CALIBRATING A NETWORK OF CAMERAS FROM LIVE OR ARCHIVED VIDEO

Sudipta N. Sinha, Marc Pollefeys

{ssinha,marc}@cs.unc.edu
Department of Computer Science,
University of North Carolina at Chapel Hill, USA.

ABSTRACT

We present an automatic approach for calibrating a network of
cameras using live video captured from them. Our method re-
quires video sequences containing moving people or objects but
does not require any special calibration data. The silhouettes
of these moving objects visible in a pair of views, are used to
compute the epipolar geometry of that camera pair. The funda-
mental matrices computed by this method are used to first ob-
tain a projective reconstruction of the complete camera config-
uration. Self-calibration is then used to upgrade the projective
reconstruction into a metric reconstruction. We have extended
our approach to deal with unsynchronized video sequences cap-
tured at the same frame-rate, by simultaneously recovering the
epipolar geometry as well as the temporal offset between a pair
of cameras. We use our approach to calibrate and synchronize
a four-camera system using archived video containing a moving
person. Next, the silhouettes are used to construct the visual hull
of the moving person using known Shape-from-Silhouette algo-
rithms. Additional experiments on computing the fundamental
matrix of two views from silhouettes are also performed.

1. INTRODUCTION

In surveillance camera networks, live video of a dynamic
scene is often captured from multiple views. We aim to
recover the complete calibration of such camera networks
using only the videos of the observed dynamic events,
which will eventually be used for 3D-reconstruction of
these events. This will enable us to calibrate camera net-
works observing large area training activities and cultural
events. Different pairs of archived video sequences may
have a time-shift between them (assuming all the cam-
eras have the same frame rate) since recording would be
triggered by moving objects, with different cameras being
activated at different instants in time. Our method simul-
taneously recovers the synchronization and epipolar ge-
ometry of such a camera pair. This method is particularly
useful for Shape from Silhouette systems [1, 2, 3] as vi-
sual hulls can now be reconstructed from uncalibrated and
unsynchronized video of moving objects.

Different existing Structure and Motion approaches using
silhouettes [4, 5, 6] either require good initialization or

fail for certain camera configurations and most of them re-
quire static scenes. Traditionally, calibration objects like
checkerboard patterns or LED’s have been used for cali-
brating multi-camera systems [7] but this requires phys-
ical access to the observed space. This would be im-
possible for a remotely deployed camera network. Our
method can calibrate such cameras remotely and also han-
dle wide-baselines camera pairs, arbitrary camera config-
urations and also a lack of photometric calibration.

At the core of our approach is a robust RANSAC [8] based
algorithm that computes the epipolar geometry from two
video sequences of dynamic objects. This algorithm is
based on the constraints arising from the correspondence
of frontier points and epipolar tangents [4, 9, 10] of silhou-
ettes in two views. These are points on an objects’ surface
which project to points on the silhouette in two views.
Epipolar lines passing through the images of a frontier
point must correspond. Such epipolar lines are also tan-
gent to the silhouettes at the imaged frontier points. Pre-
vious work used those constraints to refine an existing
epipolar geometry [9, 10]. Here we take advantage of the
fact that video sequences of dynamic objects will contain
many different silhouettes, yielding many constraints that
must be satisfied. We use RANSAC [8] not only to remove
outliers in silhouette data but also sample the space of un-
known parameters. We first demonstrate how the method
works with synchronized video. We then describe how
pair-wise fundamental matrices and frontier point can be
used to compute a projective reconstruction of the com-
plete camera network, which is then refined to a metric
reconstruction. An extension of the RANSAC based al-
gorithm allows us to recover the temporal offset between
a pair of unsynchronized video sequences, where both are
acquired at the same frame rate. A method to synchronize
the whole camera network is then presented.

In Sec. 2 we present the background theory. Sec. 3 de-
scribes the algorithm that computes the epipolar geometry
from dynamic silhouettes. Full camera network calibra-
tion is discussed in Sec. 4 while Sec. 5 describes how we
deal with unsynchronized video. Experimental results are
presented in different sections of the paper and we con-
clude with scope for future work in Sec. 6.



Figure 1: (a)Frontier Points and Epipolar Tangents.(b)
The Tangent Envelope.

2. BACKGROUND AND PREVIOUS WORK

Our algorithm exploits the constraints arising from the
correspondence of frontier points and epipolar tangents [4,
9]. Frontier points on an objects’ surface are 3D points
which project to points on the silhouette in the two views.
In Fig. 1(a), X and Y are frontier points on the appar-
ent contours C; and Cq, which project to points on the
silhouettes S; and S2 respectively. The projection of II,
the epipolar plane tangent to X gives rise to correspond-
ing epipolar lines /; and I, which are tangent to S7 and
So at the images of X in the two images respectively. No
other point on S and S» other than the images of frontier
points, X and Y can correspond. Morever, the image of
the frontier points corresponding to the outer-most epipo-
lar tangents [4] must lie on the convex hull of the silhou-
ette. The silhouettes are stored in a compact data structure
called the tangent envelope, [11] (see Fig. 1(b)).

Video of dynamic objects contain many different silhou-
ettes, yielding many constraints that are satisfied by the
true epipolar geometry. Unlike [12] who search for all
possible frontier points and epipolar tangents on a single
silhouette, we only search for the outermost frontier points
and epipolar tangents, but from multiple silhouettes. Suf-
ficient motion of the object within the 3D observed space
gives rise to a good spatial distribution of frontier points
and increases the accuracy of the fundamental matrix.

3. COMPUTING THE EPIPOLAR GEOMETRY

The RANSAC-based algorithm takes two sequences as in-
put, where the j** frame in sequence i is denoted by S?
and the corresponding tangent envelope by T(Sf ). Fyj
is the fundamental matrix between view ¢ and view j,
(transfers points in view ¢ to epipolar lines in view j) and
e;j, the epipole in view j of camera center . While a
fundamental matrix has 7 dof’s, we only randomly sam-
ple in a 4D space because if the epipoles are known, the
frontier points can be determined, and the remaining de-
grees of freedom of the epipolar geometry can be derived

Figure 2: (a) The 4D hypothesis of the epipoles (not in
picture). (b) All frontier points for a specific hypothesis
and a pair of transferred epipolar lines /1, 5.

from them. The pencil of epipolar lines in each view cen-
tered on the epipoles, is considered as a 1D projective
space [13] [ Ch.8, p.227 ]. The epipolar line homogra-
phy between two such 1D projective spaces is a 2D ho-
mography. Knowing the epipoles e;;, €;; and the epipolar
line homography fixes F;;. Three pairs of correspond-
ing epipolar lines are sufficient to determine the epipolar
line homography H, Z.;T so that it uniquely determines the

transfer of epipolar lines (note that H,; Tis only deter-
mined up to 3 remaining degrees of freedom, but those do
not affect the transfer of epipolar lines). The fundamental
matrix is then given by F;; = [e;;]x Hi;.

At every iteration, we randomly choose the rth frames
from each of the two sequences. As shown in Fig. 2(a),
we then, randomly sample independent directions /1 from
T(S7) and 13 from T'(S%) for the first pair of tangents in
the two views. We choose a second pair of directions {7
from T'(S7) and I3 from T'(S%) such that [? = [} — x for
1 = 1,2 where x is drawn from the normal distribution,
N (180, 0)!. The intersections of the two pair of tangents

!n case silhouettes are clipped in this frame, the second pair of di-
rections could be chosen from another frame.



produces the epipole hypothesis (e12 , e21). We next ran-
domly pick another pair of frames ¢, and compute either
the first pair of tangents or the second pair. Let us denote
this third pair of lines by I3 tangent to CH(S]) and I3
tangent to CH (S9) (see Fig 2(a)). H,; is computed from
(¥ lf;k = 1...3)2. The entities (esj ,eji »H;j;) form
the model hypothesis for every iteration of our algorithm.
Once a model for the epipolar geometry is available, we
verify its accuracy. We do this by computing tangents
from the hypothesized epipoles to the whole sequence of
silhouettes in each of the two views. For unclipped silhou-
ettes we obtain two tangents per frame whereas for clipped
silhouettes, there may be one or even zero tangents. Ev-
ery tangent in the pencil of the first view is transferred
through H i;T to the second view (see Fig. 2(b)) and the
reprojection error of the transferred line from the point of
tangency in that particular frame is computed. We count
the outliers that exceed a reprojection error threshold (we
choose this to be 5 pixels) and throw away our hypothesis
if the outlier count exceeds a certain fraction of the total
expected inlier count. This allows us to abort early when-
ever the model hypothesis is completely inaccurate. Thus
tangents to all the silhouettes S, j e 1 ... M in view 4,
1 = 1,2 would be computed only for a promising hypoth-
esis. For all such promising hypotheses an inlier count is
maintained using a lower threshold (we choose this to be
1.25 pixels).

After a solution with a sufficiently high inlier fraction has
been found, or a preset maximum number of iterations
has been exhausted, we select the solution with the most
inliers and improve our estimate of F for this hypothe-
sis through an iterative process of non-linear Levenberg-
Marcquardt minimization while continuing to search for
additional inliers. Thus, at every iteration of the minimiza-
tion, we recompute the pencil of tangents for the whole
silhouettes sequence S/, je 1l ... M in view 4,7 = 1,2
until the inlier count converges. The cost function mini-
mized is the symmetric epipolar distance measure in both
images. At this stage we also recover the frontier point
correspondences (the points of tangency) for the full se-
quence of silhouettes in the two views.

3.1. Results

Experiments were performed with two different 2-view
video sequences, each with a moving person in an in-
door environment and about 2 minutes long captured at 30
fps. See Fig. 3(a),(c) for two corresponding frames with
epipolar lines corresponding to the fundamental matrices
we compute for the two datasets respectively. Manually

2For simplicity we assume that the first epipolar tangent pair corre-
sponds as well as the second pair of tangents. This limitations could be
easily removed by verifying both hypotheses for every random sample.
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Figure 3: (a) Corresponding frames from dataset 1 (wide-
baseline camera pair with textureless floor and few reli-
able common features) showing corresponding epipolar
lines that we computed. (b) The distribution of the sym-
metric epipolar transfer error for the computed fundamen-
tal matrix F, for 26 manually clicked points for dataset
1. (Root mean square residual = 1.31 pixels). (c) Corre-
sponding frames from dataset 2 (vertically oriented cam-
eras) showing corresponding epipolar lines that we com-
puted. (d) The distribution of the symmetric epipolar
transfer error for the computed F, for 54 manually clicked
points. (Root mean square residual = 1.38 pixels).



clicked corresponding points in the 2 views were used
to test the accuracy of the computed F, as shown in Fig.
3(b),(d). The root mean square reprojection error for the
two datasets were 1.31 and 1.38 pixels respectively (Note
that these errors will be reduced further after the bundle
adjustment step).

4. CAMERA NETWORK CALIBRATION FROM
PAIRWISE EPIPOLAR GEOMETRY

Typical approaches for computing projective structure and
motion recovery require correspondences over at least 3
views. However, it is also possible to compute them based
on only 2-view correspondences. Levi and Werman [14]
have recently shown how this could be achieved given a
subset of all possible fundamental matrices between N
views with special emphasis on the solvability of vari-
ous camera networks. Here we briefly describe our iter-
ative approach which provides a projective reconstruction
of the camera network.

The basic building block that we first resolve is a set of
3 cameras with non colinear centers for which the 3 fun-
damental matrices Fio, Fi3 and F»3 have been computed
(Fig. 4(a),(b)). Given those, we use linear methods to find
a consistent set of projective cameras P;, P> and Ps (see
Eq.1) [13], choosing P; and P; as follows :

Py =[I|0] P, = [lea1]x Fizlea1]
Ps = [[e31]x F13]0] + ez1v” (1)

Pj is determined upto an unknown 4-vector v (Eq. 1). Ex-
pressing Fb3 as a function of P» and P; we obtain :

Fos = [[es2] x P3Py 2)

which is linear in v, such that all possible solutions for
F3 span a 4D subspace of P8 [14]. We solve for v which
yields Fs, the closest appromixation to Fb3 in the sub-
space. P is obtained from the value of v from Eq. 1. The
resulting P;, P5, P5 are fully consistent with F9, F73 and
F 23.

Using the camera triplet as a building block, we could
handle our N-view camera network by the method of in-
duction. The projective reconstruction of a triplet (as de-
scribed above) initialises the projective reconstruction of
the whole network. At every step a new view that has
edges to any two views within the set of cameras recon-
structed so far forms a new triplet which is resolved in
identical fashion. This process is repeated until all the
cameras have been handled.

This projective calibration is first refined using a projec-
tive bundle adjustment which minimizes the reprojection
error of the pairwise frontier point matches. Next, we
use the linear self-calibration algorithm [15] to estimate

(a) view 3 \{c3 (b)

Figure 4: (a) Three non-degenerate views for which we
estimate all F matrices. (b) The three-view case. Flg is
the closest approximation of Fh3 we compute. (c)&(d)
The induction steps used to resolve larger graphs using
our method.

the rectifying transform for each of the projective cam-
eras. We rectify these projective cameras into metric cam-
eras, and use them to initialize the Euclidean bundle ad-
justment [16]. The Euclidean bundle adjustment step pro-
duces the final calibration of the full camera network.

4.1. Results

Here we present results from full calibration of the 4-view
video dataset which was 4 minutes long and captured at 30
fps [3] (see 5). We computed the projective cameras from
the fundamental matrices Fs, Fi3, Fos, F14, F54. On an
average, we obtained one correct solution, one which con-
verged to a global minimum after non-linear refinement
for every 5000 hypothesis®. This took approximately 15
seconds of computation time on a 3.0 GHz PC with 1 GB
RAM. Assuming a Poisson distribution, 15,000 hypoth-
esis would yield approximately 95% probability of find-
ing the correct solution and 50,000 hypothesis would yield
99.99% probability.

F53 and F54 had to be adjusted by the method described in
Section 4, which actually improved our initial estimates.
The projective camera estimates were then refined through
a projective bundle adjustment (reducing the reprojection
error from 4.6 pixels to 0.44 pixels). The final reprojec-
tion error after self-calibration and metric bundle adjust-
ment was 0.73 pixels. Using these projection matrices
the visual-hull was constructed as seen in Figure 5(a). To
test the accuracy of our obtained calibration, we projected
the reconstructed visual hull back into the images. For a
perfect system the silhouettes would be filled completely.
Mis-calibration would give rise to empty regions in the sil-
houettes. These tests gave consistent results on our 4-view
dataset (see Figure 5(b)). The silhouettes are completely
filled, except for fast moving bodyparts where the repro-
jected visual hull is sometimes a few pixels smaller on one

3For all different camera pairs we get respectively one in 5555, 4412,
4168, 3409, 9375 and 5357. The frequency was computed over a total
of 150,000 hypothesis for each viewpair.
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Figure 5: (a) A 4-view Uncalibrated Video Sequence. (b)
Recovered camera configuration and visual-hull recon-
struction of person. (c) The visual hull reprojected back
into the four corresponding images. The silhouettes are
completely filled except for fast-moving body parts. (d)
Another frame in one of the views shows the effect of ig-
noring sub-frame synchronization.

side of a silhouette (see Figure 5(c)). This is due to non-
perfect synchronization (subframe offsets were ignored)
or poor segmentation due to motion blur or shadows.

In typical video, outermost frontier points and epipolar
tangents often remain stationary over a long time. Such
static frames are redundant and representative keyframes
must be chosen to make the algorithm faster. We do this
by considering hypothetical epipoles (at the 4 image cor-
ners), pre-computing tangents to all the silhouettes in the
whole video and binning them and picking representative
keyframes such that at least one from each bin is selected.
For the 4-view dataset, we ended up with 600-700 out of
7500 frames.

5. CAMERA NETWORK SYNCHRONIZATION

To deal with unsynchronized video, we modify our al-
gorithm for computing the epipolar geometry of camera
pairs as follows (see [17] for details). At the hypothe-
sis step, in addition to making a random hypothesis for
the two epipoles in the 4D space of the pair of epipoles,
we also randomly pick a temporal offset. The verification
step of the RANSAC based algorithm now considers the
hypothesized temporal offset for matching frames in the
two views throughout the video sequence. To make the
algorithm efficient we select keyframes differently, to al-
low a temporal offset search within a large range. Since
the frames containing slow moving and static silhouettes
allow a rough alignment, the tangents accumulated in the
angular bins during keyframe selection are sorted by an-
gular speed. While selecting representative keyframes we
select the ones with static or slowly moving silhouettes.
Once a rough alignment is known, a more exhaustive set
of keyframes are used to recover the exact temporal offset
within a small search range and its variance along with the
true epipolar geometry.

A N-view camera network with pairwise temporal offsets,
can be represented as a directed graph where each vertex
represents a camera and its own clock and an edge repre-
sents an estimate of the temporal offset between the two
vertices it connects. Our method in general will not pro-
duce a fully consistent graph, where the sum of temporal
offsets over all cycles is zero. Each edge in the graph con-
tributes a single constraint: ¢;; = x; — x; where t;; is
the temporal offset and x; and x; are the unknown cam-
era clocks. To recover a Maximum Likelihood Estimate
of all the camera clocks, we set up a system of equa-
tions from constraints provided by all the edges and use
Weighted Linear Least Squares (each edge estimate is in-
versely weighted by its variance) to obtain the optimal
camera clock offsets. An outlier edge would have only
significantly non-zero cycles and could be easily detected
and removed before solving the above mentioned system
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Figure 6: (a) Results of camera network synchronization.
(b) Typical sync. offset distribution. (c) Sample offset dis-
tribution for rough alignment phase.

of equations. This method will produce very robust esti-
mates for complete graphs but will work as long as a fully
connected graph with at least V-1 edges is available.

5.1. Results

We tried our approach on the same 4-view video dataset
that was manually synchronized earlier (see Fig. 5). All
six view-pairs were synchronized within a search range
of 500 frames (a time-shift of 16.6 secs). The sub-frame
synchronization offsets from the Ist to the 2nd, 3rd and
4th sequences were found to be 8.50, 8.98, 7.89 frames
respectively, the corresponding ground truth offsets be-
ing 8.32, 8.60, 7.85 frames. The computed offsets we
compute are within 1/75 seconds of the true temporal off-
sets. Fig. 6(a) tabulates for each view-pair, the +/-5 inter-
val computed from initial rough alignment, the estimates
(ti;,04;) computed by searching within that interval, the
Maximum Likelihood Estimate of the consistent offset £,
and the ground truth fij. Rough alignment required 1.3-
2.9 million hypotheses, and 60-120 seconds on a 3 GHz
PC with 1 GB RAM.

For the pair of views, 1 & 2, Fig. 6(b) shows the offset
distribution within 4+/-125 frames of the true offset for hy-
potheses ranging between 1 to 5 million in count. The
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Figure 7: (d) Final Results: synchronization, calibration
and reconstruction of the 4-view dataset only from video
sequences.

peak in the range [-5,5] represents the true offset. Smaller
peaks indicate the presence of some periodic motion in
parts of the sequence. Fig. 6(c) shows a typical distribu-
tion of offsets obtained during a particular run and shows
the converging search intervals. Fig. 7 shows the effect
of synchronizing the 4 video sequences which allows the
final calibration and reconstruction, shown in Fig. 5(a).

6. CONCLUSIONS AND FUTURE WORK

We presented an approach to determine the calibration
and synchronization of a network of cameras from pos-
sibly unsynchronized videos of moving objects, observed
by them. Our method is based on a robust algorithm that
efficiently computes the temporal offset between two se-
quences and the epipolar geometry of the respective views.
The proposed method is robust and accurate and allows
calibration of camera networks without the need for ac-
quiring specific calibration data. In future, we intend to
explore the possibility of calibrating active pan tilt zoom
(PTZ) camera networks using this approach. Preliminary
calibration results in this direction are described in [18]
(see Fig. 8(b)). Fig. 8 shows an example of a high-resolution
calibrated panoramic mosaic computed automatically by a
rotating camera. Most PTZ cameras can be modelled as a
static omnidirectional camera with a fixed center of pro-
jection that coincides with the center of rotation and zoom
of the camera. By registering video frames from an active
PTZ camera to its pre-computed calibrated panorama such
as shown in Fig. 8 using the background in the image, we
could adopt our approach described in this paper to extract
the epipolar geometry of camera pairs using the warped
silhouettes. Morever multiple silhouettes observed at dif-
ferent spots in a wide-area environment could be used to
obtain more accurate estimates of the epipolar geometries.
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