
Real-Time 3D Navigation for Autonomous Vision-Guided MAVs

Shengdong Xu, Dominik Honegger, Marc Pollefeys, and Lionel Heng

Abstract— Autonomous navigation of micro aerial vehicles
(MAVs) in a-priori unknown environments is one of the most
challenging problems in robotics. First, a MAV has to incremen-
tally build a 3D geometric map from raw sensor data. Then,
based on the mapping information, the path planner has to
search for a cost-optimal trajectory to the goal in real-time.
It is common practice to discretize the search space into a
state lattice; by doing so, we reduce the path planning problem
with differential constraints to a graph search problem that is
easier to solve. However, a regular 3D state lattice requires a
large amount of memory while graph search in a regular 3D
state lattice incorporating numerous states is computationally
intensive. In this paper, we introduce a novel path planning
algorithm which extends the concept of a regular state lattice
to an octree-based state lattice, and searches for an optimal
trajectory in the octree-partitioned search space. Our octree-
based state lattice representation discretizes large swathes of
free space into few symbolic octants, and thus, encodes a
significantly fewer number of states. As a result, memory
consumption is kept to a minimum, and at the same time,
graph search is made more efficient. Simulation experiments
demonstrate the efficiency of path planning with an octree-
based state lattice, and further field trials prove the viability
of this path planning algorithm.

I. INTRODUCTION

Due to their small size and high maneuverability, MAVs
have become a powerful tool for rescue, surveillance, and
exploration. To complete these types of tasks, the MAVs have
to fly autonomously in a-priori unknown environments. Au-
tonomous navigation requires the MAVs to simultaneously
perform pose estimation, environment map building, and path
planning. Ideally, all processes should be run on-board as
off-board processing requires a connection to the ground
station, and such a connection is susceptible to interference.
However, the amount of on-board computational resources
is constrained by the payload limit. All on-board processes
therefore need to be computationally efficient. The focus
of our work is to develop an efficient 3D path planning
algorithm for MAVs.

MAVs are able to maneuver in 3D space; one challenge
that comes along with this high-dimensionality maneuver is
planning an optimal path in 3D space. Such a task is difficult
because the environment might be prohibitively too large for
a 3D path planner to search for an optimal trajectory. Another
problem is that the path planning algorithm has to run at the

S. Xu, D. Honegger, and M. Pollefeys are with the
Department of Computer Science, ETH Zürich, Switzerland.
{xus@ethz.ch,dominik.honegger@inf.ethz.ch,
marc.pollefeys@inf.ethz.ch} L. Heng is with the
Information Division, DSO National Laboratories, Singapore.
{hjianyon@dso.org.sg}

Dominik Honegger is partially supported by the Swiss National Science
Foundation (SNF) under grant 150151.

same time as the mapping module which builds the map of
the environment. This combined processing leads to intensive
computation, and thus, real-time planning and re-planning
are difficult to achieve.

For well-established path planning algorithms, the planner
usually discretizes the 3D search space into a regular state
lattice [1]; the state space discretization is regular in the 3D
translational coordinates. Given the fact that the quadrotor
dynamics are differentially flat [2], we can express the
control inputs as a function of four flat outputs [x, y, z, ψ]
and their derivatives, where [x y z]T are the coordinates
of the center of mass of the quadrotor and ψ is the yaw
angle. Hence, we define the MAV’s state to be [x y z ψ]T

with zero roll and pitch, which results in a 4D state space.
Edges between states are established by motion primitives
which can be generated by a polynomial function with
proper boundary conditions. The memory usage of the state
lattice representation grows significantly as the range of flight
heights increases, making path planning in full 3D space
nearly impossible. Another drawback of this regular state
lattice representation is that the path planner will always
search for high-resolution paths even in large volumes of free
space or unexplored space, which turns out to be inefficient.

In our work, we discretize the 3D search space into an
octree-based state lattice which inherently represents large
free areas as large octants and areas near obstacles as small
octants. As a result, memory usage is kept to a minimum, and
at the same time, the path planner is able to search for high-
resolution paths in cluttered regions, and low-resolution paths
in sparse or unexplored regions. Consequently, the planner
only consumes a small portion of memory but is able to plan
and re-plan near-optimal paths quickly.

The contributions of this work are as follows: we come up
with a novel octree-based state lattice which is a memory-
efficient discrete representation of the search space, and we
present a method of finding a near-optimal path based on the
octree-partitioned 3D space by using standard graph search
algorithms such as A*, or its variants D* [3] and AD*
[4]. We use a previously developed 3D mapping module
[5] to incrementally map out the environment, and show
both simulation and real-world results from our novel path
planning algorithm.

II. RELATED WORK

Autonomous operation of MAVs in a-priori unknown
environments has become a hot research topic in the last
few years. In particular, a computer-vision-based approach
is advantageous because a camera is light-weight, has a low
power consumption, and has a two-dimensional field of view.



However, computer vision algorithms usually require inten-
sive computation and large amounts of memory, which makes
it difficult for other computationally intensive algorithms
such as occupancy mapping and path planning to run at the
same time. Thus, in order to achieve on-board vision-guided
autonomous 3D navigation, an efficient 3D path planning
algorithm is needed.

There are several well-known issues that make on-board
3D path planning for MAVs challenging. One issue is the
differential constraints with respect to the motion of MAVs
and which increase the complexity of the path planning
problem. In addition, grid-based discrete representations of
the search space consume a lot of memory. Another issue
is that the path planner should be able to plan and re-
plan an optimal path in real-time with limited computational
resources.

For two-dimensional path planning problems, there are
many existing successful implementations [6], [7]. In con-
trast to the 2D case, path planning in 3D space is far more
computationally expensive and memory-intensive, and thus,
more difficult. In [8], path planning was performed in a full
octree-partitioned 3D space but without due consideration
to differential constraints, and the applied potential field
algorithm does not guarantee an optimal path. In [9], path
planning was performed in a regular 3D state lattice but
with a limited range of flight heights. As the flight height
range increases, the memory usage will grow significantly,
eventually reaching a point at which the required com-
putational resources will exceed those already available.
Representing the entire motion space with a regular state
lattice is inefficient in several applications such as path
planning over long distances. A lower resolution suffices for
approximating sparse or unexplored regions, while cluttered
regions require high-resolution discretization. To address
this problem, [10] created both low-resolution and high-
resolution state lattices. The planner performs high-resolution
search in the vicinity of the robot while it performs low-
resolution search elsewhere. Similarly, [11] creates a high-
resolution state lattice that moves with the robot, and a low-
resolution grid elsewhere. The combination of the state lattice
representation and motion primitives [12] was found to be a
good method for addressing the MAV path planning problem
with differential constraints. We further improve on both the
regular and multi-resolution state lattice representations by
creating the concept of an octree-based state lattice which
significantly reduces the required computational resources at
the cost of a slightly lower path optimality.

III. OCTREE-BASED 3D PATH PLANNING

In our octree-based path planning algorithm, the 3D search
space is discretized into an octree data structure based on the
3D occupancy map built by the 3D mapping module. At the
beginning, a single octree node or root node represents the
entire and empty 3D space. We then update the octree with
information about obstacles from the 3D occupancy map. For
each labeled voxel in the 3D occupancy map and whose label
either corresponds to free or occupied space, we recursively

subdivide the root node into 8 child octants until we reach
the maximum resolution, and subsequently, update the leaf
node’s label. Our algorithm plans a path that is constrained
to go through the centres of octants.

For path planning, an octree offers a significant advantage
over a regular 3D grid: the amount of memory required is
significantly smaller, especially in sparse environments. The
octree is able to store information about the environment
layout without any loss in accuracy. Moreover, the octree
provides a means for decomposing large sections of free
space into fewer symbolic units, and thus, reduces the
computational burden of graph search.

We leverage the concept of a state lattice to enforce
differential constraints in the path planning. However, a
conventional state lattice only works for a 3D regular grid,
and hence, we modify the state lattice concept to work for
an octree-based search space.

A. Octree-Based State Lattice

A state lattice is a discrete representation of the config-
uration space; this representation comprises a set of states,
and transitions between states can be represented by a series
of motion primitives. The primitive motions can be seen as
a canonical set of short feasible control samples that satisfy
the differential constraints of the system. This set of motion
primitives can be used to form the state transitions in the
lattice. In our implementation, we discretize the state space
with a maximum resolution of 25cm and 22.5◦ yaw inter-
vals. The pre-computed canonical set of maximum-resolution
motion primitives consists of turning on the spot in both the
left and right directions, moving up and down vertically, and
moving forward and backward in several directions. The cost
of a primitive motion is proportional to its path length except
for the turning movement which has a cost corresponding
to a 25cm path length. Backward movements are penalized
with a weighted factor greater than 1 as obstacles at the rear
cannot be observed with a forward-facing camera, and thus,
we want to avoid backward movements if possible. We use
Figure 1 to illustrate examples of primitive motions in a 2D
plane and how they form state transitions in the lattice.

(a) (b)

Fig. 1: (a) motion primitives in a 2D plane. (b) one example
of the state transitions.



We call the states within the octree-based state lattice
octree node states. Before the octree-based state lattice can
be reused for graph search, we have to resolve two issues
described below.

1) Adjacency between octree node states: The first issue
is establishing the adjacency between octree node states [13]
in the octree-based state lattice. Here, we use a naive method
to determine whether two octants are adjacent to each other;
we check whether the distance between the centres of the
two octants along each of the x, y and z directions exceeds
half of the sum of the two octants’ cell sizes, and if so, we
ascertain that the two octants are not adjacent. Each time
a node gets split, we look for adjacency relationships with
respect to the node’s children. The pseudocode of the octant-
neighbor-finding algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm to find neighbors for each of a
node’s children when the node is split.

1: if node is no longer a leaf due to updated map informa-
tion then

2: Split node into eight children (child[i], i ∈ 1, 2, .., 8)
3: for i = 1→ 8 do
4: child-node = child[i]
5: add the child-node’s brothers (child[j], j 6= i, j ∈

1, 2, ...8) as neighbors
6: for each neighbor of node, neighbor[k] do
7: if neighbor[k] is still the neighbor of child-node

after the split then
8: add neighbor[k] as the neighbor of child-node
9: end if

10: end for
11: end for
12: end if

Adjacency relationships between octants are not sufficient
for establishing edges between octree node states; we still
need to find feasible paths between each pair of adjacent
octants. If two adjacent octree node states are located on
different levels of the octree, it is not possible to represent
the edge between these two octree node states as a single
motion primitive in the canonical set. However, it is possible
to represent the path between the two states as a sequence
of motion primitives which can be precomputed beforehand
for every possible pair of octree levels.

We precompute a lookup table; given a small fixed-size
state lattice, for a state located at the center of the lattice
and with a given heading direction, we store the cost and
decomposition of a path from that state to all other states in
the state lattice. The precomputation step shown in Algorithm
2 can be performed via the Dijkstra’s algorithm. The lookup
table can be used to inform the path planner how two octree
node states connect to each other and the cost of a feasible
path between the two states. For any two octree node states
(x1, y1, z1, θ1) and (x2, y2, z2, θ2), the lookup index is (θ1,
x1 − x2, y1 − y2, z1 − z2, θ2). The size of this lookup table
depends on the number of the heading direction intervals and
the maximum number of levels of the octree.

Algorithm 2 Multi-resolution path lookup-table construc-
tion.

1: for i = 1 → 16, x = −N → N , y = −N → N ,
z = −N → N , j = 1→ 16 do

2: LUT COST[i][x][y][z][j] = infinity
3: LUT PATH[i][x][y][z][j] = undefined
4: end for
5: for i = 1→ 16 do
6: for every state v in the state lattice do
7: dist[v] := infinity
8: previous[v] := undefined
9: end for

10: Q := empty priority queue
11: s start := the origin of the lattice with an orientation

index i
12: dist[s start] = 0
13: insert s start into Q
14: while Q is not empty do
15: u := vertex in Q with minimum dist[u]
16: remove u from Q
17: for each neighbor v of u do
18: j := the orientation index of v
19: (dx, dy, dz) := the 3D coordinate difference

between u and v
20: checkdist := dist[u] + cost(u,v)
21: if checkdist < dist[v] then
22: dist[v] := checkdist
23: previous[v] := u
24: LUT COST[i][dx][dy][dz][j] = checkdist
25: waypoint = v
26: clear LUT PATH[i][dx][dy][dz][j]
27: while waypoint 6= s start do
28: push back waypoint to

LUT PATH[i][dx][dy][dz][j]
29: waypoint = previous[waypoint]
30: end while
31: end if
32: end for
33: end while
34: end for

To reduce the memory requirement of the lookup table,
we exploit the symmetry of the state lattice. For instance,
the path from (0, 0, 0, θ1) to (x, y, z, θ2) can be reflected
in the z = 0 plane to get the path from (0, 0, 0, θ1) to
(x, y,−z, θ2). We only need to store ascending paths, and
we can simply infer descending paths from ascending ones.
Similarly, we do not need to store information corresponding
to all 16 possible states located at the origin of the state
lattice; the 22.5◦ heading direction intervals result in 16
possible heading directions. In fact, we only need to store
information corresponding to 3 states with the following
headings: 0◦, 22.5◦, and 45◦, because we can do reflection
operations to obtain information corresponding to the other
13 states. Thus, we can reduce the memory requirement by



90% by exploiting the symmetry of the state lattice.
2) Pre-discretization: Another issue that has to be re-

solved for the octree-based state lattice to be usable for graph
search is that large octants may be present in the octree,
and as a result, the path planner may compute highly sub-
optimal paths. In addition, we need a large multi-resolution
lookup table to store edges between large octants and other
octants, which means that a large amount of memory has to
be allocated. In order to address this issue, before performing
path planning, we first enforce a minimum octree level on
all leaf nodes by splitting nodes whose levels exceed the
minimum level. In this way, the optimality of the final path
is improved, and at the same time, we significantly reduce
the size of the multi-resolution lookup table. We use Figure 2
to illustrate the impact of pre-discretization on the optimality
of the path in the 2D case. In the 3D case, the influence of
pre-discretization on the optimality of the final path is far
greater.

(a) (b)

Fig. 2: The final path obtained from an octree-based-state-
lattice path planner without pre-discretization is shown in (a).
The path with pre-discretization is shown in (b). The length
of the path in (a) is 25.78 m while the length in (b) is only
18.61 m.

The minimum octree level used for pre-discretization is
a very important factor that influences the performance of
the octree-based-state-lattice path planner. If the minimum
octree level is too high, the graph would nearly resemble
a regular 3D state lattice. Furthermore, the graph search
becomes slower due to the increased number of states. On
the other hand, if the minimum octree level is too low, the
planned path becomes highly suboptimal. Here, we choose
the minimum octree level to be a third of the maximum
height of the octree. Empirically, this strategy performs well.

B. Local 3D State Lattice

Considering the fact that path planning in the vicinity of
the robot is critical for obstacle avoidance, we maintain a
small local regular 3D state lattice with maximum resolution
and which moves along with the robot. Here, we simply
adopt the state lattice data structure which was used to
build the multi-resolution lookup-table in the previous step.
This local high-resolution state lattice centered on the MAV
enables the path planner to do precise path planning in the
vicinity, and thus, help the MAV navigate around nearby

obstacles. The graph search finds a near-optimal path by
iterating through the states in both the local regular and
global octree-based state lattices.

C. Graph Search

After creating both the local regular state lattice and the
global octree-based state lattice, the next step is to perform
graph search to find an optimal path. Any edge in the
octree-based state lattice can be decomposed into a series
of high-resolution primitive motions. The edge corresponds
to a feasible path whose costs and decompositions have been
pre-computed and stored in the multi-resolution path lookup
table described in the previous section. The octree-based
state lattice is dynamically changing with constant 3D map
updates and as the robot moves.

1) Optimal Path Finding: To show the efficiency of our
octree-based state lattice, we use a simple A∗ graph search
algorithm to generate optimal paths. Of course, it is possible
to implement AD∗ or any other variant of the A∗ graph
search algorithm for the octree-based state lattice. The edge
costs between octree node states can be obtained from
the multi-resolution path lookup table. The graph search
algorithm finds an optimal trajectory that consists of octree
node states.

The performance of the A∗ algorithm heavily depends
on the quality of the heuristic function. Without informative
heuristics, the A∗ algorithm expands as many states as Dijk-
stra’s algorithm does, and thus, is inefficient when searching
for an optimal path. The heuristic estimate should under-
estimate the actual path cost; otherwise, the A∗ algorithm
will return suboptimal solutions. On the other hand, the
heuristic estimate should be as close as possible to the actual
path cost, such that the graph search processes fewer states
and is more efficient. In our implementation, we applied
the holonomic-with-obstacles heuristic [14] which ignores
the differential constraints but takes obstacles into consid-
eration when estimating the future cost. As the differential
constraints are not considered here, this heuristic function
is simple to compute, and thus, can be performed online.
In addition, the heuristic function considers obstacles, and
thus, is informative enough to guide the graph search along
promising directions.

The octree-based path planner is constrained to plan
trajectories through the centers of octree node states and
states in the local regular 3D state lattice. By using an octree-
based state lattice, we greatly reduce the number of candidate
states for the A∗ algorithm to expand. As a result, the A∗

algorithm is able to find the best path in a short time. This
fast planning strategy inevitably introduces a drawback: the
octree-based-state-lattice path planner returns a near-optimal
path in comparison to the optimal path obtained from a
conventional state-lattice-based planner.

2) Path Reconstruction: Suppose that we have already
obtained an optimal trajectory represented by a series of
octree node states from the A∗ algorithm. We still need
to reconstruct the full path because the actual path from
one octree node state to another is actually a series of



high-resolution primitive motions. To complete this step, we
can simply look up the path decompositions in the multi-
resolution path lookup table. An example of the graph search
and path reconstruction in the 2D case is shown in Figure 3.

Fig. 3: Full path reconstruction from an octree node state
trajectory. The green dots represent octree node states, the
grey dots represent actual waypoints, and the clay-colored
line represents the final full path.

In the above example, there are only four tree node states
along the path but there are many more waypoints along the
full path. This is because the actual path from one tree node
state to another is decomposed into a series of high-resolution
primitive motions.

IV. SIMULATION EXPERIMENTS

We first tested our approach in a simulator. The simulation
experiment involved the use of both a simulator and ROS.
We use the V-REP simulator [15] from Coppelia Robotics.
V-REP was used to simulate a MAV with a RGB-D sensor,
and the environment which the simulated MAV operates in.
The maximum velocity of the MAV was set to be 0.25m/s.
We used rviz to provide a 3D visualization of the processed
data generated by the MAV. We did two sets of experiments
to compare the performance of graph search based on the
octree-based state lattice representation and that based on
the regular 3D state lattice.

In the first set of experiments, each planner was provided
with the full 3D map of an office-like environment before-
hand, and its task was to search for a path from a fixed start
state to randomly selected goal states. We did tests in varying
environments to compare both planners.

The second set of experiments was similar to the first set
except that the planner did not have prior knowledge of the
environment. The task of each planner was to navigate the
a-priori unknown environment and guide the MAV from a
fixed start state to a fixed goal state as fast as possible. We
ran our octree-based path planner in large environments such
as a two-floor office environment which was prohibitively too
large for the planner based on a regular 3D state lattice to
find an optimal path.

A. Simulation Experiments in Fully Known Environments
These simulation experiments were carried out in an

office-like environment (20m×20m×4m with 0.25m max-
imum resolution) as shown in Figure 4a. In order to navigate

a large environment in real-time, we chose a maximum
resolution of 0.25m.

The full 3D map of the environment was provided to
the MAV beforehand. The fixed start state is located at
the bottom left corner of Figure 4a, and goal states were
randomly generated. We did an experiment for each planner
with 50 different goals. Both our octree-state-lattice-based
path planner and the regular-state-lattice-based path planner
were provided with the same 3D map, the same graph
search method, and the same set of high-resolution motion
primitives. The only difference between both planners was
the space discretization representation. We compared both
planners using the path planning time and path optimality
metrics. Here, we assume that the path obtained from the
regular-state-lattice-based path planner is fully optimal, and
thus, determines how optimal the path obtained from our
path planner is. The statistical results are recorded in Table
I. The results show that in comparison with the regular-state-
lattice-based path planner, our octree-state-lattice-based path
planner sped up the path planning process by nearly 24 times
at the cost of a 11% decrease in path optimality.

TABLE I: Statistical Results from Simulation Experiments.

Our Path Planner Baseline Path Planner
Map Update Time1(s) 0.0991 0.0185
Graph Search Time2(s) 0.299 10.1803
Heuristics Time3(s) 0.0288 0.0288
Total Time (s) 0.428 10.23
Total Path Length (m) 1108.32 1009.21
Optimality Ratio 1.11 1
Memory Usage (Gb) 0.474 1.39
1 the time taken to update obstacle information and construct graph
2 the time taken to run A* algorithm on the given graph
3 the time taken to compute heuristics

An example of paths returned by both path planners is
shown in Figure 4. As we can see from this example, both
paths are very similar.

(a) (b) (c)

Fig. 4: Simulated environment and path quality comparison.
In the colored 3D map, the color intensity is proportional to
the value of height/elevation. The green line represents the
final path. (a) shows the simulated environment. (b) shows
the path obtained from the regular-state-lattice-based path
planner and (c) shows the path obtained from our octree-
state-lattice-based path planner.

B. Simulation Experiments in Entirely Unknown Environ-
ments

In these experiments, the MAV does not have prior knowl-
edge about the environment. The MAV had to consistently



plan and re-plan optimal paths to the goal while exploring the
environment. The test environment we used in this section is
a double-floor office (20m×20m×8m with 0.25m maximum
resolution) as shown in Figure 7c, which was prohibitively
too large for the regular-state-lattice-based path planner to
compute an optimal path. We recorded the timing data as
the MAV moved from the bottom left corner to the top left
corner. Snapshots of the 3D navigation are shown in Figure
5. Throughout the experiments, our path planner was able to
return optimal trajectories within 1 second. The MAV took
105 seconds in total to reach the goal position.

(a) (b)

(c) (d)

Fig. 5: Autonomous 3D navigation in an entirely unknown
environment. The coordinate frame represents the current
position of the MAV. The green line represents the current
planned path to the goal. (a) shows the current state of the V-
REP simulator and (b-d) visualize the mapping and planning
processes. (a) and (b) correspond to the same time instance,
and show that the MAV is moving from the room center in
the bottom right corner towards the door opening. (c) shows
the MAV moving towards the stairs, maintaining a much
larger 3D environment map, and constantly replanning a path
to the goal in 3D space. (d) shows that the MAV has reached
the second floor of the building, and continues to plan a path
to the goal.

V. FIELD TRIALS

In this section, we first present the MAV platform used
for the field trials, and subsequently, show the results in an
indoor lab environment. We use an AscTec Firefly platform
that is equipped with an on-board computer with a Intel Core
i7-3517UE dual-core 1.7 GHz processor and 4 GB DDR3
memory. For the exteroceptive sensor, we used a visual-
inertial (VI) sensor [16] from Skybotix AG. The VI sensor
includes an FPGA to do dense disparity estimation in real-
time; dense disparity estimation is computationally expensive

on CPUs. The disparity images are transmitted to the on-
board computer for further processing. The power supply
is provided by an on-board battery which can support a
flight time of about 10 minutes. The Asctec Firefly platform
including the VI sensor is 60.5cm × 66.5cm × 16.5cm in
size and 1.3 kg in weight. Obstacles are present in the
room and the MAV does not have prior knowledge of
these obstacles. All computational processes which include
mapping, planning, and path following were performed on
the on-board computer. We set the maximum usable range
of the sensor to be 3.5m.

Figure 6 shows the MAV and our indoor test environment.
The goal state was located behind the row of chairs, and thus,
unobservable from the start state. The task of the AscTec
Firefly was to navigate safely in this a-priori unknown
environment and reach the goal state autonomously. For the
sake of safety, we restricted the flight height to be between
1−2m and used an external motion capture system to obtain
measurements of the MAV’s pose. The subfigures in Figure
7 show different states of the path planning process; in each
subfigure, we show the current map, the image from the left
camera, and the disparity map generated by the VI sensor.

(a) (b)

Fig. 6: (a) shows the robot platform and the on-board
hardware. (b) shows the environment setup, the start position
and the goal position.

The MAV was able to perceive the environment and incre-
mentally build a 3D map in real-time. At the same time, the
octree-state-lattice-based path planner was constantly able to
provide near-optimal trajectories which were collision-free
and led the MAV to the goal state. Throughout the whole
process, our path planner took less than one second to find
a near-optimal path. The CPU load was less than 30 percent
during the experiment and the overall amount of memory
used was 400 MB.

VI. CONCLUSIONS

We showed how to use an octree data structure, a state
lattice, and multi-resolution motion primitives to search for
an optimal path in large and complex 3D environments
and in real-time. The experimental results obtained from
the simulation experiments demonstrate that our octree-state-
lattice-based path planner is able to find near-optimal paths
in a very short time. The simulation experiment results also
prove that our algorithm is able to guide the MAV to the
goal safely and quickly in entirely unknown environments.
The field trial proves that our algorithm can achieve real-time



(a) (b)

(c) (d)

Fig. 7: An example of a field trial. The green line represents
the currently planned path. The coordinate frame represents
the current pose of the MAV. (a) The MAV took off and
observed the obstacles in front. (b) The MAV planned a path
around the obstacles. (c) The path planner could not find a
path to the goal because of noisy map. (d) The MAV had
corrected the map and re-planned a new path to the goal.

on-board 3D navigation for the MAV in entirely unknown
environments. The field trial also shows that our octree-based
path planning algorithm is highly efficient and can be run in
real-time with other computationally expensive algorithms
on-board.

There are many avenues of future work that can improve
the overall performance. Currently, the tiled octree-based
map built by the mapping module and the octree data
structure used by the planner for 3D space discretization
are separately maintained. In fact, there is no significant
difference between the two. It is possible to only use the
tiled octree-based map to do both mapping and planning.
This modification can save a significant amount of memory.
The octree-based path planning algorithm speeds up the path
search process but at the expense of path optimality. The
optimization of the resulted path remains as one of the most
challenging areas for future work.

We look at improvements that are not closely related to our
work but can significantly enhance 3D navigation capabilities
for MAVs. One improvement would be to make the 3D map
more accurate and precise by estimating stereo disparities
with subpixel accuracy. Currently, the 3D map is rather
noisy and inaccurate as we currently estimate integer stereo
disparities, and this might result in unexpected behaviors
when applying our 3D navigation algorithm in the real world.
Also, the reliance on an external pose source is a limitation
that constrains the flight to the lab environment. Accurate on-

board state estimation will enable the MAVs to navigate 3D
environments without any dependence on external resources.

REFERENCES

[1] Mihail Pivtoraiko and Alonzo Kelly, Efficient Constrained Path Plan-
ning via Search in State Lattices. The 8th International Symposium on
Artificial Intelligence, Robotics and Automation in Space, Sept. 2005.

[2] D. Mellinger and V. Kumar, Minimum snap trajectory generation and
control for quadrotors. IEEE International Conference on Robotics
and Automation (ICRA), pp.2520-2525, 2011.

[3] Joseph Carsten, Dave Ferguson, and Anthony Stentz, 3D Field D*:
Improved Path Planning and Replanning in Three Dimensions. In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp.3381-3386, Oct. 1995

[4] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, Any-
time dynamic A*: An anytime, replanning algorithm. Proceedings of
the International Conference on Automated Planning and Scheduling
(ICAPS), June. 2005.

[5] Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz Meier, Petri
Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys, Autonomous
Visual Mapping and Exploration With a Micro Aerial Vehicle. Journal
of Field Robotics (JFR), 31(4):654-675, 2014.

[6] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer,
and Marc Pollefeys, Autonomous Obstacle Avoidance and Maneuver-
ing on a Vision-Guided MAV Using On-Board Processing. Interna-
tional Conference on Robotics and Automation (ICRA), pp.2472-2477,
May. 2011.

[7] Alex Yahja, Anthony Stenz, Sanjiv Singh, and Barry L.Brumitt,
Framed-Quadtree Path Planning for Mobile Robots Operating in
Sparse Environment. International Conference on Robotics and Au-
tomation (ICRA), vol.1 pp.650-655, May. 1998.

[8] Kitamura, Y. ; ATR Commun. Syst. Res. Labs., Kyoto, Japan ;
Tanaka, T. ; Kishino, F. ; Yachida, M., 3-D path planning in a
dynamic environment using an octree and an artificial potential field.
International Conference on Intelligent Robots and Systems (IROS),
vol.2 pp.474-481, Aug. 1995

[9] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey,
and Maxim Likhachev, Path Planning for Non-Circular Micro Aerial
Vehicles in Constrained Environments. International Conference on
Robotics and Automation (ICRA), pp.3933-3940, May. 2013.

[10] Maxim Likhachev and Dave Ferguson, Planning Long Dynamically-
Feasible Maneuvers for Autonomous Vehicles. The International Jour-
nal of Robotics Research, pp.933-945, Aug. 2009.

[11] Mihail Pivtoraiko and Alonzo Kelly, Differentially Constrained Motion
Replanning Using State Lattices with Graduated Fidelity. International
Conference on Intelligent Robots and Systems (IROS), pp.22-26, Sept.
2008.

[12] Mihail Pivtoraiko, Daniel Mellinger and Vijay Kumar, Incremental
Micro-UAV Motion Replanning for Exploring Unknown Environ-
ments. International Conference on Robotics and Automation (ICRA),
pp.2452-2458, May. 2013.

[13] Hanan Samet, Neighbor Finding in Images Represented by Octrees.
Computer Graphics and Image Processing, vol.46 issue.3 pp.367-386,
June. 1989.

[14] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel, Path Planning for Autonomous Vehicles in Unknown Semi-
structured Environments. The International Journal of Robotics Re-
search, vol.29 no.5 pp.485-501, April. 2010.

[15] E. Rohmer, S. P. N. Singh, and M. Freese, V-REP: a Versatile and
Scalable Robot Simulation Framework. Proc. of The International
Conference on Intelligent Robots and Systems (IROS), pp.1321-1326,
Nov. 2013

[16] Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl, Stefan
Leutenegger, Paul T. Furgale and Roland Siegwart, A Synchronized
Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate
Real-Time SLAM. International Conference on Robotics and Automa-
tion (ICRA), pp.431-437, May. 2014.


