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Abstract

To obtain a Euclidean reconstruction from images the cameras have to be cali-
brated. In the last years different approaches have been proposed to avoid explicit
calibration. The problem with these methods is that a lot of parameters have to be
retrieved at once. Because of the non-linearity of the equations this is not an easy
task and the methods often fail to converge.

In this paper a stratified approach is proposed which allows to first retrieve the
affine calibration of the camera using the modulus constraint. Having the affine cali-
bration it is easy to upgrade to Euclidean. The important advantage of this method
is that only three parameters have to be evaluated at first. From a practical point
of view, the major gain is that an affine reconstruction is obtained from arbitrary
sequences of views, whereas so far affine reconstruction has been based on pairs of
views with a pure translation in between.

A short illustration of another application is also given. Once the affine calibration
is known, the constraint can be used to retrieve the Euclidean calibration in the
presence of a variable focal length.

1 Introduction

Several researchers have shown the possibility of calibrating a camera from correspondences
between several views of the same scene. These methods are based on the rigidity of the
scene and on the constancy of the internal parameters. Maybank [9] and Faugeras [3]
extracted two quadratic constraints in the five unknown internal parameters for each pair
of views. Solving these equations needs high accuracy computations. The number of
potential solutions grows exponentially with the number of views which makes this method
intractable for a large number of views. Recently Zeller et al [18] proposed a more robust
method to solve these constraints. Heyden [7] came up with a variant of this approach. An
alternative method was proposed by Hartley [6] who solved for the eight unknowns of the
affine and Euclidean calibration at once. This method was more robust and worked better

*IWT fellow (Flemish Institute for the Promotion of Scientific-Technological Research in Industry)



with a large number of views. The disadvantage is that the method fails to converge if
the initialization isn’t near to the final solution which isn’t easy to guarantee in an eight
parameter space '.

This problem prompted a stratified approach, where an affine reconstruction is obtained
first and used as the initialization towards Euclidean reconstruction. Such a method has
been proposed by Armstrong et al [1] based on the work of Moons et al [10].

Also in this paper a stratified approach is given which first retrieves the affine calibration
of the cameras using the modulus constraint and then uses additional constraints to upgrade
the calibration to Euclidean. The advantage of this method compared to Hartley’s is that
the non-linear minimization only takes place in a three dimensional parameter space which
means in practice that we can always converge to the optimal solution. Armstrong’s method
requires a pure translation which might be difficult to achieve with a hand-held camera,
for instance. Allowing general motions is thus one of the main advantages of the method
proposed in this paper.

The modulus constraint can also be used in another way. Having the affine calibration
it is possible to retrieve a varying parameter. The method to cope with a varying focal
length is briefly outlined in this article (for details see [13, 14]).

2 Euclidean, affine and projective cameras

In this paper a pinhole camera model will be used. Central projection forms an image on a
light-sensitive plane. The following equation expresses the relation between image points
and world points.

ik, = PpM; (1)

Here Py is a 3 x 4 camera matrix, m;; and M; are column vectors containing the homoge-
neous coordinates of the image points resp. world points, \;; expresses the equivalence up
to a scale factor.

Now the camera model of Equation (1) will be specialized to the case where the Eu-
clidean calibration is known. From there the affine and projective case and the relations
between all these strata will be highlighted.

The projection matrices of the same Euclidean camera for different views can be rep-
resented as follows

PEk = /\kK[Rk‘—Rktk] (2)

with K the calibration matrix, with Ry and t; representing the orientation and position
with respect to the first camera and with \; a random scale factor because a projection

Lcertainly not for the affine calibration parameters which are not fixed for a camera unlike the internal
camera parameters



matrix is only defined up to scale. K is an upper triangular matrix of the following form:

.S U
K= Tyt Uy (3)
1

with r, and r, the pixel dimensions, v = (uy, u,) the principal point and s a skew factor.
Having only an affine calibration of the cameras means that one doesn’t know what the
calibration matrix K is. Therefore the most evident choice is to take P41 = [I|0]. Which
means that the affine projection matrices can be obtained from the Euclidean ones by the
following transformation
-1
Tup = l 0 ] (4)

This yields the following affine projection matrices

Py = A[I]O] (5)
Pau = M [KRkK‘l\—KRktk] . (6)

From these equations one can notice that the left 3 x 3 part of the matrices P 4, —which
will be called P ar further on— is conjugated to the scaled rotation matrix A\yRy and hence
all eigenvalues must have equal moduli (=)). This is the modulus constraint which will
be used further on.

What can be retrieved in practice are projection matrices which are defined up to a
projective transformation [2]. Choosing Pp; = [I|0] does not completely determine the
other projection matrices. There are still 4 degrees of freedom left 2. Projective projection
matrices of the following form can be assumed:

Ppi = M\[I]0] (7)
Ppy Ak [pkij\pm] : (8)

To go from projective camera matrices to affine camera matrices the following transforma-
tion must exist:
. I 0
PAk:PPkTAP with TAPZ l ] . (9)
a Qa4
In the above equation a = [ay ay a3] is a vector containing 3 parameters and a4 is a pa-
rameter that can arbitrarily be put to 1, thereby fixing the absolute scale factor of the 3D
3
scene °.

2A projective transformation has 15 degrees of freedom. Fixing one camera projection matrix up to
scale reduces the number of degrees of freedom by 11.

3This scale factor can never be retrieved in a fully uncalibrated environment. There is no difference in
seeing small objects from nearby and big objects from far away, which is the reason why reconstructions
are always up to a similarity transformation.



3 The modulus constraints for affine calibration

In this section it will be demonstrated how projective cameras can be upgraded to affine
cameras by the use of the modulus constraint. The projective camera matrices can be
retrieved using methods described in the literature (see for example Rothwell et al [16]).
These are related to the affine ones by Equation (9). On the other hand the affine cam-
eras are also related to the Euclidean ones through Equation (6), leading to the modulus
constraint. This means that the modulus constraint must be valid for the affine camera
matrices given in Equation (9) and thus can be used to determine T,p. To make the
constraint explicit we write down the characteristic equation of P 4:

det (Par — ML) = aX® + X’ + cA+d =0 . (10)

In the previous equation a, b, ¢, d represent first order polynomials in a;,as and as. The
modulus constraint imposes that the roots of Equation (10) |A1| = [A2| = |As| (= Ax). This
constraint is not easy to impose, but the following constraint can be derived from it (see
Appendix A):

ac® = b*d (11)

Filling in a, b, ¢, d in Equation (11), one obtains a 4*" order polynomial equation in ay, a, as.
In fact one gets such a constraint for any camera except the first (reference) camera. The
unknowns a1, as, a3 being the same for all cameras, one can find a finite number of solutions
for four cameras. For more one will in general only have one solution. A solution to these
equations can for example be found by using a Levenberg-Marquardt algorithm. In practice
once a solution is found it can be checked for the modulus constraint, which is more stringent
than Equation (11). Most often this yields only one possible solution even for only four
views.

Having a1, ag, a3 it is easy to bring everything in an affine framework. Affine projection
matrices can directly be obtained from Equation (9). Points from the projective reconstruc-
tion can be transformed to the affine frame by using T 4p. Finally the infinity homography
H .1 which indicates the transformation of the plane at infinity from the first view to the
k™. can be retrieved as follow:

Ho = Ppy l ! ] . (12)

4 Euclidean calibration from affine

To upgrade the reconstruction to Euclidean the camera calibration matrix K is needed.
This is equivalent to knowing the image B of the dual of the absolute conic, since B =
KK '. For every image k the following constraint must be valid:

k1xB = HixoBH |, (13)



with Hyye the infinity homography between the two images. Scaling Hio, (which is known
up to scale from the affine calibration) to obtain det Higo, = 1 forces k1, = 1 and yields
a set of linear equations in the coefficients of B. K can be obtained from B by cholesky
factorization.

5 Degenerate cases

One has to pay attention to degenerate cases because they often occur in practice. As a
first example take translational motions which immediately yield an affine reconstruction,
but only this kind of motion will never allow the retrieval of the internal parameters of a
camera. Intuitively one can see that e.g. some comparison between measurements taken
along the z- and the y-axis is necessary to determine the aspect ratio.

Now we will give a more strict proof of degeneracy for planar motion. To upgrade a
calibration from affine to Euclidean one uses the fact that the absolute conic is a fixed
entity of the plane at infinity. It turns out that it is more practical to work with the dual
of the absolute conic B = KK'. Imposing that the absolute conic stays put in spite of
the motion is equivalent with the following constraint:

B=H,BH_ (14)

For a planar movement these equations will not yield a unique solution (up to scale), but
one will be left with at least a one parameter family of solutions. A planar motion means
that any rotation occurring will have a rotation axis perpendicular on the plane of motion.
For all these motions the same point at infinity will stay put (i.e. Hoopoo = APoo, With pso
the vanishing point of the rotation axes). This means that also p,p., will be a solution of
Equation (14)

PooPoo = HoePooDooHog (15)

and hence any linear combination of B and p..pl, will satisfy Equation (14). Hence, one
will not be able to recover B uniquely. Notice that pure translation keeps the whole plane
at infinity constant and hence Equation (14) is not a constraint anymore (H,, = I).

In conclusion one can say that attention has to be paid to the choice of image sequences
which are used for self-calibration. It is important that the motion is “rich” enough to
allow the identification of the internal camera parameters. For example the sequence
used by Hartley [6] was degenerated. One can easily see from the images that the only
motion occuring is a rotation around a central axis. Sometimes it is possible to cope with
these degeneracies by using additional constraint like the orthogonality of the camera axes
or a known aspect ratio. However, the orthogonality often appears to be a degenerated
constraint while the aspect ratio is often not accurately known before calibration.



6 Another application: Euclidean calibration with a
variable focal length

The modulus constraint can also be used for other purposes than affine calibration. A more
complete description of this method can be found in [13]. The constraint depends on two
conditions: the affine calibration and the constancy of the internal parameters. For each
view except the first we get a valid constraint. This means that instead of “spending”
the constraint on solving for affine calibration one can in the traditional scheme —where
such calibration amounts from translation between the first two views— use the constraint
to retrieve one changing parameter for each supplementary view. The most practical
application is to allow the focal length to vary.

The first step is to model the effect of changes in focal length. These changes are
relatively well described by scaling the image around the principal point v which can be
expressed as follow:

(f =D,
(f7' = Duy (16)

f—l
with my, the points that one would have seen without change in focal length, m;. the
image points for some relative focal length f, K; being the transformation between both.

The first thing to do is to retrieve the principal point u. Fortunately, this is easy for
a camera with variable focal length, u being the only fixed point when varying the focal
length without moving the camera. The affine camera calibration can for example be
retrieved from two views with a different focal length and a pure translation between the
two views, using the method described in [13].

From that point on we can use the modulus constraint to retrieve the focal length for
supplementary views. This makes it possible to transform each image back to a normalized
image (by canceling the change in focal length). From there one can use the method
described in section 4 to get a full Euclidean calibration.

The modulus constraint is only valid for a normalized affine camera. By normalized
it is meant that the change in focal length has been canceled. Stated differently the
modulus constraint must be valid for a camera matrix P4,y = K;lP Ak- Writing down the
characteristic equation we get an equation like Equation (10). Substituting the obtained
coefficients in Equation (11) we obtain a 4™ order polynomial in f:

S = O

1
mfik:Kfmik with Kf: 0
0

Od4f4 + 063f3 + C¥2f2 + C¥1f + oy = 0 (17)

This gives 4 possible solutions. It can be proven that if f is a real solution, then —f must



also be a solution*. Imposing this to Equation (17) yields the following result:

631

f= (18)

(073 )
Now that we have retrieved f we can use KJTI to get normalized images and cameras. Then
we can simply use the method described in section 4 to get a Euclidean calibration.

7 Experiments

In this section some results of self-calibration are given, both for the general motion method
and the method allowing a variable focal length. For the first method experiments on
synthetic data are presented. Results are compared with Hartley’s [6]. The method is
shown to work properly in the presence of realistic amounts of noise. For the second
method results obtained from real data are shown. A 3D reconstruction of a scene is given
which exhibits the Euclidean attributes of the real scenes (i.e. right angles, ...).

7.1 Experiment with general motion

For the method applicable with general motion —in particular affine reconstruction without
relying on translation— two experiments will be presented here. One with a small number
of views and one with a larger number of views.

For both experiments the scene consisted of 50 points randomly scattered in a sphere
of radius 1 unit. The cameras were given random orientations and were placed at varying
distances from the center of the sphere at a mean distance from the center of 2.5 units
with a standard deviation of 0.25 units. They were placed in such a way that the principal
rays of the cameras passed through randomly selected points on a sphere of radius 0.1
units. The calibration matrix was given a known value to be able to asses the quality of
the calibration afterwards. Normal noise with different standard deviations was added to
the image projections of the scene points to analyze the robustness of the method to noise.
This experimental setup is the same as the one used by Hartley [6] with 15 views. To ease
the comparison the same layout was used for the results.

The first experiment was carried out on 4 views °. The results can be seen in Table 1.
For the meaning of the parameters the reader is referred to Section 2. The first line
gives the exact values, subsequent lines give the results obtained with different levels of
noise. One can see that even for serious amounts of noise qualitatively good results can be
obtained. These can not immediately be compared to Hartley’s because he used another
experimental setup and only 3 views, but still the degradation of the calibration seems to
be much smaller than with his method for a small number of views. Because of the low

4This is because the only constraint imposed is the modulus constraint (same modulus for all eigenval-
ues). A mirroring of the scene does not change the modulus of the eigenvalues, only the sign. Changing
the sign of f has the same effect.

54 views being the minimum to retrieve the Euclidean calibration using this technique
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dimensionality of the parameter space convergence was easily obtained without the need
for any prior knowledge that would allow to start near the final solution.

: =) = o)
Noise |  uy Uy T skew | r;' /T,

- 500.00 | 400.00 10016.00 -5.00 | 0.9000
0.0 | 494.86 | 402.08 | 1035.15 | -16.11 | 0.8889
0.5 | 490.64 | 402.16 | 1058.26 | -23.30 | 0.8812
1.0 | 474.98 | 403.35 | 1152.03 | -59.65 | 0.8491
2.0 | 458.27 | 410.47 | 1180.29 | -49.99 | 0.8372
4.0 | 438.56 | 396.44 | 1360.70 | -97.95 | 0.7856

Table 1: Calibration results for 4 views

The second experiment is the same as the previous one, but carried out on 15 views.
Having a large number of views gives a lot of redundancy which allows a more precise
calibration. This can be seen from the results of Table 2 which are significantly better than
the ones from Table 1. The results are comparable with Hartley’s although somewhat less
precise for higher levels of noise. This is probably due to the fact that at the moment only
linear methods were used to compute the projective reconstruction.

Noise | u, Uy r,l | skew |7t /r.!
0.0 | 500.00 | 400.00 | 1000.00 | -5.00 | 0.9000
0.5 | 502.01 | 401.14 | 1000.89 | -5.10 | 0.9000
1.0 |499.33 | 398.25 | 997.88 | -5.74 | 0.8992
2.0 |501.64 | 397.79 | 978.04 | 1.37 | 0.9044

4.0 |495.15 | 410.18 | 960.31 | -8.24 | 0.8902

Table 2: Calibration results for 15 views

7.2 Experiment with variable focal length

Here some results obtained from a real scene are presented. The scene consisted of two
boxes and a cup. The images that were used can be seen in figure 1. The scene was
chosen to allow a good qualitative evaluation of the Euclidean reconstruction. The boxes
have right angles and the cup is cylindrical. These characteristics must be preserved by
a Fuclidean reconstruction, but will in general not be preserved by an affine or projective
reconstruction.

First Zhang’s corner matcher [4] was used to extract point correspondences between the
three images. From these the method allowing varying focal lengths was used to obtain a
Euclidean calibration of the cameras. Subsequently, an algorithm [15] was used to compute
dense point correspondences. These were used to build the final 3D reconstruction using
the previously recovered calibration.



Figure 1: The 3 images that were used to build a Euclidean reconstruction. The camera
was translated between the first two views (the zoom was used to keep the size more or less
constant). For the third image the camera was also rotated.

Figure 2: different views of the reconstruction.

Figure 2 shows three views of the reconstructed scene®. The left image is a front view,
the middle image a top view, while the right image is a side view. Note especially from the
top view, that 90° angles are preserved and that the cup keeps its cylindrical form which
is an indication of the quality of the Fuclidean reconstruction.

8 Conclusion and further work

In this paper the modulus constraint was proposed as a new constraint for self-calibration.
An important result is the ability to obtain an affine calibration from a single moving
camera undergoing general motion (i.e. not restricted to pure translation as in Moons et
al [10]). From there on it is easy to get a Euclidean reconstruction. In contrast to the
methods of Maybank, Faugeras, Luong, Zeller [3, 9, 18], Hartley [6] and Heyden [7], this
method has the advantage of requiring a non-linear optimization in only three variables
which reduces convergence problems. Results seems to be better than Hartley’s on short
sequences and comparable on longer ones. Another possibility offered by the modulus
constraint is Euclidean calibration in the presence of a varying focal length. This alternative

6We preferred shading to the projection of the original texture on the model because this gives a better
impression of the 3D structure.



use of the modulus constraint was worked out in Pollefeys et al [13, 14].

A short discussion of some degenerated cases for the Euclidean calibration problem was
given. It seems that if a sequence is restricted to planar motion no complete Euclidean
calibration is possible using the standard constraints, things become worse if the motion
is restricted to translation. It is important to be aware of these problems when one uses
self-calibration methods.

Some further work is required to get a more robust implementation of the methods
presented in this paper. Better results can be expected by using non-linear refinement of
the projective cameras which were used as a starting point for the presented methods. Also
a combination of the different methods for self-calibration could help.

A further ideas is to exploit the special form of ac® = b*d (Eq. (11)) to ease convergence
by even further reducing the dimension of the non-linear optimization problem. Indeed,
a = —1 being trivial, b,c,d (from one of the constraints) can be substituted to ay, as, as
yielding a trivial equation d = —c®b~3 leaving only b and ¢ as unknowns. It will also be
investigated if the modulus constraint could yield an affine calibration using only 3 images.
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A equation for eigenvalues from P 4

Here Equation (10) is elaborated in detail by filling in Equation (10):
det (Pag — M) = aX® + b2 + A +d =0
yields with p;; as the coefficients of P py,
= -1
b = piaai + paas + p3aasz + pi1 + P22 + P33
c = (P24p12 + P34P13 — D14P33 — p14p22)a1
+(P23p34 + P21P14 — P2aP33 — P11p24)a2
+(p24P32 + P31P14 — P22P34 — P11P34)03
+p21P12 + P31P13 + P23P32 — P11P22 — P11P33 — P22P33 (19)
d = (—D2aP12P33 + P14P22P33 — P14D23P32 + P24P13P32 + P34P12P23 — P3aP13P22) 01
(—P11P23P34 + P21P13P34 — P31P13P24 — P21P14P33 + P31D14P23 + P11P24P33) o

(—P21P12P34 + P31P12D24 + P11P22P34 + P21P14P32 — Pr1DP24P32 — P31P14P22) 03
+D21P13P32 + P11P22P33 — P11P23P32 — P21P12P33 + P31P12P23 — P31P13P22
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B constraint on a,b,c,d

The roots of Equation (10) must obey |A1| = [Ao| = |A3]. A general condition on a,b,c,d
for this to hold is derived next. A third order polynomial can be writen as follows.

aX + 002+ cd+d=ald— X)X = X)X = X3) (20)

From Equation (20) the following relations follow:

b
)\1+/\2+)\3 = —a (21)
Ao+ As) + Aods = 2 (22)
d
)\1/\2)\3 = —— (23)
a
We want to derive a necessary condition for |A;| = [Ao| = |As]. If we choose A\; to be real

(A2 and A3 can be either real or complex), the following equivalence must be true.
A2 = Ay (24)

Rewriting (22) using (21) and (24) yields

b c
)\1(—g—)\1)+)\%= o (25)
or .
substituting (24) in (23) implies
d
A= - (27)

Eliminating \; from the Equations (26) and (27) gives a necessary condition that is only
depending on a, b, ¢, d.
ac® = b*d (28)
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