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Abstract

In this paper we propose an approach to jointly infer the
room layout as well as the objects present in the scene. To-
wards this goal, we propose a branch and bound algorithm
which is guaranteed to retrieve the global optimum of the
joint problem. The main difficulty resides in taking into
account occlusion in order to not over-count the evidence.
We introduce a new decomposition method, which general-
izes integral geometry to triangular shapes, and allows us
to bound the different terms in constant time. We exploit
both geometric cues and object detectors as image features
and show large improvements in 2D and 3D object detec-
tion over state-of-the-art deformable part-based models.

1. Introduction
Despite the fact that our world is three-dimensional,

many approaches to object recognition employ sliding win-

dow paradigms and rarely include knowledge about the in-

herent physical constraints. However, endowing computers

with spatial reasoning allows prediction of navigable space,

one of the main goals in robotic vision.

In the past few years, a variety of approaches have been

proposed in order to extract the 3D layout of rooms from

single images [12, 13, 31, 19, 22, 25, 26]. Common to all

these approaches is the use of the Manhattan world prop-

erties of indoor scenes, which assume that the room is

aligned with the three dominant and orthogonal directions,

defined by the vanishing points. As a consequence a simple

parameterization exists, since, given the vanishing points,

only 4 degrees of freedom are needed to represent the lay-

out [12, 31]. By exploiting the inherent decomposition of

additive energy functions, real-time inference was shown to

be possible with this parameterization [25, 26].

Objects, however, populate rooms. The first attempts to

incorporate object reasoning into semantic parsing of in-

door scenes treated objects as clutter, and focused on re-

moving them from the layout estimation [12, 31]. But ob-

jects are more than just clutter. If we could estimate them

reliably, we should be able to better predict the room lay-

GT

Ours

Figure 1. Image with overlayed ground truth (blue, cyan) and our

detection result (red, magenta) as well as the ground truth (GT)

floor plan (top right) and our prediction (Ours) (bottom right).

out. Similarly, if we could estimate the layout we should

be able to better parse the objects. For example, we could

employ the physical constraints inherent to the problem, as

objects are typically fully contained within the room. This

strategy is utilized in a variety of approaches [25, 19, 22],

where object candidates are employed to score the layout.

Alternatively, the layout has been employed to better detect

objects. In [14] and [6], a few candidate layouts are utilized

in order to re-rank 3D object detections.

Despite these numerous efforts, most approaches trade

the complexity of one of the tasks by proposing a small set

of candidates. As a consequence, the space of hypotheses

is not well explored resulting in sub-optimal solutions. Fur-

thermore, most approaches employ generic cuboids which

are typically generated from bottom-up reasoning.

In contrast, in this paper we jointly reason about both

the exponentially many layouts as well as the exponentially

many object locations and sizes. Our approach makes use

of both 2D and 3D object detectors as well as geomet-

ric features, and results in very accurate predictions from

monocular imagery, as shown in Fig. 1. The inherent dif-

ficulty of the joint estimation comes from the fact that we

have to handle occlusion in order to not over-count the ev-

idence. Towards this goal, we propose an algorithm based

on branch and bound, which is guaranteed to give a globally

optimal solution of the joint problem. In order to compute

the bounds in constant time and in order to be able to han-

dle occlusion, we generalize the concept of integral geome-

try [25] to triangular shapes. Furthermore, we also develop

a greedy algorithm, which performs inference efficiently.
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(a) Object + Layout (b) Eobject(x, z) (c) Elayout(x,y, z)

Figure 2. Jointly inferring room layout and 3D object with occlusion reasoning: The parameterization is indicated in (a) while the

object and the layout evidence are illustrated in (b) and (c) respectively.

We demonstrate the effectiveness of our algorithms on

the challenging bedroom data set [13] and show that our

approach results in significant performance gains over the

state-of-the-art in both 2D and 3D object detection mea-

sures. Furthermore, we are able to estimate the free-space

very reliably, enabling navigation applications.

2. Related Work
Most 3D scene understanding approaches for outdoor

scenes produce mainly qualitative results [10, 15, 23].

Some notable exceptions are [7, 1], which rely on short

video sequences or uncalibrated image pairs. While outdoor

scenarios remain fairly unexplored, estimating the 3D lay-

out of indoor scenes has experienced increasing popularity.

This is mainly attributed to the fact that indoor scenes be-

have mostly as ‘Manhattan worlds,’ simplifying the estima-

tion problem. Most monocular approaches approximate the

layout of rooms by 3D cuboids [12, 19, 31, 13, 25, 14, 26].

A notable exception is [20], which estimates the 3D layout

of corridors by sweeping lines.

Early approaches to 3D layout estimation [12, 19] reduce

the complexity of the problem by utilizing a set of candi-

dates. Performance is however limited, as only a small num-

ber of hypotheses is considered. Generative models were

explored in [22], and inference is performed using Markov

Chain Monte Carlo sampling. Wang et al. [31] parameter-

ized the problem using a Markov Random Field with only

four degrees of freedom. While effective, the employed

potentials are high-order involving up to four random vari-

ables. As a consequence they used a very crude discretiza-

tion which limits performance. In [25], the potentials typ-

ically employed in the literature were shown to be decom-

posable into pairwise potentials. As a consequence denser

parameterizations were used resulting in significant perfor-

mance gains. More recently, Schwing and Urtasun [26]

showed that the global optimum of typical layout scoring

functions is obtained by employing a branch and bound ap-

proach. This resulted in provably optimal solutions that are

computed in real time on a single core computer.

A wide variety of 3D object detection approaches make

use of 2D appearance models from multiple viewpoints [24,

30] to obtain a weak form of 3D information [17, 29, 16,

28]. Alternatively, object centered methods utilize paramet-

ric models [8, 2, 4, 27]. Deformable part-based models [5]

have also been adapted to predict 3D cuboids [9, 21, 6, 32,

13]. In this paper we make use of 2D and 3D deformable

part-based models in order to estimate jointly the layout as

well as the objects present in the scene.

Objects and layout were combined in [31, 19, 13], and

used in [11] to predict affordances as well as to investigate

the interaction between humans and objects [3]. While [31]

is more concerned about predicting ‘clutter’ rather than ac-

tual objects, [19] proposes to augment the space of layout

candidates by a set of possible objects that are chosen to

be either present or absent. Since the dimensionality of the

state-space (i.e., the product space of object and layout can-

didates) increases tremendously, a heuristic optimization

with beam search is performed. In [13] the layout prediction

is used to guide a 3D object detector.

Unfortunately, most approaches trade the complexity

of one of the tasks (i.e., object and layout prediction) by

proposing a small set of candidates. As a consequence, the

space of hypotheses is not well explored resulting in sub-

optimal solutions. In contrast, in this paper we propose

a provably exact solution to the joint problem, which rea-

sons about the exponentially many layouts as well as the

exponentially many object locations and sizes. Since the

complexity is at least five orders of magnitude larger than

a standard layout task the problem is much more difficult

to solve. The challenges are two-fold: finding an efficient

parametrization that permits reasonable inference time and

dealing with occlusions which arise from object-layout in-

teractions. Towards this goal we make use of object de-

tectors as well as geometric features and show significant

improvements over state-of-the-art detectors.

3. Approach
We are interested in predicting the layout of the room

as well as the objects present in the scene from monocular

imagery. In this paper we mainly focus on predicting a sin-

gle object, and search over all possible 3D object locations

and sizes. Following existing approaches [14, 13, 19, 25],
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. (a) Front face of an object is occluding the floor (blue color in (b)). Decomposition of the occluding area into a larger triangle

in (c) and two triangles to be subtracted (d). Decomposition of the triangle in (c) into two positive parts (e) and (f) and a negative part (g)

all depending on only two angles illustrating the generalization of integral geometry to triangular shapes, i.e., (c) = (e) + (f) - (g).

we constrain the object to be aligned with the main domi-

nant orientations. We advocate for a joint approach, as we

would like to exploit the relationships that exist between the

layout and object prediction tasks. The main challenges to

solve are dealing with the complexity of the search space as

well as handling occlusions properly. Towards this goal, we

propose a branch and bound approach, which is guaranteed

to find the global optimum of the energy representing the

joint problem. We also develop a greedy approach, which

produces accurate estimates very fast.

3.1. Joint layout-object problem

More formally, given an image x, we are interested in

predicting the layout y ∈ Y as well as the object z ∈ Z
present in the scene. As image evidence, we exploit both

top-down (class-specific) features in the form of 2D and 3D

object detectors, as well as bottom-up (class independent)

geometric features. As geometric cues, we employ orienta-

tion maps (OM) [20] and geometric context (GC) [12], as

they were shown to produce impressive results on the lay-

out task [19, 25, 26]. Given edges detected in the image,

OMs estimate a normal orientation for each pixel. Using the

vanishing point configuration we can convert these normals

into wall estimates, resulting in a five-dimensional feature

for each pixel. GCs are six-dimensional features that utilize

classifiers to predict the probability of a pixel being part of

each wall as well as clutter. Additionally, we consider the

3D object detector of [6], which provides us with four val-

ues per pixel representing the likelihood of belonging to one

of the four possible object faces. We also extended the de-

formable part-based model [5] to be supervised in terms of

viewpoint, which makes up for one additional feature that

represents the probability of a pixel belonging to an object.

These are computed via soft-masks estimated from training

data for each component.

We define the energy of a joint configuration as the sum

of layout and object energies. These energies encode how

well the layout and object estimates represent the image ev-

idence. An additional term Epen(x,y, z) makes sure that

objects cannot penetrate walls, and an occam razor term

Eoccam(x, z) encodes the fact that we prefer simple expla-

nations. This is necessary in order to handle rooms that do

not contain objects. We thus have

Etotal(x,y, z) = Elay−occ(x,y, z) + Eobject(x, z)

+Epen(x,y, z) + Eoccam(z).

Note that the energy of the layout depends on the 3D lo-

cation and size of the object. This is due to the fact that

the layout should only explain the image evidence that has

not yet been explained by the object, as the object occludes

the layout (see Fig. 2). These occlusions make the problem

computationally challenging, as the energy depends a priori

on a large set of random variables.

We take advantage of the Manhattan world assumption,

and let the object and the room be aligned with the three

main dominant orientations. We thus first compute vanish-

ing points (VP), and perform joint inference over the re-

maining degrees of freedom. Hedau et al. [12] and Wang et
al. [31] showed that given the VPs only 4 degrees of free-

dom are necessary to represent the layout, consisting of four

rays originating from two distinct vanishing points. In the

case of an object, given the VPs, only 5 degrees of free-

dom are necessary, consisting of three rays originating from

one VP and two rays from another. We refer the reader to

Fig. 2(a) for an illustration of the parameterization. We thus

define y ∈ Y and z ∈ Z to be product spaces with four
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and five factors respectively. We now describe the different

terms in the energy.

Object Energy: We define an additive energy which de-

composes over the faces of the object, summing the evi-

dence inside each face as illustrated in Fig. 2(b), i.e.,

Eobject(x, z) =

4∑
γ=1

Eobject,γ(x, z)=

4∑
γ=1

w�obj,γφobj,γ(x, z).

Assuming that the object is on the floor, there are only 4

possible faces γ that can be visible (i.e., top, front, left,

right). Furthermore, at a given time only a maximum of

three faces are actually visible. We define the features for

each face to be weighted counts of image cues inside that

face, as this will allow us to compute bounds in constant

time.

Layout Energy: The layout energy is defined as

Elay−occ(x,y, z) = Elayout(x,y)− Eocc(x,y, z),

where the last term discounts the image evidence which is

already explained by the object, i.e., the pixels for each lay-

out face that are occluded by the object (see Fig. 2(c)). We

define features for each face α of the layout and object oc-

clusion as weighted counts

Elayout(x,y) =
5∑

α=1

w�lay,αφlay,α(x,y),

Eocc(x,y, z) =
5∑

α=1

w�lay,α

(
4∑

γ=1

φocc,α,γ(x,y, z)

)
.

Note that we have shared the weights wlay,α between

Elayout(x,y) and Eocc(x,y, z) to properly represent oc-

clusions. Fig. 3 provides the details for the case of α repre-

senting the floor and γ denoting the front face of the object.

The area covered by blue color in Fig. 3(b) represents the

floor pixels occluded by the object’s front face.

Penetration Energy: This energy makes sure that the

object cannot penetrate the walls defined by the layout, i.e.,

it equals 0 whenever the object is inside the layout and is

+∞ in the case of penetration.

Occam razor: Given an image, we do not know a priori

if there is an object in the scene. To prevent the model to

always put an object, we introduce a fixed penalty for solu-

tions that contain an object. In practice we set the penalty

to be 10% of the layout energy for the best configuration.

(a) Bounding the wall (b) Bounding object top

Figure 4. We bound Elayout(x,y) and Eobject(x, z) by comput-

ing counts over minimal and maximal faces.

3.2. Branch and Bound for exact Inference

During inference we are interested in computing the

MAP estimate of the joint problem defined as

min
y,z

Etotal(x,y, z).

Finding a global minimizer of the layout task, i.e.,

Elayout(x,y), is possible using branch and bound [26]. In

this paper we generalize this approach to solve the joint lay-

out and object problem with an explicit occlusion reasoning.

We now briefly describe the particular branch and bound

algorithm we developed, which is inspired by the object de-

tector of [18]. The algorithm operates on hypothesis sets

A ⊆ Y × Z containing a multiplicity of different object-

layout configurations, and starts with a single interval be-

ing the full hypothesis set. Then, it proceeds iteratively,

where the most promising set on a priority queue is taken

at each iteration. If this set contains multiple hypothesis,

then the set is divided into two disjoint subsets A1 and A2

(i.e., A1 ∩ A2 = ∅ and A = A1 ∪ A2). For each one we

compute a lower-bound and insert the pair of score and set

into the priority queue, ordered by the quality of the bound.

The algorithm terminates when the element on top of the

priority queue consists of a single hypothesis. Alg. 1 de-

picts the branch and bound algorithm more formally. In the

worst case this algorithm investigates an exponential num-

ber of hypotheses, but if the bounds are tight, typically only

a small fraction needs to be considered. In order to return a

global optimum, the bounds have to be valid for all the el-

ements in the sets, and the bounds have to be exact when a

single hypothesis is evaluated. The bounds developed here

satisfy these two properties, and thus we retrieve the global

optimum of the joint problem.

In order to utilize branch and bound, we need to

parametrize sets of hypotheses, and derive bounds which

are both efficient to compute and tight. We param-

eterize sets of hypotheses by intervals of the form

[y1,min, y1,max]× · · · × [z5,min, z5,max], as such a param-

eterization simplifies our bounding functions. To keep the

complexity level reasonable, we discretize the possible an-

gles, having on average 18.4 states per layout variable and

28.1 states per object parameter. The variability in the num-

ber of states is due to the VP locations.
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Algorithm 1 branch and bound (BB) inference

put (Ē(A0),A0) into queue and set A = A0 = Y × Z
repeat

split A = A1 ×A2 with A1 ∩ A2 = ∅
put pair (Ē(A1),A1) into queue

put pair (Ē(A2),A2) into queue

retrieve A having lowest score

until |A| = 1

We now need to define valid bounds. As the energy is a

sum of terms, we bound each one separately and compute

the final bound by summing the individual ones. It is easy

to see that this is a valid bound. While bounding the objects

is a straightforward extension of [26], bounding the occlu-

sion term is much more cumbersome. We do not require

to bound the penetration energy as we can simply carve the

space to consider only objects which are contained within

the layout. As far as the occam razor potential is concerned,

we equivalently add to the priority queue the best layout

configuration found in the absence of any object with bound

equal to its energy minus the penalty.

Layout bounds: For the layout, we utilize the lower

bounds of [26], which are obtained by dividing the lay-

out scoring function into two parts, one containing positive

weights and one containing negative weights:

Elayout(x,y) = w+�
lay φ

+
lay(x,y) + w−�lay φ

−
lay(x,y),

where φ+
lay(x,y) are φ−lay(x,y) are the concatenation of

features with positive and negative weights respectively.

Lower bounds are then easily estimated by summing the

smallest possible face for the positive features and the

biggest possible face for the negative ones. Note that we

have inverted the bounds with respect to [26] as they maxi-

mize a score (defined as the negative energy) while we min-

imize the energy. The bound for the right layout face is

illustrated in Fig. 4(a), where the leftmost ray is depicted in

green and the rightmost one in red, and the maximally pos-

sible right face area is colored in blue while the minimally

possible right wall is highlighted in green. Computing the

content of maximal and minimal faces depends on the four

intervals for the front face and on three intervals for all other

walls, floor and ceiling. Using integral geometry [25] we

decompose those functions into sums of accumulators that

depend on at most two random variables. This allows com-

putation of bounds in constant time while being memory

efficient as well.

Object bounds: Object faces are amenable to a simi-

lar strategy. We split the energy into negative and positive

components, and bound the counts using the minimally and

Top Side Hull BB

loc

[5] - - 56.12 57.14

[6] 30.61 35.71 53.06 66.33

Sup. DPM - - 61.22 63.27

Ours 35.05 39.18 68.04 74.23
Table 1. Comparison to the state-of-the-art.

maximally possible faces. This is illustrated for the object’s

top face in Fig. 4(b) with green and blue rays denoting the

leftmost and rightmost rays. All object faces naı̈vely depend

on four intervals but, as for the layout bounds, we can utilize

integral geometry [25], and, by decomposing the faces into

sums of pairwise accumulators, we compute the bounds in

constant time being memory efficient.

Occlusion bounds: To effectively compute bounds for

Eocc(x,y, z) we decompose the energy into sums over tri-

angular faces. This is illustrated in Fig. 3 for the case of the

front face of an object occluding the floor. The occlusion is

highlight with blue color in Fig. 3(b). We decompose the

occlusion region, into the sum over three triangular shapes,

i.e., from the red triangle in Fig. 3(c) we subtract the black

and purple triangles in Fig. 3(d). More generally, a fourth

positively counted triangle with its cathetus intersecting at

an existing upper left corner is additionally required. While

we have illustrated this decomposition with an example, all

overlaps between object faces and layout walls are decom-

posed and computed in a similar manner. Furthermore, for

each triangle, we compute the counts inside by again de-

composing the computation into the sum of three accumula-

tors. This is demonstrated in Fig. 3(e) – (g), where the pink

and cyan areas are counted positively while the yellow area

is subtracted, i.e., (c) = (e) + (f) - (g). These accumulators

are pairwise potentials, as each of the highlighted areas de-

pends on only two angles. We then split the potentials into

negative and positive and bound each with either its maxi-

mal or minimal face depending on the sign. This procedure

again provides bounds computable in constant time.

3.3. Improving speed

Carving: Dividing an interval imposes new constraints

that can be used to improve efficiency, e.g., the ray describ-

ing the top edge of the front face is required to be above the

ray describing the bottom edge of that face. To avoid those

intervals we carve out spaces that are physically impossible.

Greedy approach: We derive a greedy strategy that

speeds up computation by reducing the search space. To

this end we first optimize Etotal w.r.t. y ∈ Y while fix-

ing the object z to remain outside the image. Intuitively we

explain the scene without considering objects. In a second

step we fix the previously obtained layout prediction ŷ and

optimize Etotal w.r.t. z ∈ Z . While this is not guaranteed to

yield a global optimum, our experiments show that it results
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Intersection over union Labeling measures

joint greedy joint greedy

Top Side Hull BB Top Side Hull BB 9L 5L 9L 5L

lo
c

Geo 25.51 19.39 48.98 64.29 26.53 24.49 50.00 63.27 26.16 22.00 26.62 22.70

Geo+2D 33.67 27.55 60.20 65.31 33.67 27.55 60.20 65.31 24.34 21.44 24.46 21.45

Geo+3D 37.76 38.78 60.20 71.43 35.71 37.76 60.20 69.39 23.20 20.43 23.95 21.03
Geo+2D+3D 35.05 39.18 68.04 74.23 34.69 38.78 65.31 74.49 22.65 20.30 23.81 21.22

d
et

Geo 36.30 32.59 51.11 54.07 36.30 34.07 49.63 51.11 27.84 23.81 26.95 23.05

Geo+2D 42.22 38.52 62.22 66.67 43.70 40.74 62.96 65.93 25.77 22.94 24.50 21.64

Geo+3D 44.44 43.70 58.52 60.74 42.96 43.70 57.78 60.00 24.45 21.64 24.28 21.37
Geo+2D+3D 42.96 47.41 66.67 69.63 45.19 48.89 65.93 70.37 24.66 21.67 24.57 21.73

Table 2. Importance of the features: note that every feature we add generally improves detection. We refer to OM+GC features via Geo,

the 2D detector via 2D, and the 3D detector via 3D.

Intersection over union Labeling measures

joint greedy joint greedy

Top Side Hull BB Top Side Hull BB 9L 5L 9L 5L

S
p

ar
se lo

c Oracle 9L 79.59 80.61 86.73 88.78 79.59 82.65 86.73 89.80 7.82 6.27 8.22 6.82

Oracle 5L 79.59 79.59 85.71 88.78 76.53 78.57 79.59 85.71 7.68 6.10 10.89 7.75

d
et Oracle 9L 81.48 80.74 85.93 85.93 81.48 82.96 85.93 85.19 10.28 7.51 8.65 6.94

Oracle 5L 80.74 80.00 84.44 85.19 79.26 80.00 80.74 82.96 11.77 6.96 11.94 7.48

D
en

se lo
c Oracle 9L 87.76 86.73 90.82 89.80 87.76 86.73 91.84 90.82 5.79 5.54 4.52 4.37

Oracle 5L 82.65 87.76 88.78 89.80 75.51 80.61 81.63 82.65 5.78 4.60 9.80 6.88

d
et Oracle 9L 85.19 84.44 87.41 85.19 85.19 84.44 88.15 85.93 7.06 6.83 5.04 4.87

Oracle 5L 83.70 88.15 87.41 88.15 76.30 80.74 80.74 80.00 8.24 5.43 10.09 6.63

Table 3. Comparison of F1 scores and labeling error for the sparse and dense parameterization using oracle features.

in performance, similar to the joint model when employing

object detectors. This is expected as those make the two

tasks more independent. In the case of only employing GCs

and OMs, our features contain only 5 labels and are hence

ambiguous (both problems are tightly coupled). Thus, the

greedy approach is significantly worst in this setting.

Parameter Learning: The energy of the joint problem

depends linearly on the parameters w. To learn the weights,

we therefore designed a parallel cutting plane structured

SVM algorithm which exploits multiple machines. Note

that the loss decomposes just like the features.

4. Experimental Evaluation
We perform our experiments on the bedroom data

set [13], which contains 309 labeled images. The data is

split into a training and test set of size 181 and 128 respec-

tively. We employ the vanishing point detector of [12]. We

measure the performance via a pixel-wise error metric that

counts the percentage of pixels that disagree with ground

truth and evaluate on 9-label and 5-label metrics. Whereas

the latter captures the performance on estimating orienta-

tion, irrespective of being part of the layout or the object,

the 9-label metric takes into account this distinction, mak-

ing it significantly harder. To evaluate the object detection

performance we use the F1 measure computed for detec-

tions with intersection over union (IOU) higher than 0.5, as

utilized in Pascal VOC challenge. We report this measure

to detect the top face (Top), all the side faces jointly (Side),

the convex hull of the object as well as a 2D bounding box

(BB). Moreover, we follow [14] and also measure the free-

space being a true 3D error metric.

We perform two tasks. First we look into the problem

of localization where we know about the existence of an

object in the scene, and the goal is to find it in 3D. For the

second task, we performed 3D detection, where we have no

knowledge about whether an object is present. We refer to

these tasks via “loc” and “det” respectively.

Comparison to state-of-the-art: We begin our experi-

mentation by comparing our approach to the 3D detector

of [6] and the deformable part-based model [5]. We utilize

the occam-razor energy only in the “det” case, since we do

not know if the image contains an object. We provide the

results in Tab. 1 and observe that our approach significantly

improves over both baselines in all metrics.

Feature Importance: Tab. 2 shows our results when em-

ploying different types of features. We observe that each

source of information, i.e., geometric features (OM and

GC), 2D and 3D detectors increases performance.

Oracle: To illustrate the best achievable performance of

our approach, we investigate its performance when provid-

ing ground truth features. We do so in two scenarios, by

using 5-label and 9-label features referred to as “Oracle 5L”

and “Oracle 9L” respectively. The former mimics the case

where only geometric features are provided, while the latter

represents the case where one has access to perfect detec-
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GT Ours GT Ours GT Ours GT Ours

GT Ours GT Ours GT Ours GT Ours

Figure 5. Illustration of prediction results (red, magenta) and best found ground truth state (blue, cyan) given vanishing points for joint

object and layout inference overlaying the image. Below each image we provide visible annotation floor plan (gray) and object on the left

while corresponding prediction result on the right. A failure case due to wrong vanishing points is illustrated in bottom right figure.

tions and geometry estimates. Tab. 3 shows that while the

performance of the greedy approach is more or less identical

when providing 9-label information, joint inference outper-

forms the greedy approach in the 5-label case. This is the

same phenomena observed with real features.

Density of the Parameterization: The major failures

of our approach are wrong vanishing points as well as

discretization artifacts. To illustrate the performance gain

when increasing the discretization, we almost double the av-

erage number of states per layout variable from 18.4 to 34.6
and similarly increase the state space for object parameters

from 28.1 for the sparse approach to 52.9. As illustrated in

Tab. 3 for oracle features, the performance increases signifi-

cantly for some of the measures. On real features, however,

we observe almost no gain, which is mainly due to the cap-

tured noise in the features.

Computational Complexity: Tab. 4 shows the average

inference time for both the greedy and joint approach when

employing different types of features. As expected, an in-

creasing amount of features results in slower inference. The

greedy approach is about two orders of magnitude faster for

oracle features and three orders of magnitude faster for real

features. High quality features yield faster inference.

Estimating free space: Following [11, 14] we compute

the average F1 score using IOU ≥ 0.5 as well as the stan-

dard average of our estimation for the floor, the ground face

of the object and the free space in Tab. 5. We observe aver-

joint greedy

Oracle 9L 12.88s 0.07s

Oracle 5L 6.95s 0.07s

Geo 331.43s 0.37s

Geo+2D 230.68s 0.30s

Geo+3D 583.18s 0.43s

Geo+2D+3D 3333.09s 1.58s

Table 4. Average inference time in seconds for the joint and greedy

approaches given different features

Pascal Average

Floor Object Free Floor Object Free

Oracle 9L 89.76 62.22 77.95 77.22 62.83 64.64

Oracle 5L 90.55 60.00 77.95 78.37 60.81 64.88

Geo 63.78 29.63 35.43 57.21 35.07 40.47

Geo+2D 71.65 29.63 39.37 59.24 37.76 42.40

Geo+3D 68.50 37.78 40.94 58.36 40.95 43.33

Geo+2D+3D 70.63 37.04 38.89 58.64 41.92 42.05

Table 5. Computation of average F1 score for intersection over

union of floor, object footprint and free-space for joint inference

with indicated features. We provide both the mean across scores

as well as PASCAL score with only counts the scores with IOU

more than 0.5 as true positives.

age free-space estimation accuracies of up to 40%, improv-

ing over [14].

Qualitative results: Qualitative results are illustrated in

Fig. 5. In general, our approach does a great job at estimat-

ing both the layout and object. The main failures illustrated

in the bottom right corner of Fig. 5 are due to VPs not being

detected properly and noisy features.
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Figure 6. After jointly inferring layout (magenta) and object (red),

we re-apply the object part to obtain a second object (green).

Estimating multiple objects: We extend our approach to

detect multiple objects in a greedy fashion, by fixing the

layout and the previously detected object and solving for

the next object. Fig. 6 shows examples, with the layout, the

first and second objects depicted in magenta, red and green.

5. Conclusion
We have presented an approach to joint 3D room layout

and object reasoning that predicts the optimal box within a

box. To this end we carefully modeled the occlusions and

phrased the problem as a structured prediction task that per-

mits exact inference via a novel branch and bound algo-

rithm. The main technical difficulty resides in the develop-

ment of occlusion bounds which require the generalization

of integral geometry to triangular shapes. We plan to ex-

tend our algorithms to utilize depth sensors when RGB-D

imagery is available.
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