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ABSTRACT

Modeling of three-dimensional (3D) objects from image sequences is a challenging problem and has been a research
topic for many years. Important theoretical and algorithmic results were achieved that allow to extract even complex 3D
models of scenes from sequences of images. One recent effort has been to reduce the amount of calibration and to avoid
restrictions on the camera motion. In this contribution an approach is described which achieves this goal by combining
state-of-the-art algorithms for uncalibrated projective reconstruction, self-calibration and dense correspondence matching.

1 INTRODUCTION

Obtaining 3D models from objects is an ongoing research topic. A few years ago the main applications were robot
guidance and visual inspection. Nowadays however the emphasis is shifting. There is more and more demand for 3D
models in computer graphics, virtual reality and communication. This results in a change in emphasis for the requirements.
The visual quality becomes one of the main points of attention. The acquisition conditions and the technical expertise of
the users in these new application domains can often not be matched with the requirements of existing systems. These
require intricate calibration procedures every time the system is used. There is an important demand for flexibility in
acquisition. Calibration procedures should be absent or restricted to a minimum. Additionally, the existing systems are
often built around specialized hardware (e.g. laser range scanners or stereo rigs) resulting in a high cost for these systems.
Many new applications however require robust low cost acquisition systems. This stimulates the use of consumer photo-
or video cameras.

Other researchers have presented systems for extracting 3D shape and texture from image sequences acquired with a
freely moving camera. The approach of Tomasi and Kanade(1992) used an affine factorization method to extract 3D
from image sequences. An important restriction of this system is the assumption of orthographic projection. Debevec et
al.(1996) proposed a system that starts from an approximate 3D model and camera poses and refines the model based on
images. View dependent texturing is used to enhance realism. The advantage is that only a restricted number of images
are required. On the other hand a preliminary model must be available and the geometry should not be too complex.

In this paper we present a system which retrieves a 3D surface model from a sequence of images taken with off-the-shelf
consumer cameras. The user acquires the images by freely moving the camera around the object. Neither the camera
motion nor the camera settings have to be known. The obtained 3D model is a scaled version of the original object
(i.e. a metric reconstruction), and the surface texture is obtained from the image sequence as well. Our system uses full
perspective cameras and does not require prior models nor calibration. The complete system combines state-of-the-art
algorithms to solve the different subproblems: projective reconstruction, self-calibration and dense depth estimation.

Projective Reconstruction: It has been shown by Faugeras (1992) and Hartley et al. (1992) that a reconstruction up to an
arbitrary projective transformation was possible from an uncalibrated image sequence. Since then a lot of effort has been
put in reliably obtaining accurate estimates of the projective calibration of an image sequence. Robust algorithms were
proposed to estimate the fundamental matrix from image pairs, e.g. Torr (1995) or Zhang et al. (1995). Based on this,
algorithms which sequentially retrieves the projective calibration of a complete image sequence have been developed, e.g.
Beardsley et al. (1997).

Self-Calibration: Since a projective calibration is not sufficient for many applications, researchers tried to find ways to
automatically upgrade projective calibrations to metric (i.e. Euclidean up to scale). Typically, it is assumed that the same
camera is used throughout the sequence and that the intrinsic camera parameters are constant. This proved a difficult
problem and many researchers have worked on it (Faugeras et al., 1992, Hartley, 1993, Pollefeys and Van Gool, 1999,
Triggs, 1997). One of the main problems is that critical motion sequences exist for which self-calibration does not result�
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in a unique solution (Sturm, 1997). Recently a more pragmatic approach(Pollefeys et al, 1999a) which assumes that some
parameters are (approximately) known but which allows others to vary was proposed. Therefore this approach can deal
with zooming/focusing cameras.

Dense Depth Estimation: Since the calibration of the image sequence can be estimated, stereoscopic triangulation tech-
niques between image correspondences can be used to estimate depth. The difficult part in stereoscopic depth estimation
is to find dense correspondence maps between the images. The correspondence problem is facilitated by exploiting con-
straints derived from the calibration and from some assumptions about the scene. An approach that combines local image
correlation methods with a dynamic programming approach to constrain the correspondence search is used (Cox et al.,
1996, Koch, 1996, Falkenhagen, 1997). To obtain a better accuracy a multi-view approach was developed (Koch et al.,
1998).

This paper is organized as follows: In section 2 a general overview of the system is given. In the subsequent sections
the different steps are explained in more detail: projective reconstruction (section 3), self-calibration (section 4), dense
matching (section 5) and model generation (section 6). Section 7 concludes the paper.

2 OVERVIEW OF THE METHOD

The presented system gradually retrieves more information about the scene and the camera setup. The first step is to
relate the different images. This is done pairwise by retrieving the epipolar geometry. An initial reconstruction is then
made for the first two images of the sequence. For the subsequent images the camera pose is estimated in the projective
frame defined by the first two cameras. For every additional image that is processed at this stage, the interest points
corresponding to points in previous images are reconstructed, refined or corrected. Therefore it is not necessary that the
initial points stay visible throughout the entire sequence. The result of this step is a reconstruction of typically a few
hundred to a few thousand interest points and the (projective) pose of the camera. The reconstruction is only determined
up to a projective transformation.

The next step consist of restricting the ambiguity of the reconstruction to a metric one. In a projective reconstruction
not only the scene, but also the camera is distorted. Since the algorithm deals with unknown scenes, it has no way of
identifying this distortion in the reconstruction of the scene. Although the camera is also assumed to be unknown, some
constraints on the intrinsic camera parameters (e.g. rectangular or square pixels, constant aspect ratio, principal point in
the middle of the image, ...) can often still be assumed. A distortion on the camera mostly results in the violation of one
or more of these constraints. A metric reconstruction/calibration is obtained by transforming the projective reconstruction
until all the constraints on the cameras intrinsic parameters are satisfied.

At this point the system effectively disposes of a calibrated image sequence. The relative position and orientation of the
camera is known for all the viewpoints. This calibration facilitates the search for corresponding points and allows us to
use a stereo algorithm that was developed for a calibrated system and which allows to find correspondences for most of
the pixels in the images. From these correspondences the distance from the points to the camera center can be obtained
through triangulation. These results are refined and completed by combining the correspondences from multiple images.

Finally, a dense metric 3D surface model is obtained by approximating the depth map with a triangular wireframe. The
texture is obtained from the images and mapped onto the surface.

In figure 1 an overview of the system is given. It consists of independent modules which pass on the necessary infor-
mation to the next modules. The first module computes the projective calibration of the sequence together with a sparse
reconstruction. In the next module the metric calibration is computed from the projective camera matrices through self-
calibration. Then dense correspondence maps are estimated. Finally all results are integrated in a textured 3D surface
reconstruction of the scene under consideration. Throughout the rest of this paper the different steps of the method will
be explained in more detail.

3 PROJECTIVE RECONSTRUCTION

At first the images are completely unrelated. The only assumption is that the images form a sequence in which consecutive
images do not differ too much. Therefore the local neighborhood of image points originating from the same scene
point should look similar if images are close in the sequence. This allows for automatic matching algorithms to retrieve
correspondences. The approach taken to obtain a projective reconstruction is very similar to the one proposed by Beardsley
et al (1997).
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Figure 1: Overview of the system (the cameras are represented by little pyramids, the results of the dense matching are
accumulated in dense depth maps where light means close and dark means far).

3.1 Relating the Images

It is not feasible to compare every pixel of one image with every pixel of the next image. It is therefore necessary to
reduce the combinatorial complexity. In addition not all points are equally well suited for automatic matching. The local
neighborhoods of some points contain a lot of intensity variation and are therefore easy to differentiate from others. The
Harris corner detector (Harris and Stephens, 1988) is used to select a set of such points. Correspondences between these
image points need to be established through a matching procedure.

Matches are determined through normalized cross-correlation of the intensity values of the local neighborhood. Since
images are supposed not to differ too much, corresponding points can be expected to be found back in the same region
of the image. Therefore at first only interest points which have similar positions are considered for matching. When two
points are mutual best matches they are considered as potential correspondences.

Since the epipolar geometry describes the complete geometry relating two views, this is what should be retrieved. Com-
puting it from the set of potential matches through least squares does in general not give satisfying results due to its
sensitivity to outliers. Therefore a robust approach should be used. Our system incorporates the RANSAC (Fischler and
Bolles, 1981) approach implemented by Torr (1995). It consist of randomly selecting a minimal set of matches (i.e. 7 for
the fundamental matrix) and verifying the consistence of the other matches with the obtained solution. This procedure is
repeated until a solution is obtained with sufficient support. Once the epipolar geometry has been retrieved, one can start
looking for more matches to refine this geometry. In this case the search region is restricted to a few pixels around the
epipolar lines.

3.2 Initial Reconstruction

The two first images of the sequence are used to determine a reference frame. The world frame is aligned with the first
camera. The second camera is chosen so that the epipolar geometry corresponds to the retrieved
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Once the cameras have been fully determined the matches can be reconstructed through triangulation. The optimal method
for this is given in (Hartley and Sturm, 1997). This gives us a preliminary reconstruction.
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Figure 2: Image matches ( .0/ 132 4 .+/ ) are found as described before. Since the image points, .5/ 132 , relate to object points,6 / , the pose for view 7 can be computed from the inferred matches (
6 4 .5/ ).

3.3 Adding a View

For every additional view the pose towards the pre-existing reconstruction is determined, then the reconstruction is up-
dated. This is illustrated in figure 2. The first steps consists of finding the epipolar geometry as described in Section 3.1.
Then, from the image matches which correspond to already reconstructed points, 2D-3D matches are inferred. These are
used to compute the projection matrix 8)/ . This is done using a robust procedure similar to the one for retrieving the
epipolar geometry. In this case a minimal sample of 6 matches is needed to compute 89/ . Once 8:/ has been determined
the projection of already reconstructed points can be predicted. This allows to find some additional matches to refine the
estimation of 8:/ . This means that the search space is gradually reduced from the full image to the epipolar line to the
predicted projection of the point. Once the camera projection matrix has been determined the reconstruction is updated.
This consists of refining, correcting or deleting already reconstructed points and initializing new points for new matches.
This procedure only relates the image to the previous image. In fact it is implicitly assumed that once a point gets out of
sight, it will not come back. Although this is true for many sequences, it is certainly not always the case. Therefore, in
some cases it can be interesting to adapt the scheme so that more views are matched with the new view (Pollefeys, 1999,
Koch et al., 1999).

Once this procedure has been repeated for all the images, one disposes of camera poses for all the views and the recon-
struction of the interest points. In the further modules mainly the camera calibration is used. The reconstruction itself is
used to obtain an estimate of the disparity range for the dense stereo matching.

4 UPGRADING THE RECONSTRUCTION TO METRIC

The reconstruction obtained as described in the previous paragraph is only determined up to an arbitrary projective trans-
formation. This might be sufficient for some robotics or inspection applications, but certainly not for visualization or
metrology. The system uses a flexible self-calibration approach (Pollefeys et al, 1999a, Pollefeys, 1999) to restrict the
ambiguity on the reconstruction to metric (i.e. Euclidean up to scale). This approach allows the intrinsic camera param-
eters to vary during the acquisition. This feature is especially useful when the camera is equipped with a zoom or with
auto-focus.

It is outside the scope of this paper to discuss this method in detail. The general concept consist of translating constraints
on the intrinsic camera parameters to constraints on the absolute conic. Once this special conic is identified, it can be used
as a calibration pattern to upgrade the reconstruction to metric. Some reconstructions before and after the self-calibration
stage are shown. The left part of figure 3 gives the reconstruction before self-calibration. Therefore it is only determined
up to an arbitrary projective transformation and metric properties of the scene can not be observed from this representation.
The right part shows the result after self-calibration. At this point the reconstruction has been upgraded to metric.

5 DENSE DEPTH ESTIMATION

In the previous steps only a few scene points were reconstructed. Obtaining a dense reconstruction could be achieved by
interpolation, but in practice this does not yield satisfactory results. Small surface details would never be reconstructed
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Figure 3: Reconstruction before (left) and after (right) self-calibration.

Figure 4: Original image pair (left) and rectified image pair (right).

in this way. Additionally, some important features are often missed during the corner matching and would therefore not
appear in the reconstruction. These problems can be avoided by using algorithms which estimate correspondences for
almost every point in the images. Because the reconstruction was upgraded to metric, algorithms that were developed for
calibrated stereo rigs can be used.

5.1 Rectification

Since the calibration between successive image pairs was computed, the epipolar constraint that restricts the correspon-
dence search to a 1-D search range can be exploited. Image pairs are warped so that epipolar lines coinciding with the
image scan lines. The correspondence search is then reduced to a matching of the image points along each image scan-
line. This results in a dramatic increase of the computational efficiency of the algorithms by enabling several optimizations
in the computations.

For some motions (i.e. when the epipole is located in the image) standard rectification based on planar homographies is
not possible and a more advanced procedure should be used. The approach used in the presented system was proposed
in (Pollefeys et al. 1999b). The method combines simplicity with minimal image size and works for all possible motions.
The key idea is to use polar coordinates with the epipole as origin. A minima image size is achieved by computing the
angle between two consecutive epipolar lines to have the worst case pixel on the line preserve its area. figure 4 shows an
image pair and the associated rectified image pair.

5.2 Dense Stereo Matching

In addition to the epipolar geometry other constraints like preserving the order of neighboring pixels, bidirectional unique-
ness of the match, and detection of occlusions can be exploited. These constraints are used to guide the correspondence
towards the most probable scan-line match using a dynamic programming scheme (Falkenhagen, 1997).

For dense correspondence matching a disparity estimator based on the dynamic programming scheme (Cox et al., 1996),
is employed that incorporates the above mentioned constraints. It operates on rectified image pairs where the epipolar
lines coincide with image scan lines. The matcher searches at each pixel in the first image for maximum normalized
cross correlation in the other image by shifting a small measurement window (kernel size 5x5 to 7x7 pixel) along the
corresponding scan line. The selected search step size (usually 1 pixel) determines the search resolution. Matching
ambiguities are resolved by exploiting the ordering constraint in the dynamic programming approach (Koch, 1996). The
algorithm was further adapted to employ extended neighborhood relationships and a pyramidal estimation scheme to
reliably deal with very large disparity ranges of over 50% of image size (Falkenhagen, 1997). This algorithm that was at
first developed for calibrate stereo rigs could easily be used for our purposes since at this stage the necessary calibration
information had already been retrieved from the images.
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Figure 5: Dense depth map (light means near and dark means far).

5.3 Multi View Matching

The pairwise disparity estimation allows to compute image to image correspondence between adjacent rectified image
pairs, and independent depth estimates for each camera viewpoint. An optimal joint estimate is achieved by fusing all
independent estimates into a common 3D model. The fusion can be performed in an economical way through controlled
correspondence linking. The approach utilizes a flexible multi viewpoint scheme which combines the advantages of small
baseline and wide baseline stereo (Koch et al., 1998). The result of this procedure is a very dense depth map. Most
occlusion problems are avoided by linking correspondences from up and down the sequence. An example of such a very
dense depth map is given in figure 5.

6 BUILDING THE MODEL

The dense depth maps as computed by the correspondence linking must be approximated by a 3D surface representation
suitable for visualization. For this purpose a triangular mesh is overlaid on top of the depth map and the triangles are
backprojected in space according to the depth of the vertices. The original image itself can be used as a texture to enhance
realism. Note that in this case the problem of registering the texture with the 3D model is trivial. To avoid highlights and
other artefacts which could be present in the reference image a robust texture can be build-up through the same scheme as
was used to refine depth in the previous section. This is described more in detail in (Koch et al., 1998).

An example of the resulting model can be seen in figure 6. Some more views of the reconstruction are given in figure 7.
To further illustrate the flexibility of the system a second example is given. The 5 images seen in figure 8 were taken with
a simple photocamera and transfered to a PhotoCD. Feature points were extracted and matched automatically between
these images and the calibration was obtained as described in this paper. Next, a full surface model was computed from
this. These results are illustrated in figure 9. Due to the flexibility of the system, it could for example also be used to
reconstruct scenes from pre-existing video (Pollefeys, 1999) or to obtain the calibration required to construct plenoptic
models (Koch et al., 1999).

7 CONCLUSION

An automatic 3D scene modeling technique was discussed that is capable of building models from uncalibrated image
sequences. The technique is able to extract metric 3D models without any prior knowledge about the scene or the camera.
The calibration is obtained by assuming a rigid scene and some constraints on the intrinsic camera parameters (e.g.
square pixels). Future research will try to deal with more widely separated views and to obtain a better accuracy through
maximum likelihood estimation. Work also remains to be done to get more complete models by fusing the partial 3D
reconstructions.
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Figure 6: 3D surface model obtained automatically from an uncalibrated image sequence, shaded (left), textured (right).

Figure 7: Some detailed views of the reconstructed castle model.

Figure 8: Photographs which were used to generate a 3D model of a part of a Jain temple of Ranakpur.

Figure 9: Reconstruction of interest points and cameras (left), two detail views of the reconstructed model (right).
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