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Abstract

In this report the theoretical and practical feasibility of self-calibration in the
presence of varying internal camera parameters is under investigation. A theoret-
ical proof will be given which shows that the absence of skew in the image plane
is sufficient to allow for self-calibration. Besides this a self-calibration method is
presented which efficiently deals with all kinds of constraints on the internal camera
parameters and which can detect critical motion sequences. Within this framework
a practical method is proposed which can retrieve metric reconstruction from image
sequences obtained with uncalibrated zooming/focusing cameras. The feasibility of
the approach is illustrated on real and synthetic examples.

Keywords: Motion and Stereo: (Self-)Calibration, (Uncalibrated) 3D Recon-
struction, Multiple-View Geometry



1 Introduction

In recent years, researchers have been studying self-calibration methods for cameras. Mostly
completely unknown but constant intrinsic camera parameters were assumed. This has the
disadvantage that to allow self-calibration the zoom can not be used and even focusing is
prohibited. On the other hand, the proposed perspective model is often too general com-
pared to the range of existing cameras. Mostly the image axes can be assumed orthogonal
and often the aspect ratio is known (equal to one). Therefore a tradeoff can be made and
by assuming these parameters to be known, one can allow (some of) the other parameters
to vary throughout the image sequence.

Since it became clear that projective reconstructions could be obtained from image
sequences alone [3, 5], researchers tried to find ways to upgrade these reconstructions to
metric (i.e. Euclidean but unknown scale). Many methods where developed which assumed
constant internal camera parameters. Most of these methods are based on the absolute
conic which is the only conic which stays fixed under all Euclidean transformations. This
conic lays in the plane at infinity and its image is directly related to the internal camera
parameters, hence the advantage for self-calibration [16].

Faugeras et al [4] (see also [15]) proposed to use the Kruppa equations which enforce
that the planes through two camera centers which are tangent to the absolute conic should
also be tangent to both of its images. Later on Zeller and Faugeras [19] proposed a more
robust version of this method.

Heyden and Astrém [7], Triggs [18] and Pollefeys and Van Gool [14] use explicit con-
straints which relate the absolute conic to its images. These formulations are especially
interesting since they can easily be extended to deal with varying internal camera param-
eters.

Pollefeys et al [12, 13] also proposed a stratified approach which consists of first locat-
ing the plane at infinity using the modulus constraint (i.e. for constant internal camera
parameters the infinity homography should be conjugated to a rotation matrix) and then
calculating the absolute conic. Hartley [6] proposed another approach based on the mini-
mization of the difference between the internal camera parameters for the different views.

So far not much work has been done on varying internal camera parameters. Pollefeys
et al [11] also proposed a stratified approach for the case of a varying focal length, but
this method required a pure translation as initialization. Recently Heyden and Astrém [8]
proved that self-calibration was possible when the aspect ratio was known and no skew
was present. The self-calibration method proposed in their paper is of limited practical
use since it is based on bundle adjustment which requires non-linear minimization over
all reconstructed points and cameras simultaneously and they don’t deal with the issue of
initialization.

In this report their proof is extended. It will be shown that the absence of skew alone
is enough to allow self-calibration. A versatile self-calibration method is proposed which
can deal with varying types of constraints. This will then be specialized towards the case
were the focal length varies, possibly also the principal point.

Section 2 of this report first introduces some basic principles, then gives a counting ar-



gument, for self-calibration and finally shows that imposing the absence of skew is sufficient
to restrict the projective ambiguity to the group of similarities (i.e. metric self-calibration).
In Section 3 the actual method is developed. A simplified linear version is also given which
can be used for initialization. Section 4 summarizes the complete procedure for metric
reconstruction of arbitrarily shaped, rigid objects from an uncalibrated image sequence
alone. The method is then validated through the experiments of Section 5. Section 6
concludes this report and gives some directions for further research.

2 Some theory...
The projection of a scene onto an image can be modeled by the following equation:
Am =PM (1)

where m = [zy1]" is an image point and M = [XY Z1]" is a scene point, P is the 3 x 4
camera projection matrix and A\ is a scale factor. The camera projection matrix factorizes
as follows:

fe s w
P = K [R|-Rt] with K = fovl o (2)
1

Here (R, t) denotes a rigid transformation (i.e. R is a rotation matrix and t is a translation
vector), while the upper triangular calibration matrix K encodes the intrinsic parameters
of the camera (i.e. f, and f, represent the focal length divided by the pixel width resp.
height, (u,v) represents the principal point and s is a factor which is zero in the absence
of skew).

It is a well-known result that from image correspondences alone the camera projection
matrices and the reconstruction of the scene points can be retrieved up to a projective trans-
formation [3, 5]. Note that without additional constraints nothing more can be achieved.
This can be seen from the following equation. Am = PM = (PT 1)(TM) = P'M’ with
T an arbitrary projective transformation. Therefore (P’, M) is also a valid reconstruction
from the image points m.

In general, however, some additional constraints are available. Some intrinsic param-
eters are known or can be assumed constant. This yields constraints which should be
verified when P is factorized as in equation 2.

It will be shown that when no skew is present (i.e. s =0 in equation 2), the ambiguity
of the reconstruction can be restricted to metric. Although this is theoretically sufficient,
under practical circumstances often much more constraints are available and should be
used.

2.1 A counting argument

To restrict the projective ambiguity (15 degrees of freedom) to a metric one (3 degrees of
freedom for rotation, 3 for translation and 1 for scale), at least 8 constraints are needed.
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constraints known fixed min #images
no skew s 8
fixed aspect ratio and absence of skew s ;—Z )
known aspect ratio and absence of skew s, ;—Z 4
only focal length is unknown s, ;—Z, U, v 2
standard self-calibration problem fas [y u, v, 8 3

Table 1: A few examples of minimum sequence length required to allow self-calibration

This thus determines the minimum length of a sequence from which self-calibration can be
obtained, depending on the type of constraints which are available for each view. Knowing
an internal camera parameter for n views gives n constraints, fixing one yields only n — 1
constraints.

n X (#known) + (n — 1) x (#fized) > 8

Of course this counting argument is only valid for non-critical motion sequences (see sec-
tion 3.3).

Therefore the absence of skew (1 additional constraint per view) should in general be
enough to allow self-calibration on a sequence of 8 or more images. In section 2.2 it will be
shown that this simple constraint is not bound to be degenerate. If in addition the aspect
ratio is known (e.g. f; = f,) then 4 views should be sufficient. When also the principal
point is known, a pair of images is enough. A few more examples are given in Table 1.

2.2 Self-calibration using only the absence of skew

In this paragraph it is shown that the absence of skew can be sufficient to yield a metric
reconstruction. This is an extension of the theorem proposed by Heyden and Astrém 8]
which besides orthogonality also requires the aspect ratio to be known.

Before starting the actual proof a lemma will be given. This lemma gives a way to check
for the absence of skew from the coefficients of P immediately without needing the factor-
ization. A camera projection matrix can be factorized as follows P = [H|e] = K [R| — Rt].
In what follows h; and r; denote the rows of H and R.

Lemma

The absence of skew is equivalent with (h; x h3)(hy x hs) = 0.

Proof: It is always possible to factorize H as KR . Therefore (h; x h3)(hy x h;) =
((for1+ sro +urs) x r3)((fyre +vrs) X r3) = ((fory + s12) X T3)(fyTa X T3) = — fi fyror; +
sfyriri = sfy.

Because f, # 0 this concludes the proof. O



Equipped with this lemma the following theorem can be proven.

Theorem

The class of transformations which preserves the absence of skew is the group of
similarity transformations (+mirroring).

Proof: It is easy to show that the similarity transformations preserve the calibration
matrix K and hence also the orthogonality of the image plane:

RI O.—Itl

K[R|—Rt]l 0 oot

] = K[RR'|oc '(Rt' — Rt)] .

Therefore it is now sufficient to prove that the class of transformations which preserve the
condition (hy x h3)(hy X hy) = 0 is at most the group of similarity transformations. To do
this a specific set of positions and orientations of cameras can be chosen, since the absence
of skew is supposed to be preserved for all possible views. In general P can be transformed

as follows:
A b

P &

] = [HA +ec'|Hb + ed]
If t =0 then H = KRA and thus

(hll X hg)(hIQ X hg) = ((fwrl —+ Urg)A X I'3A) ((fyI'Q —+ ’Urg)A X I'3A) .
Therefore the condition of the lemma is equivalent with

(I'lA X r3A)(r2A X I'3A) =0.

Choosing the rotation matrices Ry, Ry and Rj; rotations of 90° around the z-, y- and
z-axis, imposes the following equations to hold:

(al X az)(ag; X ag)
(a3 X al)(az X al)
(a2 X a3)(a1 X a3)

0,
0, (3)
0.

Hence (a; x ay), (a; x a3) and (ay x a3) define a set of 3 mutually orthogonal planes where
ai, az and a3 form the intersection and are therefore also orthogonal.

Choosing R4 and R; as R; and R, followed by a rotation of 45° around the z-axis, the
following two equations can be derived:

((a; + a3) X az) ((a; —a3) x ap) =0
((ag+ag) x a;) ((az —az) xa;) =0 . (4)

Carrying out some algebraic manipulations and using a; | as | ag this yields the following
result:
a1 ” = [ag|* = |as]” .
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These results mean that A = oR with o a scalar and R an orthonormal matrix. The
available constraints are not sufficient to impose det R = 1, therefore mirroring is possible.

Choose Rg = R; and t4 = [100], then ((al +c¢') x a2) (ag xay) = 0 must hold. Using
Equation 3 and as x a3 ~ a; this condition is equivalent with (c x ag)a; = 0. Writing c as
c1a; + cpas + czag this boils down to c3 = 0. Taking R; = Ry, t; = [001]7, Rg = R3 and
tg = [010]" leads in a similar way to ¢; = 0 and ¢; = 0 and therefore to ¢" =[000].

In conclusion the transformation l ?r 2 ] is restricted to the following form l 00 i’

which concludes the proof. O

Remark that 8 views were needed in this proof. This is consistent with the counting
argument of the previous paragraph.

If a sequence is general enough (in its motion) it follows from this theorem that only a
projective representation of the cameras which can be related to the original ones through
a similarity transformation (and possibly a mirroring) would satisfy the orthogonality of
rows and columns for all views. Using oriented projective geometry [10] the mirroring
ambiguity can easily be eliminated. Therefore self-calibration and metric reconstruction is
possible using this orthogonality constraint only.

Of course adding more constraints will yield more robust results and will diminish the
probability of encountering critical motion sequences.

3 Self-Calibration Methods

A practical way to obtain the calibration parameters from constraints on the internal
camera parameters is through the absolute quadric [16] (introduced in computer vision by
Triggs [18], see also [7, 14]). In space one quadric (of planes) exists which has the property
to be invariant under rigid transformations. This quadric consists of planes tangent to the
absolute conic. In a metric frame it is represented by a 4 x 4 symmetric rank 3 matrix
I . _ .

Q= [ 0 8 ] . If T transforms points M — TM (and thus P — PT™'), then it transforms
Q) — TQT" (which can be verified to yield 2 when T is a similarity transformation). The
projection of the absolute quadric in the image yields the dual image absolute conic:

wp ~ PLOP] ~ KK, (5)

independent of the chosen projective basis!. Therefore constraints on the internal camera,
parameters in K; can be translated to constraints on the absolute quadric. If enough
constraints are at hand only one quadric will satisfy them all, i.e. the absolute quadric.
At that point the scene can be transformed to the metric frame (which brings Q to its
canonical form).

1Using Equation 2 this can be verified for a metric basis. Transforming P — PT™" and Q — TQT"
will not change the projection.



3.1 Non-linear Approach

Equation 5 can be used to obtain the metric calibration from the projective one. The
dual image absolute conics wy should be parameterized in such a way that they enforce
the constraints on the calibration parameters. For the absolute quadric 2 a minimum
parameterization (8 parameters) should be used. This can be done by putting Q233 = 1 and
by calculating €244 from the rank 3 constraint.

An approximate solution to these equations can be obtained through non-linear least
squares. The following criterion should be minimized:

min’y (198 o K63 2 (6)
k=1

To obtain meaningful results KK, and P,QP, should both be normalized to have Frobe-
nius norms equal to one.

If one choose Py = [I|0], Equation 5 can be rewritten as follows:
KlKir a ] T

K.K;] ~P, - 5 | P (7)
a a a

with a = [a; ap a3]" a vector which encodes the position of the plane at infinity. In this
way 5 of the 8 parameters of the absolute conic are eliminated at once, which simplifies
convergence issues. On the other hand this formulation implies a bias towards the first
view?. Therefore it is proposed to first use the simplified version of equation 7 and then to
refine the results with the unbiased parameterization.

To apply this self-calibration method to standard zooming/focusing cameras, some
assumptions should be made. Often it can be assumed that there is no skew and that the
aspect ratio is tuned to one. If necessary?, it can also be used that the principal point will
be close to the center of the image. This leads to the following parameterizations for Ky
(transform the images to have (0,0) in the middle):

f

0 f o
Ky = /

0
or K; = f 0 . (8)
1

_— e

These parameterizations can be used in Equation 6. It will be seen in the experiments of
Section 5 that this method gives good results on synthetic data as well as on real data.

2Using this parameterization the equations for the first view are perfectly satisfied, whereas the noise
has to be spread over the equations for the other views. In the experiments it will be seen that this is not
suitable for longer sequences where the present redundancy can not be used optimally.

3When only a short image sequence is at hand, when the projective calibration is not very accurate or
when the motion sequence is close to critical without additional constraints.



3.2 Linear Approach

In the case were besides the skew (s = 0), both principal point and aspect ratio are
(approximately) known a linear algorithm can be obtained by transforming the principal

point (u,v) — (0,0) and the aspect ratio ;—z — 1. These assumptions simplify Equation 7
as follows: \
200 Thg
0 f 0 ag
2 _ 1 T
Al 0 ff 0| =Py 00 1 a P, 9)

00 o a ay [al?
This can be regarded as a set of 6(n — 1) linear equations in 2(n — 1) + 5 unknowns:
AefEs My [2, a1, a9, a3 and ||a]|?>. Therefore when only two views are available the solution is
only determined up to a one parameter family of solutions. Of course the rank 3 constraint
of €2 still has to be enforced. This can be done by imposing that the determinant of the
solution should be zero:

det (Q, — %) =0 (10)

From the left-hand side of Equation 9 it can be seen that the following equations have to
be satisfied wi; = wag, wis = w13 = wez = 0. This can thus be imposed on the right-hand
side, yielding 4(n — 1) linear equations in fZ, a1, as, a3 and ||a]|>. The rank 3 constraint can
be imposed by taking the closest rank 3 approximation (using SVD for example).

When only two views are available the solution is only determined up to a one parameter
family of solutions. Imposing the rank 3 constraint in this case results in up to 4 possible
solutions.

3.3 Detecting Critical Motion Sequences

It is outside the scope of this report to give a complete analysis of all possible critical mo-
tions which can occur for self-calibration. For the case where all internal camera parameters
are known to be fixed, such an analysis was carried out by Sturm [17].

Here a more practical approach is taken. Given an image sequence, a method is given to
analyze if that particular sequence is suited for self-calibration. The method can deal with
all different combinations of constraints. It is based on a sensitivity analysis towards the
constraints. An important advantage of the technique is that it also indicates quasi-critical
motion sequences. It can be used on a synthetic motion sequence as well as on a real image
sequence from which the rigid motion sequence was obtained through self-calibration.

Without loss of generality the calibration matrix can be chosen to be K =1 (and thus
w=1) 4. In this case it can be verified that df, = %dwn, dfy = %d(ﬂgg, du = dwi3 = dwsq,
dv = dwyz = dwszs and ds = dwis = dwy;. Now the typical constraints which are used for
self-calibration can all be formulated as linear equations in the coefficients of K. As an
example of such a system of equations, consider the case s = 0, % = 1 and f,=constant.

4For a real image sequence this implies the transformation of the image points m — K~ 1m.



By linearizing around w = I this yields dwg) =0, dwgf) = dwg;), dwgf) = dwﬁ). Which can
be rewritten as

_dwﬁ)_

dw%)
0 01 - o --- dwg)
1 00 - -1 --- : =0 (11)
1 -1 0 - 0 --- :

dwg)

More in general the linearized self-calibration equations can be written as follows:
Cdw =0 (12)

with dw a column vector containing the differentials of the coefficients of the dual image
absolute conic w® for all views. The matrix C encodes the imposed set of constraints.
Since these equations are satisfied for the exact solution, this solution will be an isolated
solution of this system of equations if and only if any arbitrary small change to the solution
violates at least one of the conditions of Equation 12. Using Equation 5 a small change

can be modeled as follows:

dw ,
Cdw =C [d_Q] dQ = C'dQ (13)

with Q = [Q11090019031 0309140204Q34] " and the Jacobian [%] evaluated at the solution.
To have the expression of Equation 13 different from zero for every possible df2, means
that the matrix C' should be of rank 8 ( C’ should have a right null space of dimension 0).
In practice this means that all singular values of C' should significantly differ from zero,
else a small change of the absolute quadric proportional to right singular vectors associated
with small singular values will almost not violate the self-calibration constraints.

To use this method on results calculated from a real sequence the camera matrices P
should first be adjusted to have the calculated solution become an exact solution of the
self-calibration equations.

4 Overview of the Reconstruction Algorithm

The proposed self-calibration method is embedded in a system to automatically model
metric reconstructions of rigid 3D objects from uncalibrated video sequences. The complete
procedure for metric 3D reconstruction is summarized here.

1. Corners are matched between the different images of the sequence and the projective
camera matrices Py are robustly estimated from them. A more detailed explanation
of this approach can be found in [1].

2. Self-Calibration
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(a) First the focal lengths fj are estimated using the linear algorithm (assuming
that there is no skew and that the principal point is in the middle of the image).
These results are refined using the nonlinear algorithm (same assumptions).

(b) (optional) Not only f, but also the principal points (u, vg) are estimated for

all the views. As initialization the simplified (biased) version with P; = [I0]
can be used. This should however be refined with the non-biased version of the
algorithm.

(c) Upgrade from projective Py to metric using the obtained absolute quadric.

3. Estimation of dense correspondence maps using the known epipolar geometry. The
epipolar geometry is enough to yield a pairwise image rectification where all epipo-
lar lines lay along the image scan lines. Dense correspondence matches are then
computed along each scan line using hierarchical blockmatching and dynamic pro-
gramming [2].

4. Reconstruction of a dense 3D model based on metric P, and dense correspondence
maps. The dense image matches are triangulated in space using the now calibrated
cameras and a textured 3D surface model is obtained that can easily be loaded into
computer graphic systems for realistic rendering [9].

5 Experiments

In this section a number of experiments are described. First some synthetic image se-
quences were used to assess the quality of the algorithm under simulated circumstances.
Both the amount of noise and the length of the sequences were varied. Then results are
given for two outdoor video sequences. Both sequences were taken with a standard semi-
professional camcorder that was moved freely around the objects. Sequence 1 was filmed
with constant camera parameters —like most algorithms require. The new algorithm —which
doesn’t impose this— could therefore be tested on this. The results confirmed the validity of
the algorithm. A second sequence was recorded with varying internal camera parameters.
A zoom factor (2x) was applied while filming. The resulting reconstructions are visu-
ally convincing and preserve the metric properties of the original scenes (i.e. parallelism,
orthogonality, .. .).

5.1 Simulations

The simulations were carried out on sequences of views of a synthetic scene. The scene
consisted of 50 points uniformly distributed in a unit sphere with its center at the origin.
The internal camera parameters were chosen as follow. The focal length was different for
each view, randomly chosen with an expected value of 2.0 and a standard deviation of 0.5.
The principal point had an expected value of (0,0) and a standard deviation of 0.1v/2. In
addition the synthetic camera had an aspect ratio of one and no skew. The views were
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Figure 1: Example of sequence used for simulations (the views are represented by the image
axis and optical axes of the camera in the different positions.)

taken from all around the sphere and were all more or less pointing towards the origin. An
example of such a sequence can be seen in figure 1.

The scene points were projected into the images. Gaussian white noise with a known
standard deviation was added to these projections. Finally, the self-calibration method
proposed in this report was carried out on the sequence. For the different algorithms the
metric error was computed. This is the mean deviation between the scene points and their
reconstruction after alignment. The scene and its reconstruction are aligned by applying
the metric transformation which minimizes the difference between both. For comparison
the same error was also calculated after alignment with a projective transformation). By
default the noise had an equivalent standard deviation of 1.0 pixel for a 500 x 500 image.
To obtain significant results every experiment was carried out 10 times and the mean was
calculated.

To analyze the influence of noise on the algorithms values of 0, 0.1, 0.2, 0.5, 1, 1.5 and
2 pixels noise were used on sequences of 6 views. The results can be seen in Figure 2. It
can be seen that for small amounts of noise the more complex models should be preferred.
If more noise is added, the simple model gives the best results. This is due to the low
redundancy of the system of equations for the models which, beside the focal length, also
try to estimate the position of the principal point.

Another experiment was carried out to evaluate the performance of the algorithm for
different sequence length. Sequences ranging from 4 to 40 views were used. The results
are shown in Figure 3.

5.2 Sequence 1

The first sequence showing part of an old castle was filmed with a fixed zoom/focus. It
is therefore a good test for the algorithms presented in this report to check if they indeed
return constant intrinsic parameters for this sequence. In Figure 4 the images 0, 4, 8, 14,
and 20 of the 24 images of the sequence are shown.

In the left plot of Figure 5 the focal length for every view is plotted for the different
algorithms. The calculated focal lengths are almost constant as it should be. In the right
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Figure 4: Some of the Images of the Arenberg castle which were used for the reconstruction
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Figure 5: focal length (in pixels) versus views for the different algorithms (left), position
of the principal point in the images for the different algorithms (right)

angle (+std.dev.)
parallellism 1.0 £ 0.6 degrees
orthogonality | 92.5 4+ 0.4 degrees

Table 2: Results of metric measurements on the reconstruction

plot the position of the principal point is plotted for the different algorithms (for every
view). It can be seen that when the principal point is not fixed by the algorithm, it varies
over a few tens of pixels. In this case it seems the projective calibration was not accurate
enough to allow an accurate retrieval of the principal point and it could be better to stick
with the simplified algorithm.

To judge the visual quality of the reconstruction, different perspective views of the
model were computed and displayed in Figure 6. The result is rather convincing, although
at the moment only a partial model from a single image pair in a single view point is
reconstructed. The metric quality of the reconstruction can be checked by projecting
orthographic views from the main object axis top, left, and right as seen in Figure 7. The
model shows a good degree of parallelism and orthogonality.

A quantitative assessment of these properties can be made by explicitely measuring
angles directly on the object surface. For this experiment 6 lines were placed along promi-
nent surface features, three on each object plane. They are aligned with the windows as
indicated in Figure 8 by the black lines. The three lines inside of each object plane should
be parallel to each other (angle between them should be 0 degree), while the lines of dif-
ferent object planes should be perpendicular to each other (angle between them should be
90 degree). The measurement on the object surface shows that this is indeed close to the
expected values (see Table 2).

14



Figure 6: Perspective views of reconstruction

5.3 Sequence 2

This sequence shows a stone pillar with curved surfaces. While filming and moving away
the zoom was changed to keep the image size of the object constant. The focal length was
not changed between the two first images, then it was changed more or less linearly. From
the second image to the last image the focal length has been doubled (if the markings on
the camera can be trusted). The sequence (8 images) can be seen in Figure 9. Notice that
the perspective distortion is most visible in the first images (wide angle) and diminishes
towards the end of the sequence (longer focal length).

In the left plot of Figure 10 the focal length for every view is plotted for the different
algorithms. It can be seen that the calculated values of the focal length correspond to
what could be expected. In the right plot the position of the principal point is plotted for
the different algorithms (for every view). For the algorithm which is not biased in favor of
the first view the motion is smaller, which is more realistic. It is probable that too much
noise is present to allow us to estimate the principal point accurately.

In Figure 11 a perspective view of the reconstruction is given, rendered both shaded and
with surface texture mapping. The shaded view shows that even most of the small details
of the object are retrieved. Figure 12 shows a left and a right side view of the reconstructed
object. Although there is some distortion at the outer boundary of the object, a highly
realistic impression of the object is given. Note the arbitrarily shaped free-form surface
that has been reconstructed.
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Figure 7: Orthographic views of reconstruction (notice parallelism and orthogonality)

Figure 8: Lines used for quantitative assessment of parallellism and orthogonality (super-
imposed in black)
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Figure 9: Sequence 2
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Figure 10: focal length (in pixels) versus views for the different algorithms (left), position
of the principal point in the images for the different algorithms (right)
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Figure 11: Perspective view of the reconstruction (with texture and with shading).

Figure 12: Left and right perspective view of the reconstruction.
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Figure 13: Comparison between real and reconstructed object distances: reference lines
superimposed in black (left), measurements of absolute scale for all lines (right).

A quantitative assessment of the metric properties for the pillar is not so easy because
of the curved surfaces. It is, however, possible to measure some distances on the real
object as reference lengths and compare them with the reconstructed model. In this case
it is possible to obtain a measure for the absolute scale and verify the consistency of the
reconstructed length within the model. For this comparison a network of reference lines was
placed on the original object and 27 manually measured object distances were compared
with the reconstructed distances on the model surface, as seen in Figure 13. From each
comparison the absolute object scale factor was computed and plotted as function of the
evaluated line number. Due to the increased reconstruction uncertainty at the outer object
silhouette some distances show a larger error than the interior points. This accounts for the
outliers. Averaging all 27 measured distances gave a consistant scale factor of 40.25 (solid
line) with a standard deviation of 5.4% overall (dotted line). For the interior distances,
the reconstruction error dropped to 2.3%. These results demonstrate the metric quality of
the reconstruction even for complicated surface shapes and varying focal length.

6 Conclusions

This report focussed on self-calibration and metric reconstruction in the presence of varying
and unknown internal camera parameters. The calibration models used in previous research
are on one hand too restrictive in real imaging situations (constant parameters) and on the
other hand too general (all parameters unknown). The more pragmatic approach which is
followed in this report results in more flexibility.

A counting argument was derived which gives the minimum number of views needed for
self-calibration depending on which constraints are used. We proved that self-calibration
is possible using only the most general constraint (i.e. that image rows and columns are
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orthogonal). Of course if more constraints are available, this will in general yield better
results.

A versatile self-calibration method which can work with different types of constraints
(some of the internal camera parameters constant or known) was derived. This method
was then specialized towards the practically important case of a zooming/focusing camera
(without skew and an aspect ratio % = 1). Both known and unknown principal point
were considered. It is proposed to always start with the principal point in the center of the
image and use the linear algorithm. The non-linear minimization is then used to refine the
results, possibly —for longer sequences— allowing the principal point to be different for each
image. This can however degrade the results if the projective calibration was not accurate
enough, the sequence not long enough, or the motion sequence critical towards the set
of constraints. As for all self-calibration algorithms it is important to deal with critical
motion sequences. In this report a general method is proposed which detects critical and
quasi-critical motion sequences.

The different methods are validated with experiments which are carried out on real as
well as synthetic image sequences. The latter ones are used to analyze noise sensitivity
and influence of the length of the sequence. The former ones show the practical feasibility
of the approach.

In the future several problems will be investigated more in depth. Some work is planned
on attaching a weight to different constraints. For example, the skew can be very accurately
assumed to be zero, whereas the principal point is only known to lay somewhere around
the center of the image. Also the critical motion sequence detection should be incorporated
in the algorithm and be used to predict the accuracy of the results.
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