
Predicate Routing: Enabling Controlled Networking

Timothy Roscoe
Intel Research at Berkeley

2150 Shattuck Avenue,
Berkeley, CA 94704, USA

troscoe@intel-research.net

Steve Hand
University of Cambridge

Computer Laboratory
Cambridge CB3 0FD, UK

steven.hand@cl.cam.ac.uk

Rebecca Isaacs
Microsoft Research

7 J.J. Thomson Avenue
Cambridge CB3 0FB, UK

risaacs@microsoft.com

Richard Mortier
Microsoft Research

7 J.J. Thomson Avenue
Cambridge CB3 0FB, UK

mort@microsoft.com

Paul Jardetzky
Sprint ATL

1 Adrian Court
Burlingame, CA 94010, USA

pjardetzky@sprintlabs.com

1. INTRODUCTION AND MOTIVATION
The Internet lacks a coherent model which unifies security
(in terms of where packets are allowed to go) and routing
(where packets should be sent), even in constrained envi-
ronments. While automated configuration tools are appear-
ing for parts of this problem, a general solution is still un-
available. Routing and firewalling are generally treated as
separate problems, in spite of their clear connection. In
particular, security policies in data hosting centers, enter-
prise networks, and backbones are still by and large installed
manually, and are prone to problems from errors and mis-
configurations. In this paper, we present Predicate Routing
(PR) as a solution to this problem. We briefly describe our
centralized implementation and then outline the extension
of Internet routing protocols to support Predicate Routing.

In current IP networks, the state of the system is primar-
ily represented in an imperative fashion: routing tables and
firewall rulesets local to each node strictly specify the ac-
tion to be performed on each arriving packet. In contrast,
Predicate Routing represents the state of the network declar-
atively as a set of boolean expressions associated with links
which assert which kinds of packet can appear where. From
these expressions, routing tables and filter rules are derived
automatically. Conversely, the consequences of a change in
network state can be calculated for any point in the net-
work (link, router, or end system), and predicates derived
from known configuration state of routers and links. This
subsumes notions of both routing and firewalling.

We use the phrase “controlled networking” to refer to envi-
ronments where every packet flow in a network has been ex-

plicitly allowed or “white listed”, possibly by an automated
process. Controlled networking using Predicate Routing
gives precise assurances about the presence of network pack-
ets, even when network elements cannot provide the filter-
ing and packet discrimination required by a naive, manually
configured approach.

Where ideal security is infeasible with the given infrastruc-
ture and topology, Predicate Routing can be used to guide
risk assessments and security tradeoffs by providing com-
plete information about what packets are allowed to tra-
verse each link. Furthermore, Predicate Routing aids packet
traceback, by allowing those properties of a packet (such as
origin machine) which cannot be directly observed at most
points in the network to be logically inferred from observable
properties.

Note that this differs from the various forms of coordinated
firewall control or distributed firewalling in that predicates
do not specify traffic rules but rather capture both current
and desired network state. From this state appropriate fire-
wall rulesets may be synthesized.

Since our declarative view of network state is very differ-
ent from traditional routing concepts, we first give an ab-
stract view of how Predicate Routing represents a network,
as a precursor to discussing its application. We then detail
two scenarios where Predicate Routing can be applied: the
control of flows and isolation of applications in a central-
ized environment such as a datacenter, and the use of dis-
tributed Predicate Routing algorithms to support controlled
networking in the wide area.

2. PREDICATE ROUTING: FRAMEWORK
Predicate Routing is concerned as much with where particu-
lar packets in an IP network can appear as with where they
should be sent. While the term “reachability” in conven-
tional IP networks refers to the notion that some packets
can reach a given point in the network, in Predicate Rout-
ing this notion is packet-specific, and subsumes both the
notion of firewalling (ensuring that a particular destination
is unreachable for that packet), and routing (attempting

A C

DB

A

DB

C

Port

Link

Router or Node

Figure 1: A traditional representation of a network,

and the same network in Predicate Routing terms.

to ensure that the desired destination is reachable for the
packet). Predicate Routing achieves this by employing a
non-traditional abstraction of network properties. The up-
per half of Figure 1 shows a typical, simple IP network com-
posed of 2 routers and 4 end nodes. Links are bidirectional,
and connect ports on routers and nodes.

The lower half shows how the same network is represented
in Predicate Routing. Some differences are immediately ap-
parent. The most obvious is that the switch-centric repre-
sentation has been replaced by one made up of ports and
links. Indeed, in Predicate Routing the notion of a switch
or router per se is important only from an implementation
standpoint (as a collection of ports with a single control in-
terface and shared resources). Ports are now unidirectional,
and so there are twice as many. At the same time, links
are regarded as broadcast media, and so are neither unidi-
rectional nor bidirectional. Finally, the “inside” of a router
or switch is equivalent to an external network link from the
point of view of Predicate Routing.

While the network has become more complex (more links,
more ports), the elements making it up have become much
simpler, making it easier to automate reasoning about the
network. Firstly, links are now passive media elements, and
so it makes sense to talk about a packet being “present”
on a link without needing to specify the direction in which
it is traveling. Secondly, ports have a single input and a
single output and have subsumed the role of switches and
routers in the traditional representation, and so they can be
viewed as “gates” which allow some packets through (pos-
sibly modifying them in the process) and disallow others.
These two abstractions, (unidirectional) ports and (non-
directional) links, form the basis for Predicate Routing.

2.1 Predicates
Predicate Routing views the state of an IP network as a set
of logical expressions—predicates—that refer to properties
of packets at each point in the network. In traditional rout-
ing, network state is represented as a forwarding table at
each router, which can be viewed as a function from packet
properties to outgoing router ports. In contrast, in Predi-
cate Routing a packet can potentially appear on any router
output port which does not explicitly disallow it; and the
forwarding table is represented as a set of output filters.
These two views of a router are equivalent (Predicate Rout-
ing is just as expressive), but the more declarative approach
taken by Predicate Routing simplifies automated reasoning
about network state.

The primitive terms of a predicate are packet attributes like
source or destination IP address, port numbers, protocols,
etc. A simple (and highly restrictive) link predicate might
be:

Proto(TCP) AND DestPort(80) AND DestAddr(10.10.1.2)

While all the attributes in this example are directly observ-
able from the packet header, one can define other attributes
which are not immediately observable, such as the origin
machine of the packet (in the presence of potential source
address spoofing), a particular flow or path the packet is part
of, etc. Predicate Routing can allow these non-observable
attributes to be inferred from the network state. Routers
generally operate only on observable properties of packets.

Four kinds of predicate are involved in representing network
state: link or network predicates, switch predicates, port
predicates, and filter predicates.

2.2 Link and network predicates
A link predicate is an assertion about the properties of pack-
ets that can be seen on a network link. Recall that links do
not have a direction, so a single boolean expression in dis-
junctive normal form1 suffices to describe everything that
can be observed on the link.

While the idea generalizes to broadcast networks, where the
predicate refers to then packets that can be present on a
given segment, in this paper we restrict our discussion to
switched point-to-point links.

2.3 Switch predicates
A switch predicate is an assertion about packets that may be
seen “inside” a router or switch—packets which may poten-
tially traverse the switching fabric. We treat the inside of a
router as a “sea of packets”, with no notion of which port
a packet entered on, or which port or ports the packet is
leaving on, hence there is a symmetry between the “insides”
of switches and routers, and the “outsides” of links, with a
corresponding symmetry between input and output ports.

This is a relatively simple model of a router. Modern IP
routers are rather more complex than this: in particular

1i.e. an or of a series of and-connected compound terms.

many combine the functions of switching (based on MAC ad-
dress) and routing (at the IP layer) using the concept of vir-
tual LANs (VLANs). In this paper we use the terms switch
and router interchangeably. We can capture this complexity
of networking equipment in several ways. Firstly, if we treat
VLANs as if they were real Ethernet broadcast domains,
a Predicate Routing port now corresponds to the IP inter-
face of the VLAN on the switch, as opposed to the physical
ports. VLANs consequently have network predicates asso-
ciated with them. A better approach integrates the VLAN
notion into Predicate Routing’s model of the switch, but
that is beyond the scope of this paper.

2.4 Port predicates
A port predicate is an assertion about the properties of pack-
ets passing through a switch port. We view ports as unidi-
rectional. A port predicate is identical in form to a link or
network predicate.

2.5 Filter predicates
In the Predicate Routing model, input and output ports ap-
ply filters (which may be trivially simple). Thus, in addition
to the port predicate (which asserts the properties of traf-
fic flowing through the port), each port has an associated
filter predicate, which asserts the properties of traffic which
can flow through the port. The filter predicate for a port
expresses the filter configuration which currently applies to
the port. Most modern IP routers provide some facility for
input port filtering, sometimes referred to as Access Control
Lists, for which there is a natural mapping to input port
filter predicates. Output port filter predicates are also nat-
urally mapped onto real router configuration properties in
the form of IP routing table entries. To understand this,
consider the set of routing table entries in the router which
cause packets to be forwarded to a given port. Each compo-
nent term in the output filter predicate is the property that
the packet destination address matches the address prefix of
the table entry. The complete filter predicate is the or of
these terms.

Increasingly, all but low-end routers and high-performance
core IP switches support policy routing, where a routing
decision is made based not only on destination address, but
also on source address, protocol, ports, etc. This additional
router state information also maps naturally onto output
port filters.

2.6 Relations between predicates
Figure 2 shows a very simple example of a network configura-
tion, together with corresponding predicates which combine
both the filtering and routing configuration of the network
in a unified model of network state. It is clear that the four
types of predicates are closely dependent on each other:

1. The port predicate for an input port on a switch is the
and of the network predicate of the attached network
with the filter predicate for the port. This expresses
what the port filter does: it constrains the traffic that
enters the switch from the network through the port.
Similarly, the port predicate for an output port on a
switch is the and of the switch predicate, and the filter
predicate for the port.

Port A:
192.168.1.1

Port B:
192.168.1.2

Port C:
192.168.1.3

Port D:
192.168.1.4

Routing table:
 10.1.0.0/16 -> 192.168.1.1
 10.2.0.0/16 -> 192.168.1.4

Input filters:
 Port B:
 Allow Source = 10.3.0.0/16
 Deny all
 Port C:
 Allow Source = 10.4.0.0/16
 Deny all

Link a Link b

Link cLink d

Predicates:

 Filter A:
 Dest = 10.1.0.0/16
 Filter B:
 Source = 10.3.0.0/16
 Filter C:
 Source = 10.4.0.0/16
 Filter D:
 Dest = 10.2.0.0/16

 Switch:
 Source = 10.3.0.0/16 OR Source = 10.4.0.0/16

 Link A:
 Dest = 10.1.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)
 Link B:
 None (anything)
 Link C:
 None (anything)
 Link D:
 Dest = 10.2.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)

 Port A:
 Dest = 10.1.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)
 Port B:
 Source = 10.3.0.0/16
 Port C:
 Source = 10.4.0.0/16
 Port D:
 Dest = 10.2.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)

Figure 2: A very simple network showing predicates

2. A link predicate is the or of the port predicates for
the switch output ports which are attached to the link.
This simply expresses the fact that any packet enters
a link through one switch output port.

3. Similarly, the switch predicate for a switch is the or

of the port predicates for all the input ports on the
switch.

2.7 Discussion
Given these relations, we note that in a closed network, link,
port, and switch predicates can be derived from knowing
only the network topology and all the filter predicates.

Strictly speaking, the notion of a port predicate is redundant
in this framework: port predicates are entirely determined
by link and filter predicates and so don’t convey any addi-
tional information about network state. However, they are

important as intermediate terms when applying the logical
framework in a real implementation, as in the next section.
Also, although Predicate Routing’s logical framework treats
networks and routers identically, in practice the difference
clearly matters.

When the network is connected to other systems (like the
rest of the Internet), these predicates can still be derived
from a combination of the filter predicates and the link
predicates at attachment points. Alternatively, predicates
on links entering an administrative domain can be defined
in accordance with service level agreements.

Note also that we can derive or “prove” additional properties
of packets at given point in the network, not directly observ-
able from the packet itself. For example, in Figure 2, if we
see a packet on link a with a source address in 10.3.0.0/16,
we can infer that the packet traversed link b. While this
example is trivial, in more complex networks this can be a
powerful tool for reducing human error in network configu-
ration.

The use of declarative languages to detect network and sys-
tem misconfiguration has been investigated in [11]. Predi-
cate Routing provides the logical framework in which these
techniques can be applied to network management, for ex-
ample automatic detection of BGP misconfiguration, a well
known problem [9].

The four types of predicates, together with the relations be-
tween them, faithfully model the packet forwarding behavior
of an IP network, both filtering and routing, and together
form a consistent logical system. However, this representa-
tion of network state is also highly amenable to manipulation
by programs controlling network elements. Because it gives
complete information of possible paths traversed by packets,
it is highly appropriate for implementing a controlled net-
working environment. In the next section, we describe one
approach to this, using a logically centralized approach for
managing and controlling the network in a datacenter.

3. CENTRALIZED PREDICATE ROUTING
We applied Predicate Routing to the problem of controlled
networking in a shared hosting platform or datacenter, where
(possibly distributed) third-party applications are hosted on
a shared cluster of servers. In this case it is reasonable to
implement a centralized network “control plane” with out-
of-band control of network elements. Here we sketch the
algorithm we use and our prototype design; in Section 4 we
outline how Predicate Routing can be applied in the dis-
tributed case to a larger network.

The system allows flows to be placed securely in the net-
work quickly and efficiently. Flows can also trace multiple
paths, allowing for fault tolerance in the face of link or router
outages. This function must be performed online and incre-
mentally, as the application mix is dynamic.

We define the meaning of “securely” in this context as fol-
lows. Every network link or computer in the datacenter may
have an associated predicate which specifies which packets
can be allowed on the link or arriving at the machine. This
predicate represents an externally imposed, site-specific se-

curity policy; we can imagine that in many cases interior
network links will have no restrictions on traffic, whereas
vulnerable end-hosts might have strict limits on their expo-
sure to potentially malicious traffic. Using predicate routing,
we can guarantee that when a flow is placed in the network:

1. The connectivity of all existing flows is unaffected,

2. No policy predicates on links or nodes are invalidated.

If the system fails to place a flow, it provides precise infor-
mation as to where the process failed, i.e. which security
constraint would have been violated and the new link pred-
icates that would result.

Our prototype at Sprint Labs is a network composed of two
Enterasys SSR-8600 switch-routers and a front-end Cisco
11800 Layer-7 switch, which connect 36 servers (each with
dual network interfaces) to each other and to the Internet.
Both types of switch support policy routing and input port
filters at the IP layer. The control plane runs externally on
another machine.

Since we are dealing with real networking equipment, a key
aspect of our system is the notion of a switch driver, which
provides an encapsulation both of the capabilities of a partic-
ular piece of hardware, and a means to configure the router
in real time. The control plane instantiates switch drivers
objects for each switch in the cluster. The driver models
a switch’s capabilities (how many per-port or per-line card
filters are supported, for instance), and establishes a con-
trol connection to the real hardware (through SNMP or a
command line emulator). In addition, the driver exports an
interface to the routing algorithm corresponding to Predi-
cate Routing’s “ports and links” representation.

For each physical port in a switch, the switch driver main-
tains state consisting of the current filter predicate and port
predicate for the port, and the current path list for this port,
i.e. the current set of paths which pass through the port.

For input ports to switches, the filter predicate is the current
filtering configuration for the port. For output ports, it is
the result of current static and policy routes configured on
the switch which route traffic out through this port. The
filter predicate is stored as a disjunction (logical OR) of
tuple expressions, which corresponds well to the filtering
functionality exposed by IP routers.

From the path list, a flow list can be constructed, and from
the specification of each flow, a list of tuples, i.e. a pred-
icate. Ideally, this predicate would precisely coincide with
the filter predicate but in practice this doesn’t always oc-
cur, either because the filtering functionality of the port is
limited (for example, router output ports often have little
filtering functionality other that provided by static routes),
or because the router’s capacity (in terms of filters) has been
already exceeded.

The routing algorithm to place a new flow first calculates a
candidate path for the flow, then operates a flooding algo-
rithm starting at the flow origin. For each port encountered,

the switch driver is consulted to appropriately modify its fil-
ter predicate: either to let the flow through if the port is on
the candidate path, or else to block packets from the flow
(and any other unauthorized flows). The flooding stops at
any port whose port predicate is unchanged as a result of
the operation. The path is rejected if a link predicate at
the edge of the cluster (i.e. at a server) violates an admin-
istrative security constraint, implying that placing the path
would allow unacceptable packets to arrive at a host.

The switch driver abstraction allows great flexibility: a port
is free to not apply a requested filter due to lack of func-
tionality or the switch running out of resources, as long as
the new flow is admitted along the candidate path. In this
way the consequences are propagated “downstream”, where
even in a simple network other ports will often compensate
and preserve the controlled environment.

Performance with our prototype is adequate, even though
the control plane is implemented in the interpreted language
Python. While the theoretical complexity of the algorithm
is moderately high2, in practice most loops terminate early
with the reasonably powerful switch capabilities we have,
resulting in much better scaling than might be expected,
even with larger topologies. Communication latency with
switches tends to dominate; this can in many cases be over-
lapped with the route computation.

4. DISTRIBUTED PREDICATE ROUTING
Controlled networking is also useful in the wider area Inter-
net, although in this case a centralized scheme is not suit-
able. In this section we discuss how one might implement
Predicate Routing in the Internet by modifying existing In-
ternet routing protocols, specifically the IGP IS-IS and the
EGP BGPv4.

4.1 Link-State Routing Protocols
IS-IS [3] is a link-state protocol adapted from the ISO CLNS
protocol. Each router effectively broadcasts information
about the other routers to which it is connected (its link
states) in the form of link state PDUs (LSPs). Routers store
the LSPs they receive in a database, and then run a short-
est path algorithm over this database to discover the inter-
face on which they should transmit packets for destinations
within the network. Much of this discussion also applies to
OSPF, the other main link-state intra-domain routing pro-
tocol in use in the Internet today.

The link-state information is transmitted in variable length
type-length-value fields appended to the LSP header infor-
mation. As IS-IS was not originally intended for routing
IP, it effectively distributes two forms of link-state infor-
mation: the connectivity information, expressed in terms of
CLNP nodes3 and their adjacencies, and the IP information,
expressed in terms of the IP prefixes available to a CLNP
node.

We can extend IS-IS as follows. First, rather than simply
advertise the destination IP prefixes available at a node, a

2A detailed analysis is beyond the scope of this paper.
3Each node in the network must be assigned a CLNP ad-
dress, even if the network will only route IP traffic.

set of predicates are advertised, potentially with associated
resource usage information. Second, although LSP forward-
ing and database building takes place as normal, sets of
predicates effectively form views of this database, defining
the connectivity available to that set. The shortest path
computation is run over each such view, producing a set of
shortest path results, one for each collection of predicates.
These can then be remerged, as allowed by the predicates
in place, to create the forwarding tables to be used to actu-
ally route packets. This results in one (or more) forwarding
tables that contain predicates to be applied to packets, and
for each predicate, a corresponding output port on which
packets can be transmitted.

4.2 Performance Implications
The performance impact of the above scheme can be sep-
arated into traffic and computation costs at both the data
and control planes. The traffic impact is fairly easy to imag-
ine: the network sees less user traffic (due to packets being
filtered early), but more control traffic (since LSPs are now
larger and potentially more frequent). If we expect pred-
icates to be slowly varying (e.g. changing on the order of
hours), the increased routing protocol bandwidth should not
be significant.

Perhaps greater concerns are the additional computational
overhead, and the risk of increased routing instability. In
terms of the former, it is true that some additional overhead
will occur due to the need to perform shortest path compu-
tations for every “view” of the network. However several
factors mitigate this cost: firstly, we expect the number of
views to be much smaller than the number of predicates,
with many predicates mapping onto an empty or uncon-
nected subgraph. Secondly, it is possible in some cases to
infer shortest paths for smaller subgraphs; and thirdly, many
subgraphs will be considerably smaller than the entire net-
work (and may even be degenerate). Forwarding table per-
formance should also not be an issue [6].

We don’t expect our modifications to decrease routing sta-
bility, since the same topological information is communi-
cated both cases. However, further investigation is a topic
for future work.

4.3 External gateway protocols
Unlike OSPF and IS-IS, BGP is a path-vector routing proto-
col without an explicit notion of a link. Instead, each router
advertises a cost to the destinations it can reach, and chooses
e.g. the cheapest route to a particular destination. It then
re-advertises its chosen routes to other routers, adding in
a cost component to account for their own presence on the
path to the destination.

BGP already has extensive support for filters, for routers
to control the routes advertised to other routers and the
route advertisements received from other routers. However,
these filters are currently entered and managed manually. It
would seem that the natural way to implement predicates in
BGP is to extend BGP to allow automatic distribution and
installation of filters, but the details of such an approach,
in particular how to deal with transferring such information
between administrative domains, are future work.

4.4 Discussion
Predicate Routing permits incremental deployment: as net-
work routers are upgraded to support the routing proto-
col extensions described above, the inferences which may be
made about the state of the network become stronger. Even
with a small number of enhanced routers, however, useful
information is available to operators. For example, access
routers could be upgraded initially which suffices to provide
automated management of ingress filtering. As incremen-
tal deployment proceeds, the ability of the system to infer
the origin(s) of traffic generated by attacks (for instance)
increases.

A practical deployment of Predicate Routing would benefit
from the ability to compare the desired and actual network
state. This requires a mechanism to accurately snapshot the
current network configuration. This presents a challenge in
a highly dynamic environment such as the Internet and is a
matter for future work.

Enhancement of Predicate Routing as presented should in-
clude the ability to refer to predicates as first class entities,
in particular across administrative boundaries. This naming
of predicates enables scoping and modularization thereby
allowing aggregation and transformation of predicates, late
binding of policy and information hiding between networks.

5. RELATED WORK
Predicate Routing builds on several ideas from the areas of
firewalling, virtual private networks and signaling.

Like distributed [1] or embedded firewalling, we aim to have
an explicit notion of which packets may be transmitted where,
and we attempt to automatically enforce this notion at mul-
tiple redundant locations. We do not rely upon a centralized
security policy, but if end-users or end-user groups were to
desire a shared security policy, we can envisage using the
KeyNote trust management language [8] for example.

Another, more “overlaid” approach to the problems that
Predicate Routing solves is Virtual Private Networks (VPNs).
These may be constructed over IP by using tunneling; i.e.
encapsulating packets prior to routing them [5]. Using Pred-
icate Routing, a VPN is defined simply as a set of predicates,
obviating the need for tunneling. Isolation from other net-
work users is achieved “for free”, and changes in VPN topol-
ogy are supported by the modification of Predicate Routing
paths. Similar arguments apply to IEEE VLANs [7] in the
local area.

Predicate Routing also has much in common with the hose
model [4] in that end-points are explicit (being described by
predicates) while network paths are implicit.

The network calculus [2] provides a framework for reason-
ing about traffic queuing patterns in networks, based on the
Min-Plus algebra. Network calculus provides a way to ex-
tend Predicate Routing with notions of Quality of Service
and traffic engineering. By attaching network calculus ex-
pressions to flow terms in link predicates, link utilizations
and latency bounds can be calculated as part of the predi-
cate calculation. This is another promising area for future
work.

6. CONCLUSION
We have presented Predicate Routing, a unified model of
routing and firewalling in IP networks, and outlined both
centralized and distributed implementations. Predicate Rout-
ing facilitates the controlled networking required to evolve
the Internet toward a secure and robust infrastructure with-
out the need for extensive protocol redesign. Our current
work centers on deploying a Predicate Routing-based secure
overlay network using the PlanetLab [10] testbed.

Acknowledgments
Christos Gkantsidis wrote the first implementation of Pred-
icate Routing for the Sprint Labs cluster. We thank Bryan
Lyles and Jon Crowcroft for their insights and discussions.

7. REFERENCES
[1] S. M. Bellovin. Distributed firewalls. ;login:, pages

37–39, Nov. 1999.

[2] J. Y. L. Boudec and P. Thiran. Network Calculus.
Springer Verlag LNCS 2050, June 2001.

[3] R. W. Callon. Use of OSI IS-IS for Routing in TCP-IP
and Dual Environments. RFC 1195, December 1990.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. V. der Merwe. A
flexible model for resource management in virtual
private networks. In Proceedings of SIGCOMM,
volume 29 (4), pages 95–108, Sept. 1999.

[5] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and
A. Malis. A framework for IP based virtual private
networks. RFC 2764, Feb. 2000.

[6] P. Gupta and N. McKeown. Packet classification on
multiple fields. In Proceedings of SIGCOMM, volume
29 (4), pages 147–160, Sept. 1999.

[7] IEEE. IEEE Standards for Local and Metropolitan
Area Networks: Virtual Bridged Local Area Networks
(802.1Q), 1998.

[8] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a Distributed Firewall. In
ACM Conference on Computer and Communications
Security (CCS’00), pages 190–199, Nov. 2000.

[9] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP Misconfiguration. In Proceedings
of SIGCOMM 2002, pages 3–16, August 2002.

[10] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proceedings of the 1st Workshop on
Hot Topics in Networks (HotNets-I), Princeton, New
Jersey, USA, October 2002.

[11] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand.
InfoSpect: Using a Logic Language for System Health
Monitoring in Distributed Systems. In Proceedings of
the 2002 ACM SIGOPS European Workshop,
Saint-Emilion, France, September 2002.

