compelling area of applicability after all.

3 P2’s transport stack

P2 [20] is an overlay construction and maintenance fa-
cility that uses a high-level declarative query language
to specify properties of overlay networks. P2 dynami-
cally translates overlay specifications into Click-like [18]
dataflow networks, which are executed to maintain the
overlay network. A P2 dataflow network on a particular
node consists of C++ objects representing dataflow ele-
ments, with bindings between such objects corresponding
to arcs on the dataflow graph.

Like Click, dataflow arcs between elements pass data
items via “push” or “pull” function calls. However, P2
is primarily a query processor rather than an IP router.
Unlike Click, P2 passes relational tuples rather than IP
packets. Furthermore, since P2 elements often produce
and consume tuples via computation rather than passing
them through, P2 dataflows stop and start more frequently
and thus have more complex inter-element synchroniza-
tion and scheduling mechanims.

P2 has a wide repertoire of dataflow element classes,
including operators necessary for performing relational
query plan operations (joins, aggregations, etc.) over tu-
ples in both streams (e.g., from the network) and local
soft-state tables.

P2 extends the dataflow model into the network
stack, which is responsible for inter-node tuple transfer.
Dataflow elements handle congestion control, marshaling,
packet scheduling, and demultiplexing. Our initial moti-
vations for this novel design were ease of implementation
and consistency with the rest of the system, but we have
come to recognize its value as an abstraction for configur-
ing transport protocols. In the following sections we show
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examples of the use of P2 dataflow elements to address the
issues identified in Section 2 by selective reordering and
substitution.

Sending Retries Down Alternate Paths:

Our first example allows an application to retry trans-
mission of a message to a potentially different destina-
tion. Fig. 1 shows two dataflow graphs, each of which
represents a possible configuration of transport protocol
elements in P2. Broadly, packets to be sent move from
left to right, and received packets move from right to left.
For simplicity we do not show whether bindings between
elements are “push” or “pull,” and in some cases we have
collapsed chains of elements into a single box where keep-
ing them separate would not have aided comprehension.

The upper diagram in Fig. 1 shows conventional TCP-
like behavior for a P2P system. A packet to be sent first
passes through a “route/demux” element which uses the
overlay’s routing table to pick a next-hop destination, and
hands the packet to a per-neighbor retry element which
enqueues it. A packet is removed from the head of this
queue by a per-neighbor transmit-side congestion control
element (“CC Tx”), which in turn is scheduled by a global
round-robin element that pulls packets from the “CC Tx”
elements and sends them to the socket.

Conversely, incoming packets from the network are
pushed to a receive-side congestion control element (“CC
Rx”). Incoming application data is acknowledged via
the element’s path back to the round-robin scheduler, and
pushed to the application. Incoming acknowledgements
from peers are demultiplexed and sent to the appropriate
“CC Tx” elements (to maintain congestion state), which
subsequently signal the retry elements (to remove data
from the retry queue).

The lower diagram in Fig. 1 shows how to achieve be-
havior more like Bamboo, where successive retries may
be sent to different destinations. We simply move the
retry element to the head of the dataflow ahead of the
route/demux element, which causes each retransmission
to perform a new route lookup. Not shown is the logic by
which the route lookup has access to congestion and loss
statistics about neighbors – this information is maintained
as a P2 table, and the policy by which the route/demux el-
ement uses this information to select a destination is likely
to be application-specific. Note, however, that apart from
expressing such preferences, no new code has to be writ-
ten to achieve the desired behavior.

Figure 2 shows the results of a highly artificial exper-
iment comparing the performance of the two dataflow
graphs. We build a very small (32-node) Chord network.
One particular node in the network performs 1 lookup per
second to a random key. A lossy link (50% drop rate) is
placed between that lookup node and its furthest finger ta-
ble entry. This experiment is, of course, simplistic in the
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Figure 4: Late data choice.

extreme, but it at least serves to isolate the effect of this
change to the transport protocol.

The results are unsurprising, and in line with much
more rigorous studies [9, 24]: moving retries ahead of
routing causes more hops to be traversed (since the path
may not be the best one available in the routing table), but
the latency is reduced (since we fail over links quickly).
Figure 2 (c) clearly shows that this is achieved by reduc-
ing the number of retries, since the lossy link is quickly
avoided.

Shared Congestion Control State:

An overlay STP-like behavior [9], where a single con-
gestion window is maintained for all destinations can also
be generated without writing any additional code. Fig-
ure 3 illustrates how the same elements used above can be
rearranged to provide the functionality of STP using a sin-
gle queue and congestion control strand for all outgoing
packets regardless of destination.

Note that the dataflow model makes it easy to combine
orthogonal functionality: we could have elected to per-
form retries ahead of routing as above without requiring
any new code.

Aggregation and late data choice:

Figure 4 shows an example of late data choice for a
distributed aggregation scenario, such as computing the
maximum or mean of a distributed set of values. We move
all buffering in the data flow graph “upstream,” next to the
application.

This simple change in the dataflow means that the num-
ber of aggregate values sent by a node over time is equal
to the load the network is willing to handle. When band-
width is available, values are sent out of the buffer as soon
as they are produced, minizing the latency with which the
partial aggregates arrive at the next level of the aggrega-
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Figure 5: Different, concurrent transport policies.

tion tree. In the event of congestion, values remain in the
application buffers and are aggregating with any new val-
ues that arrive, reducing bandwidth usage.

Heterogeneous transports:

Our final example briefly illustrates the ease with which
different combinations of transport protocol behaviors can
be combined in an application in a straightforward man-
ner. Figure 5 shows how different policies can be com-
bined at runtime, and choices made on a per-packet basis.

4 Related work

An early contribution in the decomposition of network
protocols came from the x-Kernel operating system [15],
in which network services are handled by composable,
user-level protocol objects. To specify such objects,
the project team developed the Morpheus [3] program-
ming language, which codifies valid protocol object com-
positions and enables overhead-reducing optimizations.
Unlike our lightweight elements, protocol objects in x-
Kernel are complete protocol implementations (i.e., TCP,
Psync, BLAST), restricting their flexibility to stacks that
layer objects on top of one another. With the slightly
different motivation of making network protocol specifi-

cations morereadable, Kohler et al. developed the Pro-
lac Protocol Language [17]. Prolac is an expression
language, intended as for developing complete protocols
(e.g., TCP).

Sharing our high-level goals but taking a completely
different approach, Braden et al. [6] propose a heap
based protocol abstraction in their Role-Based Architec-
ture (RBA). In RBA, messages are addressed to role ac-
tors, instead of end-hosts. This allows middle boxes (e.g.,
firewalls, NAT boxes, caches, etc.), running as roles, to
be addressed in message headers. Conceivably, RBA is
an alternative to our dataflow architecture for transport
protocols although it seems ultimately intended for larger-
granularity actors, compared to our finer-grained plumb-
ing of protocol components before or after a multiplexer.

Instead of offering flexibility via componentization,
a number of approaches expose the internals of mono-
lithic protocol specifications, making it easier to pick and
choose which flexibility to enable and which to suppress.
Mogul et al. [22] describe a put/get interface to the trans-
port layer that allows for the setting and querying of net-
work protocol state. The Datagram Congestion Control
Protocol (DCCP) [16] builds a transport “suite” that can
flexibly alter its behavior while remaining TCP-friendly.
In both cases, the resulting protocol instantiations are
geared towards point-to-point communication, and keep
all pieces of the transport functionality within the same
“shell,” making it harder to effect the flexible reordering
of components across traditional layer boundaries that we
propose in our work.

The software dataflow abstraction has long been used
to model data movement in the database literature, in
particular in networked and stream query engines [5, 8],
which have an intimate relation to data-intensive network-
ing. More recently it has been embraced for network
routers [13,18]. Many of the optimizations found in these
systems are a direct result of using a dataflow model,
and the flexibility thereof. Network transport protocols
can also benefit from a dataflow model, and in this paper
we have presented a few such examples. An interesting
synergy may also exist between the flexibility we have
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seen in this paper and database query optimization tech-
niques, particularlyadaptive approaches to reoptimizing
live dataflows [4,8].

5 Conclusion

Overlay networks offer a new network model that appli-
cations are beginning to demand. This new communica-
tion medium brings with it a number of design decisions
that go beyond the scope of a small number of monolithic
transport protocol services. Component based transport
protocols provide a natural replacement of black box pro-
tocol implementations, with small processing units that
can be arranged to form the desired semantics. Besides
flexibility, designing a system around small components
promotes good code reuse.

We embrace a dataflow architecture for our component-
based transport protocols. Dataflows have been shown to
provide good data independence properties in many other
systems, and are certainly capable of supporting high-
performance operation [7]. The flexibility of a dataflow
abstraction makes the rich set of optimizations afforded
by overlay networks easier to attain. Moreover, it pro-
vides an ideal glue layer between the application and net-
work, one which we have shown to support fresh results
and good synchronization properties.

In the future, it may become important to ensure that
component-based transport protocols mimic the wire for-
mats of existing transports, particularly TCP. This would
ease interoperation with existing middleboxes, allowing
for example firewalls and NATs to maintain per-flow state
obliviously. Mimicking the particular timing characteris-
tics of specific TCP implementations, however, may prove
more challenging.

Finally, a particularly challenging and ambitious next
step for our exploration of this space is the specifica-
tion in a high-level language ofdesired properties for a
particular instantiation of protocol components. In P2,
we define and compile entire application-level overlay
dataflows from such declarative language specifications.
Consequently, this approach would allow us to redraw the
boundary between the overlay and the transport.
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