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Abstract

A stereo rig can be calibrated using a calibration grid,
but recent work demonstrated the possibility of auto-
calibration. There remain two important limitations,
however. First, the focal lengths of the cameras should
remain fixed, thereby excluding zooming or focusing.
Second, the stereo rig must not purely translate, which
however is the most natural type of motion. This also
implies that these methods also collapse when the mo-
tion comes close to being a translation.

The paper extends the work to allow changes in fo-
cal lengths (these may be independent for both cam-
eras) and purely translational motions of the stereo
rig. First, the principal points of both cameras are
retrieved. Changes in focal lengths are dealt with
through weak calibration. Each position of the rig
yields a projective reconstruction. The projective
transformation between then allows to first retrieve
affine structure which subsequently is upgraded to met-
ric structure, following the general outline described in
[12].

Rather than posing a problem to the method, rig
translation allows further simplifications and is advan-
tageous for robustness.

1 Introduction

Recently, methods to obtain the Euclidean calibration
of a stereo rig have been proposed [12, 3]. These meth-
ods impose some restrictions. First, all intrinsic camera
parameters are assumed fixed. This implies that e.g.
the camera focal lengths are not allowed to change.
This precludes useful adaptations to the scene such as
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zooming and focusing. Second, the rig is not allowed
to purely translate. Unfortunately, translation is of-
ten preferable (e.g. shortest path between points). In
practice, the methods only work well if the rotational
motion component is sufficiently large.

2 camera model

The camera model used is the pinhole model, where
the image is formed under central projection on a
photo-sensitive plane perpendicular to the optical axis.
Changes in focal length move the optical center along
the axis, leaving the principal point! unchanged. This
assumption is fulfilled to a sufficient degree with the
cameras used in the experiments and this is typically
the case [7]. The relation between image points and
world points is given by
AijsMijs = PjsM; (1)
with Pj; the 3x4 camera matrix 2 mg;s and M; are col-
umn vectors containing the homogeneous coordinates
of the image points and world points resp., and A;js
expresses the equivalence up to a scale factor. If P
represents a Euclidean camera, it can be put in the
form [6]
(2)

where Rj,; and t;5 represent the Euclidean orientation
and position of this camera with respect to a world
frame, and Kj, is the calibration matrix of the j*
camera;

P;; = Kj, [RJ'S| - sttJ'S]
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IThe principal point is defined as the intersection point of the
optical axis and the image plane

2Pjs is the camera matrix for the jt* view, s stands for left
or right.



In this equation 75 and 7,5 represent the pixel width
and height, 8, is the angle between the image axes,
Ugs and uy, are the coordinates of the principal point,
and fjs is the focal length. Notice that the calibration
matrix is only defined up to scale. In order to highlight
the effect of changing the focal length the calibration
matrix K;; will be decomposed in two parts:

(fls/fjs - ]-)ua:s
(fis/fis — Duys
fIS/fJ'S

The second part K;, is equal to the calibration ma-
trix K5 for that camera for view 1, whereas the first
part, which will be called Ky, ; in the remainder of this
text, models the effect of changes in focal length. From
equation (4) it follows that once the principal point u is
known, Ky, , is known for any given value of fjs/fis.
Therefore, finding the principal point is the first step
of the reconstruction method. Then, if the change in
focal length between two views can be retrieved, its ef-
fect is canceled by multiplying the image coordinates
to the left by K;Jls

Retrieving the principal points ug is relatively easy
for cameras equipped with a zoom. Upon changing the
focal length (without moving the camera or the scene),
each image point will — according to the pinhole model
— move on a line passing through the principal point.
By taking two or more images with a different focal
length and by fitting lines through the corresponding
points, the principal point can be retrieved as the com-
mon intersection of all these lines. This is illustrated
in figure 1. In practice the lines will not intersect pre-
cisely and a least squares approximation is used. This
method has been used by others [7].

For the sake of simplicity we assume R15 =1, ¢t;, =0
and f1, = 1in the remainder of this paper. Because the
reconstruction is up to scaled Euclidean (i.e. similar-
ity) this is not a restriction. In this way the 7 degrees
of freedom of a similarity transformation are fixed.

st = K,

10
01 (4)
00

3 Retrieving focal length

It is clear that having a way of cancelling the effects of
focal length changes would generalise the existing auto-
calibration methods [12, 3] to situations where such
changes occur.

3.1 The effect on epipoles

The epipoles are two points associated with a pair of
cameras. The epipole in one camera image is the pro-
jection of the other camera’s center. Note that the
epipoles of a fixed stereo rig stay put, independent of

Figure 1: Illustration of the camera and zoom model.
The focal lengths fi and fo are different, the other pa-
rameters ((rg, Ty, Ug, Uy, 0 ) are identical.

the rig’s motion. If the focal lengths of the cameras
change, however, then the epipoles will shift (fig. 2).
These shifts suffice to derive the relative change in fo-
cal length. One can then also transform the images
to what they would have been like without the change
in focal lengths. It follows from the equations for the
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Figure 2: Illustration of the displacement of the epipole
for the left camera when changing the focal length.
Cp and Cg are the camera centers, eg;, and ey the
epipoles in the left camera for different focal lengths
( for and fir) and upr,uyr,rzr,ryr are the internal
camera parameters

epipoles
)‘ejsejs = Ae, (es + (fls/fjs - I)US) (5)

that f;s/fis can be recovered in a linear way. In fact,
the explicit calculation of focal lengths is not called
for. It suffices to apply the transformation K_Jls to

the image (see equation (4)).

4 Affine and Euclidean calibra-
tion

The proposed work is a generalisation of the elegant
method proposed by Zisserman [12]. This method first
retrieves the affine calibration based on the eigenvector



structure of the transformation T between the projec-
tive reconstructions from the two positions of the rig.
Once the infinite homography is known we can use the
constraints on the camera calibration matrix described
in [6, 8]. In the case of a translating stereo rig this is not
enough [12]. This means that for any movement close
to translation the problem is ill-conditioned. Hence,
one has to strike a balance between the ease of setting
up the system (the less calibration the better) and the
flexibility it has to offer in its use (e.g. being able to
perform any kind of motion and to dynamically zoom
and focus). Hence, this paper gives in with respect to
completely calibration-free operation. The principal
points are extracted, which is not too difficult through
the very application of changes in the focal lengths.

4.1 Affine calibration

One view with a stereo rig is enough to get a projective
reconstruction [5, 4]. Having two views yields two re-
constructions, M;p; and M;ps say (these are vectors of
homogenous coordinates for all the scene points). The
two reconstructions are related by a projective trans-
formation T:
/\MiP1MiP1 = )‘MipzTMiPQ (6)
If one uses the same camera matrices for both recon-
structions (i.e. Py = [I|0] and Pgr = [[er]xF|er] with
F the fundamental matrix and eg the epipole of the
right camera), T can be written as
T=Tp,TeTre , (7)
a conjugation of the euclidean transformation Tg, the
motion of the rig between the two views, with Tpg,
the transformation between the reconstructions and
the Euclidean world. This observation is key to the
following analysis proposed in [12]. The eigenvectors
of T are related to these of Tg by the same transfor-
mation Tpg. Because the eigenvectors of Tk are all in
the plane at infinity 7, the eigenvectors of T indicate
the position of 7., in the projective frame. Once 7y,
is known it is easy to get Hoog. One can project the
eigenvectors of T using the projection matrices P and
Pr. The homography between these two projections
and between the two epipoles is Hor,g. To obtain an
affine reconstruction one can use the camera matrices
(8)

P = [1]0] Pr = [Hyrr|eR]

4.2 Affine calibration for translation

If the motion of the stereo rig is restricted to a trans-
lation, there is an easier and more robust method to

recover the affine structure of the scene, however [9],
which is first generalised to changing focal lengths.

In the case of a translation (without changing the fo-
cal length) between two views, the epipolar geometry
is the same for both images and the image points lie on
their own epipolar lines. This means that the epipolar
geometry is completely determined by knowing the po-
sition of the unique epipole. Adding changes in focal
length between the images adds one degree of freedom
when the principal point is known.

Given three points in the two views, one know that
a scaling equal to the focal length ratio should bring
them in position such that the lines through corre-
sponding points intersect in the epipole. This imme-
diately yields a quadratic equation in the focal length
ratio. The epipole follows as the resulting intersec-
tion. In practice the data will be noisy, however, and
it is better to consider information from several points.
The following equations describe the relation between
the image coordinates for both images

AizsMizs = Aits (Mits + (fis/ fas — 1)us) + )\emezl(s :
9

where m;14, M;2s, Us and eaqs are column vectors of the
form [z y 1] 7. Equation (9) gives 3 constraints for every
point and was used to form an overdetermined system,
yielding among other things fos/f1s and A;s. This
leads to a system of nonlinear equations, which can be
solved robustly [10].

At this stage the affine reconstruction is trivial to
obtain. From equation (1) it followse that [A\j1sm;}, 1] T
is related to M; by an affine transformation.

In the next paragraph the infinity homographies
will be needed. For translational motions Hy,127, and
H12r will be equal to Ky,, 1, and Ky, , r respectively.
Ho1r can be extracted as the 3x3 upper-left sub-
matrix of the affine transformation relating the affine
reconstructions obtained from the left and the right
camera respectivelyS.

4.3 Euclidean calibration

To upgrade the reconstruction to Euclidean structure,
the camera calibration matrix K;7, (or K;g) has to be
known. This is equivalent to knowing the image B,
of the dual of the absolute conic for the left camera,
since Bir, = K; LKITL. The images are constrained in
the following way [6, 8, 12]:

k12rB1R = HoorzrBirHL 11 1 (10)
and for each camera:
k12rBor = HeorarBirHY 101 (11)

3These reconstructions must be built with camera centered
reference frames



k12rBar = Hoor2rBirH 1op (12)
Egs. (11) and (12) are easier to use because k121, and
k12gr can be forced to 1 by taking det Hoo127, = 1 which
gives a set of linear equations. The problem with pure
translation is that egs. (11) and (12) become trivial.

The knowledge of ur and ug is called to the rescue.
Assuming that the camera axes are orthogonal avoid
having to solve a non-linear set of equations. Take a
closer look at By, (or Byg for that matter).

2,2 2
JiLToz T ULe ULzULy ULg
_ 2 ,.—2 2
Bir = ULz ULy firroy tuiy, ury | (13)
ULz ULy 1

Combining egs. (10) and (13) gives 4 linear equations in
3 unknowns (equations for bgria, bgris, bres and bgss):

URsURyKLR = a121'E: + 5121'53 +c2  (14)
URsKLR = Q13Tr- + b131‘53 +c13 (15)
URyKLR = Qo3Tp- + 5231'53 +c23  (16)

KLR = (7/331‘5)3 + b331‘£3 + ¢33 (17)

where the unknowns are in bold and a;;,b;; and c;;
only depend on Hy, g1, and uy, (which are both known).
Once we know kpg,rr, and rp, we could solve the
following equations for fr,” and f3ry>.

(18)
(19)

KLr(FRTRS + UR,)

IiLR(fI%I'ﬁz, + UzRy) =

In fact rgr, and rgr, are not required. The Euclidean
calibration of the left camera suffices to obtain a Eu-
clidean reconstruction. We can upgrade the affine re-
construction (obtained by the methods described in
the previous paragraphs) to Euclidean by applying the
transformation

(20)

5 Results

The algorithm was applied to synthetic images as well
as real images. From tests with synthetic data one
can conclude that restricting the motion to translation
gives more stable results. For a report on these results,
see [10].

Next some results obtained from a real scene are
presented. The scene consists of a box and a cylin-
drical object on a textured background. Images were
acquired with a translating stereo rig, they can be seen
in figure 3. Figure 4 shows the reconstruction results.
Notice that angles are well preserved (e.g.the top and

Figure 3: Images of a scene taken with a translating
stereo Tig

the front view differ by 90°, the box and the floor have
right angles in the reconstruction. The inaccuracies
in the reconstruction (like the dent in the cylindrical
object) are mainly due to the rendering process which
uses triangulation between matched points and are not
related to the accuracy of the calibration.

6 conclusion

The possibility to obtain the auto-calibration of a mov-
ing stereo rig with variable focal lengths was demon-
strated. Only very mild forms of camera calibration
had to be introduced in return. Moreover, it was
shown that the method generalizes to cases of pure
translation, which was not only impossible with exist-
ing methods but could also be implemented with in-
creased robustness. The method was illustrated with
a real scene which. The results are -for the Euclidean
auto-calibration aspects- convincing.

Further plans includes the integration of the meth-
ods into an implementation that detects the degener-
ated cases (i.e. translation) by itself. Also the applica-
tion of more robust techniques for the recovery of the
projective structure is under investigation. Another
interesting path of research is to investigate the pos-
sibility of dealing with variations in other parameters
than focal length.
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Figure 4: different views of the reconstruction (top: top
view ,middle: general view,bottom: front view)
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