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Abstract—The availability of geolocated panoramic images
of urban environments has been increasing in the recent past
thanks to services like Google StreetView, Microsoft StreetSide,
and Navteq. Despite the fact that their primary application
is in street navigation, these images can be used, along with
cadastral information, for city planning, real-estate evaluation
and tracking of changes in an urban environment. The geolo-
cation information, provided with these images, is however not
accurate enough for such applications: this inaccuracy can be
observed in both the position and orientation of the camera,
due to noise introduced during the acquisition.
We propose a method to refine the calibration of these images
leveraging cadastral 3D information, typically available in
urban scenarios. We evaluated the algorithm on a city scale
dataset, spanning commercial and residential areas, as well as
the countryside.

I. INTRODUCTION

The availability of panoramic images depicting urban
scenarios, has been increasing in the recent past, thanks
to services like Google StreetView, Microsoft StreetSide,
and Navteq. Even though, the primary intention behind
capturing these images was street navigation, they certainly
will become, in the near future, a huge source of information
for other kinds of applications as well. It is sufficient in fact
to consider that the panoramic images offered in StreetView,
represent most of the streets of our globe with a spatial
sampling which becomes very dense in urban environments.
Applications such as real estate evaluation, tracking of
changes, and city planning would certainly benefit from such
a huge amount of data, particularly when used together with
3D information.

While in the recent past, a lot of attention has gone to
develop techniques aimed at inferring this 3D information
from a scene [1], [2], city administrations already maintain
such information for cadastral applications. This information
is typically encoded into 3D mesh models representing the
main constructions of a city.

While these 3D models are geolocated very accurately,
the same cannot be said about the panoramic images whose
geolocation information suffers from substantial noise due
to the way these images were originally captured: typically
from a car driving around, recording its location and orien-
tation with a GPS, a compass and inertial sensors.

Despite the post processing procedures typically per-
formed on this data, in order to reduce the noise, the quality

of the registration is still not sufficient for geo-applications.
As an example, Figure 1(left) shows the result obtained by
superimposing a cadastral 3D model on top of a StreetView
image. The visible misalignment clearly indicates that this
geo-location data cannot be used as it is.

We present an algorithm to automatically refine the pose
of spherical panoramic images, such as the ones in Google
StreetView, leveraging the cadastral 3D information typically
available in urban environments. Precisely, we propose to
first register these images with respect to the cadastral 3D
model by aligning the building outlines. Since this model is
accurately geolocated, the registration process results in an
accurate geolocation of the images as well.

To overcome the challenges involved in the extraction of
the building outlines in natural images, and to deal with
occluders frequently occurring in urban scenarios, we pro-
pose an iterative optimization technique aimed at estimating
jointly the camera pose and the building outlines.

Unlike previous approaches, we focus on StreetView im-
ages, and propose a simple and easy to implement technique
to encourage the usage of these images in a wider range of
applications than is possible now.

II. RELATED WORK

The literature regarding registration of color images with
respect to point clouds, range scans or 3D models is vast,
and can be subdivided into three main classes.

The first class incorporates all the methods which perform
registration by extracting features on the images, and by
matching them with the corresponding points on the point
cloud. Typical features used in these cases are lines [3],
building bounding boxes [4], skylines [5], and SIFT de-
scriptors [6], [7]. Once these features are matched with
the corresponding points on the 3D model, a 2D-to-3D
registration of the image is performed.

The second class represents the 3D-to-3D registration
approaches which instead make use of multiple images
to perform a coarse 3D reconstruction of the scene. This
reconstruction is then registered with the original 3D model
with the consequent estimation of the pose of the original
images. This last step is typically performed using rigid [8]
or non-rigid ICP [9], [10].

The last class proposes more complex techniques aimed
at finding the registration parameters by adopting generative
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Figure 1. Overlay of a Google StreetView image with a cadastral 3D model before and after applying our algorithm.

approaches aiming at maximizing either the mutual infor-
mation between the image and model, like in [11], or at
maximizing the photo-consistency between images, when
these are available, like in [12].

Our method falls in this last class. In particular, we
propose a generative approach aiming at aligning an input
spherical panoramic image with respect to a 3D model ex-
ploiting building outlines. Due to the difficulties in extracting
these outlines from natural images, we propose to optimize
for this segmentation jointly with the camera pose. Unlike
3D-to-2D registration approaches, our method does not rely
on 3D-to-2D feature correspondences, but it uses a shape
matching metric to quantify the accuracy of the alignment
between the building outlines extracted from the images
and from the model. Differently from [5], which assumes
images captured from an upward facing camera in urban
canyons, we chose to address the more challenging scenario
of ground imagery, where occluders, such as trees, vehicles,
or construction sites, can corrupt the visual information
significantly.

III. THE INPUT

The administration of a city typically maintains cadastral
information for the purpose of city planning and monitoring
changes. This information is typically encoded into 3D
mesh models representing the main constructions present
in the city. These models are precisely geolocated, and
their geometric accuracy is generally high. On the contrary,
their level of detail is very basic, since, for most cadastral
applications, small details are not necessary. In most of
the cases, in fact, these models consists only of simple
bounding boxes, approximating the buildings, augmented
with features, like roofs and chimneys.

Google StreetView and Microsoft StreetSide offer a large
and publically available dataset of panoramic images cov-
ering most of the streets of our planet. Each of these
images consists of a full spherical panorama with resolution
generally up to 3328 × 1664 pixels (even higher in some
locations), covering a field of view of 360 degrees by
180 degrees. Google also provides different APIs to easily
download these images from the web.

Each panoramic image comes with geolocation informa-
tion encoding the latitude, the longitude, and the orientation
at which the image was taken. Due to the way these images
were acquired, this geolocation information is affected by a
noise which can be as much as ±5 meters in the location,
and as much as ±6 degrees in the orientation. Despite
the fact that these values may seem low, superimposing
an accurately geolocated 3D model on top of a StreetView
image results in visible misalignments which might not be
tolerable for some applications (see Figure 1(left)).

IV. ALGORITHM

In order to compute an accurate estimate for the position
and the orientation at which a given panoramic image was
captured, we exploit the information provided by the cadas-
tral 3D model. In particular, we aim at registering this image
with respect to the 3D model by matching building outlines.
Since this model is accurately geolocated, the registration
process would result in an accurate geolocation of the image
as well.

Building outlines are very informative cues for registration
because they represent multiple features in the scene such as
the sky line, the road line, and the intra-building lines. While
building outlines can be extracted easily from the cadastral
3D model, estimating the same from natural images, such
as the ones downloaded from StreetView, is not as trivial.

In fact, the variety of elements typically present in an
urban environment (e.g. traffic lights, shops, advertisements,
construction sites, bus stops and rivers), as well as, dif-
ferent weather and lighting conditions which change the
appearance of the scene, make the task of segmentation very
challenging, and almost impossible to perform accurately
without any good prior information. Moreover, occluders
such as vegetation, vehicles, and pedestrians, often present
in an urban environment, drastically contribute towards
erroneous segmentations.

To cope for this, we propose an iterative pose estimation
approach aiming at jointly optimizing for both the camera
pose and the building outlines. Figure 2 shows a schematic
overview of the proposed algorithm. An initial segmentation
is first performed on the input images with the aim of
labeling each pixel as belonging to sky, buildings, roads,
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Figure 2. Overview of the proposed algorithm.

trees, vehicles or pedestrians. This information is then used
to obtain a coarse pose estimate for the image. The initial
segmentation is then refined using the computed pose. Pose
estimation is performed again, and this process is repeated
iteratively until convergence.

In the following sections, each step of the algorithm will
be explained in detail.

A. Initial Segmentation

In the first step, an object class segmentation is performed
on the input panoramas in order to label each of its pixels
as belonging to sky, buildings, roads, trees, vehicles or
pedestrians. At this point of the algorithm, we chose to
ignore the pose provided by StreetView, since it is quite
inaccurate to help in this process. Once this pose estimate
becomes more accurate, it will be used in the subsequent
refinement of the segmentation.

This segmentation is performed following the approach
presented in [13], which aims at classifying each pixel
of an image by maximizing the posterior probability of a
conditional random field considering multiple image features
extracted at different quantization levels. This classifier
was trained on 70 manually labeled images representing
examples of the different classes of objects to be recognized.
The obtained classifier is then run on each input panorama.

The accuracy of this classifier is in general good, but it
may result in over or under segmentation of some regions.
Despite these labeling errors, the segmentation is accurate
enough as a starting point for the pose estimation problem.

B. Pose estimation

In order to register the panoramic images with respect
to the 3D model, we use a generative approach aiming
at finding the pose of the camera that generates building

outlines as similar as possible to the ones computed during
the segmentation process.

Let ξ = (θ, t) denote the pose of the camera shooting the
spherical image, where θ and t denote the camera orientation
and the camera position respectively. Camera orientation θ ∈
R3 is encoded using an angle-axis representation, relative to
a reference system oriented in such a way that its Y-axis
points towards the north pole, and its Z-axis is parallel to
the normal of the ground. The camera position t ∈ R3 is
expressed in the same reference system, precisely in metric
latitude, longitude and altitude. Camera extrinsic parameters
corresponding to the pose ξ can then be simply computed
using the exponential map as

E =

[
eθ̂ tT

0 1

]−1

(1)

Let S denote the building outlines extracted from the
panoramic image during the segmentation process, and let
us assume that a pixel value of 1 indicates that the cor-
responding point on the panorama belongs to a building
silhouette, and 0 otherwise. Given the current estimate for
the camera pose ξ, the corresponding building outlines of the
cadastral 3D model are generated by means of rendering. Let
B(ξ) denote this image. Ideally, for a correct pose estimate,
the building outlines B(ξ) should align perfectly with the
outlines S. We therefore need to find the pose ξ which
maximizes the overlap between these two images, S and
B(ξ), or in other words, we need to minimize the following
functional

argmin
ξ
‖S −B(ξ)‖0 (2)

where ‖ · ‖0 represents the L0-”norm”, counting the number
of mismatching pixels in the two images.



Due to the large non-linearities present in this functional,
we chose to use an evolutionary sampling technique to op-
timize it. In particular, we chose to use Particle Swarm Op-
timization (PSO) [14]. PSO achieves optimization through
the simulation of the social interactions happening in a
population of particles evolving over time, i.e., the swarm.
These particles move freely in the solution space influenced
by their personal experience (the individual factor) as well
as, the experience of the other particles (the social factor).

PSO is a simple and easy to implement algorithm which
was found to be very effective for optimizing the functional
in Equation 2. Since a lot of renderings are involved during
this optimization procedure, we speed up this process by
implementing both the rendering of the building outline
image B(ξ), and the computation of the L0-norm on the
GPU.

The optimization is initialized using the pose provided by
StreetView. Since no information is available regarding the
altitude of the camera, this is initialized as the altitude of the
closest point on the ground plane of the cadastral 3D model.
The swarm is then generated by adding noise to this initial
pose. The search space for the optimization is constrained
by limiting the particles to not move further than 20 meters
and to not rotate more than 15 degrees. In particular, camera
roll was restricted to ±1 degree.

In order to account for the presence of occluders such
as cars, pedestrians and vegetation, which may drastically
change the shape of the building outlines in S, we identify
them from the segmentation and create a binary mask
representing these pixels with a value of 1. These pixels are
then not considered during the computation of Equation 2. In
this way, the algorithm does not penalize either the presence
or the absence of a building in those pixels.

C. Segmentation Refinement

Once a good estimate for the pose ξ is obtained from
the previous pose estimation, the building outlines S are
refined using, as prior information, S itself and the building
outlines of the model B(ξ), rendered using the pose ξ.
This refinement is then performed following the matting
technique proposed in [15].

A tri-map is first generated by marking each pixel of
the panorama as ’building’, ’not building’, or ’undecided’,
on the basis of S and B(ξ). Specifically, we label a pixel
as ’building’ if the corresponding pixels in both S and
B(ξ) are marked as ’building’ (i.e., 1). On the contrary,
we label a pixel as ’not building’ when the corresponding
pixels in both S and B(ξ) are marked as ’not building’
(i.e., 0). The remaining region is marked as ’undecided’ and
it is expanded with a dilation operator of radius 21 pixels
to increase the uncertainty on the labeling. The matting
algorithm then builds a local appearance model for both
the ’building’ and the ’not building’ regions, and decides
whether the ’undecided’ pixels belong to a building or not.

V. RESULTS

We ran our algorithm on a total of 14000 StreetView
images spanning different urban scenarios from residential
areas, to commercial areas, and outskirts (see Figure 3(left)).

The cadastral 3D model was obtained from the city admin-
istration in the form of a triangular mesh, where buildings
were represented using templates encoding features like
roofs, attic windows and chimneys. Balconies and streetside
windows were often either missing from this model or
inaccurately represented. Nevertheless, the maximum error
on the model does not exceed 50 cm.

We ran our algorithm using the same settings for all the
input images. The pose estimation and the segmentation
refinement loop was repeated three times per image. In the
first two stages, the optimization was run only for translation
and yaw angle (i.e., the rotation about the vertical axis). Only
at the final stage, the optimization was performed on all the
six degrees of freedom. This choice was made to compensate
for the fact that majority of the error in such data resides
in the position, while the orientation is relatively accurate,
particularly the pitch and the roll. Therefore, we preferred
to optimize first for only the position and the yaw, to avoid
over-fitting of the pose on to a coarse and generally not so
accurate initial segmentation.

In each step, PSO was run on 80 particles for 90 iterations.
The initial swarm noise was set to 7 meters in translation,
and 6 degrees for rotation. This noise is reduced to half,
for the second and the third step. The processing time on a
single core machine was 8 minutes per image.

Pose estimation success rate was evaluated visually by
observing the overlay of the 3D model onto the images
using the estimated pose. Precisely, we considered an image
’incorrectly registered’ if the projection of the model was
more than 40 pixels away from the building contour. On
the tested images, 74.8% were accurately registered by the
algorithm, while only 8.7% were incorrectly registered. In
the remaining 16.5% of the images, there was not enough
visual information for us to decide if the pose was correctly
estimated or not (as an example, when majority of the scene
was occluded by trees).

The graph in Figure 3(right) shows the average residual
computed over the tested 14000 images in all the 90 PSO
iterations, at each individual step of the refinement process.
The residue value indicates the percentage of pixels that
were found to be misaligned at each evolution. The residue
drops quickly during the first 30 iterations, and then reduces
gradually over the next iterations. After the first run of PSO,
the percentage dropped from approximately 11% to 8.1%.
Since, the refined building outlines (after matting) are used
as input for step 2 and 3 of the process, the residue drops
down to 5.2% and finally to 3.9% at the end of step 3.

The graph in Figure 4 shows the camera pose corrections
estimated with our method in both translation and rotation.
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Figure 3. (Left) Coverage of the images used for the experiments displayed on the map. (Right) Average residual error (Eq. 2) obtained during the 90
PSO iterations at each refinement step. The residue is visualized as the percentage of misaligned pixels.

On an average, the computed corrections have a standard
deviation of 3.7 meters for the translation, and 1.9 degrees
for the rotation.

Figure 6 shows, for nine different cases, the images
obtained by rendering the 3D model from the initial camera
pose (left column) and the images obtained by rendering the
3D model from our refined camera pose (right column).

The first three images in the left column were captured
in commercial areas, the next two were captured in the
countryside and the remaining images were captured in
residential areas. It can be seen that the algorithm performs
very well for the first three images, specifically, in the images
on the right column, the edges around the windows on the
top of the building match perfectly with those on the model.
For images number 4 and 5 captured in the countryside, it
can be noted that despite the fact that majority of the scene
is occupied by vegetation, the algorithm is able to register
the images well. Images 6 and 7 demonstrate the typical
scenario of residential areas, where vegetation and vehicles
appear frequently, but only partially occluding the buildings.

Lastly, for the case of images numbered 8 and 9, the
initial pose estimate from Google has a very big error.
Moreover, there are major occlusions caused by trees, and in
fact, the initial segmentation did not indicate the presence
of buildings in those regions. Despite this, the algorithm
performs reasonably well, but clearly the resulting images
are still not perfectly aligned with the model. Please refer
to the supplementary video for more results.

Comparison with groundtruth: To quantitatively eval-
uate the accuracy of the proposed algorithm with respect
to noise in the input data, we conducted an additional
experiment on some images of the original dataset. Precisely,
we chose some well aligned panoramic images and we added

structural noise to their initial segmentations. In particular,
circles of radius varying between 30−60 pixels were added
and removed at random positions from these segmentations
to simulate errors in the pixel classification (see Figure 5(b)
for an example). A uniform noise between ±10 degrees
and ±5 meters was then added to the correct pose of the
image to simulate inaccuracies in the initial pose provided
by StreetView.

The table in Figure 5 shows the statistics of the errors
obtained for this experiment for varying quantities of struc-
tural noise. It is visible that significant errors in the initial
segmentation do not influence much the final accuracy of
the algorithm.

VI. CONCLUSIONS

We presented an algorithm to automatically refine the pose
of spherical panoramic images, such as the ones in Google
StreetView, leveraging the cadastral 3D information typi-
cally available in urban environments. These images were
first registered with respect to the cadastral 3D model by
aligning the building outlines. Since this model is accurately
geolocated, the registration process results in an accurate
geolocation of the images as well.

To overcome the difficulties encountered while extract-
ing building outlines in natural images and to deal with
occluders frequently occuring in urban scenarios such as
vegetation, vehicles and construction sites, we propose an
iterative optimization technique aimed at jointly estimating
the camera pose and the building outlines.

We evaluated our algorithm on 14000 StreetView images
spanning commercial and residential locations, as well as
the outskirts of a city, where vegetation is predominant in
the images. We showed that even with very few buildings
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Figure 4. Histograms of orientation and position corrections estimated using our algorithm.

(a) (b) (c)

Structural noise µ (Rotation) σ (Rotation) µ (Translation) σ (Translation)
(# Circles added/removed) [deg] [deg] [m] [m]

60 0.9328 0.4104 0.5530 0.1443
80 0.9722 0.4222 0.5825 0.1165

100 1.0038 0.476 0.583 0.1184

Figure 5. Quantitative evaluation of the performance of the algorithm with respect to noise in the input data. (a) One of the tested panoramas. (b)
Initial Segmentation with structural noise. (c) Resulting Segmentation. The table reports the mean (µ) and standard deviation (σ) of errors in rotation and
translation for varying structural noise.

visible in the images (see image number 4 and 5 in Figure 6)
we were able to perform a very good registration.

On an average, the correction in the position has a
standard deviation of 3.7 meters and 1.9 degrees in rotation.
While these numbers may seem low in magnitude, they are
actually reasonably high if these images are expected to be
used for geo-applications that demand high accuracy on the
model as well as the images.

As a conclusion, we proposed a simple and easy to
implement technique to refine the registration of panoramic
images, such as the ones available from Google StreetView.
We believe that this will enable the usage of this humongous
source of publically available data, opening up a wider range
of applications than is possible now.
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