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Abstract

To obtain o FEuclidean reconstruction from images the cameras have to be cali-
brated. In recent years different approaches have been proposed to avoid explicit
calibration. In this paper a new method is proposed which is closely related to
some of the existing methods. Some interesting relations between the methods
are uncovered. The method proposed in this paper shows some clear advantages.
Besides some synthetic experiments a metric model is extracted from a video
sequence to illustrate the feasibility of the approach.

1 Introduction

Since a few years it has been shown that it is possible to recover constant intrin-
sic camera parameters from an uncalibrated image sequence. Translating this
theoretical possibility into a working implementation proved to be difficult and
several methods emerged. Most of them try to recover geometric entities whose
projection stays fixed throughout the sequence. These projections are directly
related to the camera intrinsic parameters.

For example Faugeras et al [?] and later on Zeller et al [?] used the absolute
conic. In their approach the supporting plane of this conic (i.e. the plane at
infinity) is eliminated from the equations. Heyden and Astrém [?] and Triggs [?]
proposed methods based on the absolute quadric. Other methods were proposed
by Hartley [?] and Pollefeys et al [?].

The approach followed in this article is based on the absolute conic and the
plane at infinity. Some nice relationships between this method and the methods
based on the absolute quadric will be uncovered. It seems that all these methods
are very similar. Our approach naturally results in a different way of dealing
with the scale factors which appear in the equations. This is one of its main
advantages.

Heyden and Astrom [?] consider these scale factors as additional unknowns
resulting in convergence problems with longer image sequences (i.e. more un-
known scale factors). Triggs [?] eliminates them by cross-multiplying compo-
nents, thereby introducing other disadvantages.



2 Basic principles

In this paper a pinhole camera model will be used. The following equation ex-
presses the relation between image points and world points.
Aigmyp = P M; (1)

Here Py, is a 3 x 4 camera matrix, m;; and M; are column vectors containing the
homogeneous coordinates of the image points resp. world points, \;; expresses
the equality up to a scale factor, in the remainder of the text this is replaced by

~

2.1 Projective geometry

The projective calibration of a camera setup can be retrieved from correspon-
dences between the images (see for example [?, ?, 7, ?]). These projective cam-
eras can be chosen as follow:

P, ~[1]0]

Pk ~ [H1k|e1k] (2)
with H;; the homography for some reference plane (the same for all views)
and the epipole e;; the projection in image k of the first camera position®
([0001]T). This representation is not unique. In fact the homographies for any

plane are valid in equation (??). The following transformation can be applied to
equation (??) without altering P;:
I0
T= [a U] 3)

with a = [a; as a3] indicating the change in orientation of the reference plane
and o the change in scale. Therefore the homographies for different planes are

related as follow:
Hj, ~H) +epa . 4)

The epipole stays of course unchanged (up to scale).

2.2 Affine geometry

The affine representation corresponds to a particular choice of the possible pro-
jective representations. In the affine case the reference plane has to be the plane
at infinity:

P, ~[1|0]
Py ~ [Hoo1k|e1x] (5)

From equation (?7) it follows that the homography of the plane at infinity, Hoo14,
can be written as follows:

Hooir ~ Hip + €152 (6)
for some a (which is in general unknown).

! Note that the relative scale of ey compared to Hiy is not free.



2.3 Euclidean geometry

In the Euclidean case the internal camera parameters have to be taken into
account. This yields camera projection matrices of the following form:

Pp ~KJ[I|0]
Per ~ K [Rkl - Rktk] (7)

with K the calibration matrix, with Ry, and t; representing the orientation and
position with respect to the first camera. K is an upper triangular matrix of the
following form:
fo 5 ug
K= fy uy (8)
1

with f, and f, the relative focal lengths, u = (ug,u,) the principal point and s
a skew factor (see for example [?]).
Note that it follows from equation (??) that

Hor @ Hop Ho, ~ KRy K ™! (9)

with Hoy, the homography from the plane at infinity to the k** image plane.

3 Self-calibration

Self-calibration methods try to solve for the intrinsic camera parameters which
are contained in K under the assumption that these are constant throughout
the sequence. Self-calibration is often based on fixed entities in the image or in
the scene. Affine transformations always keep the plane at infinity IT., fixed.
This does not mean that every point in Il is mapped on the same point, but
that they are all mapped in the same plane I1,. Euclidean transformations keep
—in addition to IT,,— also some special conic in IT, fixed. This conic is called
the absolute conic w. There is also a degenerate quadric which is fixed under all
Euclidean transformations, called the absolute quadric £2[?].

Most self-calibration techniques try to retrieve one of these fixed entities
(or its image) in the projective representation. From that point on metric mea-
surements can be carried out. Often everything is transformed from these non-
Euclidean frames to the usual Euclidean frame.

3.1 A fixed image for the absolute conic w

Because the absolute conic w is fixed under Euclidean transformations also its
image wy will be fixed if the same camera is used. This is also valid for the dual
of that conic w,;l, which will be used here for convenience. Starting from w =1,
this can be proven as follows:

1 o 1T . ~ T
wy' ~ Hoyw 'HT | ~ KK

10
wil *Hopw 'HL, ~ KRR/ KT ~KK" (10)



This fact can be used to calculate the image of the dual of the absolute conic.
Because w lies in IT, the following equations must hold:

wp '~ Hoorpw, "H, (11)

Exact equality (not up to scale) can be obtained by scaling Hy,1x to obtain
det Ho1x = 1. In the case where the affine calibration was already obtained
equation (??) results in a set of linear equations for the coefficients of w; '. Once
w,;l is retrieved K can be obtained from it by Cholesky factorization.

3.2 From projective to metric

If the affine calibration is not known then a;,as,a3 have to be retrieved in
addition. In the general case the following equations are thus obtained (using an
explicit scale factor and omitting the indices):

MKK' = [H + ea]KK ' [H + ea] (12)

The problem with these equations is that the scale factors are unknown. It
is possible to consider these scale-factors as additional unknowns [?], but this
poses additional problems and will make the scheme unworkable for longer image
sequences (one additional scale factor per supplementary image).

It is possible to find an easy way of calculating these scale factors as a function
of the 3 affine parameters. This is achieved by taking the determinant of the left-
and right-hand side of Equation (??):

Adet KK = det(H + ea) det KK ' det(H + ea) ' . (13)
Which gives us A:

A = det(H + ea)? (14)
which can be factorized as follow:
A = (|e h2 h3|a1 + |h1 e h3|a2 + |h1 h2 e|a3 + |h1 h2 h3|)2 (15)

with det H = |h1 h2 h3|

By filling in K as in equation (??) and A as in equation (??) in equation (??)
one obtain 5(n — 1) equations in 8 unknowns (n being the number of images).
Therefore at least 3 images are needed to obtain the calibration from correspon-
dences alone.

These equations can be solved through a nonlinear minimization of the fol-

lowing criterion:
n

1
3 (XlekKKTH;lk - KKT> (16)
k=2
The implementation presented in this paper uses a Levenberg-Marquard algo-
rithm. Results seem to be better when K is normalized to ||K||r = 1 where ||.||F
denotes the Frobenius norm.

The advantage of Equation (?7?) is that it yields a simple closed form equation
KK ||p

for A. In practice during minimization it is more stable to use A = T KK HT T 5

This avoids problems when H is badly conditioned.



4 Relation with other methods

The method presented in this paper is part of a family of methods which all
try to retrieve the absolute entities in projective space (i.e. absolute conic w or
absolute quadric 2). Once one of these entities is retrieved one can do metric
measurements or transform to a metric frame.

Different methods will be discussed here. First the method based on the
Kruppa equations proposed by Faugeras et al [?] and refined by Zeller [?].
In this method the affine parameters are eliminated from the equations. Only
the fundamental matrices are needed, not a consistent projective frame for all
cameras.

The second method was recently proposed by Heyden and Astrom [?7]- It is
based on the Kruppa constraints which relate the dual of the image of the
absolute conic to the absolute quadric. It will be shown that these constraints
are equivalent with the constraints presented in this paper. Heyden introduced
additional unknowns to cope with the scale factors. This strategy only works
with a small number of images and is even then suboptimal.

Finally Triggs’ method [?] to retrieve the absolute quadric is also reviewed.
The principles are similar to Heyden’s method, but the implementation is differ-
ent. Scale factors are eliminated by doing cross-multiplication yielding 15 equa-
tions (from which only 5 are independent) per camera and doubling the order
of the camera intrinsic parameters (i.e. 4" order terms instead of 2"?).

4.1 Kruppa equations
The Kruppa equation can be derived starting from equation (??):
KK' ~H, KK H] (17)

There is an easy way of eliminating the affine parameters a;,as, a3 from these
equations. They can be multiplied with [e]x to the left and [e]) to the right:

[e]xKK [e] ~ FKK'FT (18)

since the fundamental matrix F = [e]«Hq,. From the 5 equations obtained here
only 2 are independent. Scale factors are eliminated by cross-multiplication. The
disadvantage of this method is that a consistent supporting plane IT,, for w is
only indirectly enforced.

4.2 Kruppa constraints

It can be shown that the Kruppa constraints [?] are equivalent with the con-
straints used in this paper. Starting from equation (?7?),

MKK' = [H +ea]KK [H +ea]" (19)



and rewriting this equation the Kruppa constraints can easily be obtained (using
a = aK):

T KK' KK'a'][H
AKK = [He] [aKKT aKK'a™ | | e”
S [KKTKa™] ,r
- [ e 7T 20)

Equation (??) represents the Kruppa constraints like Heyden presented them
in [?].

The problem is that in this form it does not seem possible to calculate the
scale factors A (the trick with the determinants does not work when non-square
matrices are involved). Therefore Heyden and Astrém [?] deal with them as
additional unknowns. This renders this scheme unworkable for more than a few
images because of the many additional unknowns.

4.3 The absolute quadric

Triggs’ [?] equations are very similar to the Kruppa constraints (Eq. (??)) except
that he does not assume Py =[I]0]

wit~POPT . (21)

The consequence is that the absolute quadric {2 is not directly related to wi_”}
through the parametrisation anymore. Therefore one has to cope with more un-
knowns. The constraint rank((2)=3 which also followed from the parametrisation
in the previous methods now has to be enforced explicitly. The advantage is that
all views are treated equally where previous methods implicitly favored the first
view.

5 Experiments

Experiments have been done on both real and synthetic data. First the synthetic
data give some insights in the behavior of the method depending on the num-
ber of views and the presence of noise. Then the feasibility of the method will
be illustrated with some calibration/reconstruction work done on a real video
sequence,

5.1 Simulations

The simulations were carried out on sequences of 3, 6 and 10 views. The scene
consisted of 50 points uniformly distributed in a unit sphere with its center at
the origin. For the calibration matrix the canonical form K =1 was chosen.
The views were taken from all around the sphere and were all more or less
pointing towards the origin. An example of such a sequence can be seen in
figure ??. The scene points were projected into the images. Gaussian noise with



figure=../CVPRI97/CVPR97seq.eps,width=6cm

Fig. 1. Ezample of sequence used for simulations (the views are represented by the
image azis and optical azis of the camera in the different positions.)

an equivalent standard deviations of 0, 0.1, 0.2, 0.5, 1 and 2 pixels for 500 x 500
images was added to these projections. For every sequence length and noise
level ten sequences were generated. The self-calibration method proposed in this
paper was carried out on all these sequences. The results for the camera intrinsic
parameters were compared with the real values and the RMS error is shown in
table ?? for 6 view sequences.

0.0 0.1 0.2 0.5 1.0 2.0

fz| 1.0000 | 0.9998 | 0.9992 | 0.9997 | 1.0014 | 0.9979
40.0000({£0.0005|40.0017|40.0019|£0.0030{+0.0170
fy| 1.0000 | 0.9999 | 0.9991 | 0.9999 | 1.0004 | 0.9993
+0.0000({£0.0006|40.0022|40.0021|£0.0034|+0.0129
I=11.0000 | 1.0000 | 1.0001 | 0.9998 | 1.0010 | 0.9986
+0.0000{=£0.0003|40.0009|40.0007|£0.0022|+0.0052
uz| 0.0000 | 0.0001 | 0.0004 | 0.0019 |-0.0005 | 0.0067
£0.0000|%0.0002|{£0.0009|+0.0017|%0.0029|{+0.0108
uy | 0.0000 | 0.0002 | 0.0007 | 0.0014 | 0.0029 | 0.0032
£0.0000|%0.0002|{£0.0008|+0.0014|%0.0043|+0.0053
s | 0.0000 |-0.0001 | 0.0000 {-0.0000 |-0.0004 | 0.0023
+0.0000{+£0.0002|40.0003|40.0006|£0.0012|+0.0072

Table 1. Results of synthetic experiment for 6 view sequences

When 6 or 10 views were used the accuracy was very good, even for high
amounts of noise (around 1% error for 2 pixels noise). The method almost always
converges without problems. For sequences of only 3 views the method gives good
results for small amounts of noise, but the error grows when more noise is added.
This is due to the fact that in the 3 view case no redundancy is present anymore.
In this case the method regularly ends up in an alternative solution.

5.2 A real video sequence

In this paragraph results obtained from a real sequence are presented. The metric
qualities of the calibration can be appreciated by looking at the reconstruction.
The sequence consists of a university building. These were recorded with a video
camera. The images used for self-calibration are shown in figure ??7. The projec-
tive camera matrices were obtained following the method described in [?]. These
camera matrices were upgraded to metric using the self-calibration method de-
scribed in this paper and then a 3D model was generated using these cameras
and a dense correspondence map obtained as in [?].



figure=back3d.o3.ps,width=6cm
figure=back3d.ol.ps,width=6cm
figure=back3d.o2.ps,width=2.5cm

Fig. 3. Orthographic views of the reconstruction (notice parallelism and orthogonality)

In figure ?7 one can see 3 orthographic views of the scene. Parallelism and
orthogonality relations clearly have been retrieved. Look for example at the right
angles. Figure ?? contains some perspective views of the reconstruction. Because

figure=../vanguard/back3d.2.ps,width=4.66cm figure=../vanguard/back3d.4.ps,width=4cm figure=../vanguard/back3d.3.ps,width=3.66cm

Fig. 4. Some perspective views of the reconstruction

the dense correspondence map was only obtained from two images there are some
inaccuracies left in the reconstruction. This however has nothing to do with the
accuracy of the calibration.

6 Conclusion

In this article a new method was proposed for self-calibration. It is based on
the explicit retrieval of the absolute conic and its supporting plane, the plane at
infinity. It was shown that this is theoretically equivalent to solving the Kruppa
constraints for the absolute quadric. The advantage of our formulation is that it
gives a closed formula for the scale factors. Experiments on real and synthetic
data illustrated the feasibility and the accuracy of the method.

Further research is done on the combination of our method with other meth-
ods to increase robustness. We believe that a stratified approach where the cal-
ibration and scene knowledge is gradually built up is the best way to robustly
end up with an optimal calibration and reconstruction.
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