
A 4-Point Algorithm for Relative Pose Estimation of a Calibrated
Camera with a Known Relative Rotation Angle

Bo Li, Lionel Heng, Gim Hee Lee and Marc Pollefeys
Computer Vision and Geometry Group, ETH Zürich

Abstract— We propose an algorithm to estimate the relative
camera pose using four feature correspondences and one
relative rotation angle measurement. The algorithm can be
used for relative pose estimation of a rigid body equipped
with a camera and a relative rotation angle sensor which can
be either an odometer, an IMU or a GPS/INS system. This
algorithm exploits the fact that the relative rotation angles of
both the camera and relative rotation angle sensor are the same
as the camera and sensor are rigidly mounted to a rigid body.
Therefore, knowledge of the extrinsic calibration betweenthe
camera and sensor is not required. We carry out a quantitative
comparison of our algorithm with the well-known 5-point and
1-point algorithms, and show that our algorithm exhibits the
highest level of accuracy.

I. I NTRODUCTION

Vehicle platforms equipped with a camera and either an
odometer, IMU, or yaw rate sensor have been widely used
in the areas of computer vision, robotics, and automatic
control. For years, research has focused on using these low-
cost sensors to localize the vehicle as well as reconstruct the
vehicle’s environment. This research is also referred to as
visual SLAM in robotics.

One key step of visual SLAM is to estimate the relative
camera pose between each frame pair. One commonly used
method is feature-based estimation in which a subset of
image feature correspondences is selected to estimate the
fundamental matrix or essential matrix between two frames.
The relative rotation and translation can then be extracted
from the matrix. A series of “n-point” (n-correspondences)
algorithms has been proposed for this objective. If the camera
has unknown intrinsics, the fundamental matrix can be
estimated by the 8-point algorithm or 7-point [1] algorithm.
If the camera has calibrated intrinsics, either the 6-point
[2], [3] algorithm or 5-point [4], [5], [6] algorithm can
be used to compute the essential matrix. Based on these
algorithms, robust estimation methods such as RANSAC
or LMedS are used to generate the best estimate from a
set of point correspondences containing both inliers and
outliers. The performance of “n-point” algorithms is signifi-
cantly affected by the quality of the feature correspondences
detected from images. It is well-known that an algorithm
using fewer point correspondences requires fewer iterations
for robust estimation. For the case of a calibrated camera, the
minimal solution requires 5 point correspondences to solve
for the 5-DoF relative pose. In [4], [5], the 5-point algorithm
shows the best estimation performance compared to the 6-
point, 7-point, and 8-point algorithms. For visual SLAM and
structure-from-motion problems, the 5-point algorithm isthe

most commonly used algorithm for a calibrated camera.
However, the 5-point algorithm is not always guaranteed to

have a stable estimation. On a vehicle with a forward-looking
camera, relative pose estimation is more difficult for the
5-point algorithm compared to a side-looking camera. The
main difficulties are the lower stability of the algorithm for
forward motion compared to sideways motion, and the larger
depth of features seen by a front camera which makes the
estimation less accurate. Readers can find some discussion
about the performance of the 5-point algorithm in [4], [5].
To improve the estimation accuracy, research has focused
on exploiting extra information from other sensors or from
specific motion models. For example, [7] obtains two rotation
angles from the IMU, and uses a 3-point algorithm to esti-
mate the relative pose of a micro aerial vehicle. This method
requires that the extrinsic calibration between the camera
and the IMU is known. In [8], a novel 1-point algorithm is
proposed. The algorithm assumes that the vehicle follows the
general Ackermann steering model. The 1-point algorithm
can compute stable relative pose estimates very quickly;
however, it requires the camera to be located along the
rear axis of the vehicle. In [9], another 3-point algorithm
is proposed for relative pose estimation. This method uses a
generalized camera but only applies to 3-DoF planar motion.

If the vehicle platform has either an odometer or GPS/INS
system, and its pose with respect to the camera’s frame is
known, we can directly obtain the camera’s relative pose
from the odometer poseHo as H−1HoH , where H is
the transform between the camera and odometer frames.
However, in practice, estimatingH is not easy. This problem
is known as the hand-eye calibration [10], [11]. Moreover, for
accurate estimation of relative transforms, hand-eye calibra-
tion algorithms require accurate visual odometry estimation.
This visual odometry estimation also requires feature-based
relative pose estimation algorithms such as the 5, 6, 7, and
8-point algorithms.

Our approach is similar in spirit to [7], [8], [9]; in this
paper, we propose an algorithm to improve the relative pose
estimation using relative rotation angle measurements. The
algorithm uses four feature point correspondences found
from an image pair and one rotation angle from any relative
rotation sensor such as an odometer, IMU, or GPS/INS.
In the algorithm, the camera can be mounted anywhere on
the platform; the advantage is that no extrinsic calibration
is required. Since the rotation angle sensor readings are
very stable and accurate in general, the proposed algorithm
significantly improves the accuracy of relative pose estimates

compared with existing methods.
The rest of the paper is organized as follows. Section

II establishes notations and formulas used in the proposed
method. Section III presents the formulation of the 4-
point relative pose problem, and section IV presents two
algorithms to solve the problem. The performance of the
algorithm is studied in section V; we use simulations to
compare our results with those from the 5-point algorithm,
and quantify the algorithm’s improvement over the 5-point
algorithm. Furthermore, the algorithm is compared with the
5-point and 1-point algorithms on two real-world datasets
obtained with our vehicle platform.

II. PRELIMINARIES

Image points from the first and second frames are denoted
by homogeneous vectorsp1 = (x1, y1, 1)

⊤ and p2 =
(x2, y2, 1)

⊤ respectively. The intrinsic matrix of the camera
is denoted asK. Since the proposed algorithm requiresK

to be known, we hereby assume thatp1 and p2 are always
premultiplied byK−1.

DenoteR and t as the relative rotation and translation
between the first and second frame. The essential matrix
corresponding toR and t can be denoted as

E = [t]×R (1)

where[t]× denotes the skew symmetric matrix:

[t]× ≡

0 −t3 t2
t3 0 −t1
−t2 t1 0

 (2)

An ideal image point correspondence(p1, p2) satisfies the
constraint:

p2
⊤Ep1 = 0 (3)

Rodrigues’ rotation formula Given a 3D unit rotation
axis vectorr = (rx, ry , rz)

⊤ and a rotation angleθ, it is easy
to find the corresponding rotation matrix using Rodrigues’
rotation formula.

R(θ, r) = (cos θ)I + (1− cos θ)rr⊤ + (sin θ)[r]× (4)

whereI is a 3× 3 identity matrix.
Theorem The relative rotation angle of the camera and

that of the relative rotation sensor are equal.
This is a known fact for rigid motion. Denote the relative

motion of the rotation sensor asRs andts, and the transform
between the camera and the sensor asR and t. We know
that the camera rotation can be denoted asRc = R−1RsR,
which is independent of the translation. Here, we use the
quaternion representation to provide a simple proof to show
that the rotation angle ofRc andRs is the same. Denoteqs,
qc, andq as the corresponding quaternions respectively. We

have

qc =q−1qsq

=

(

cos
θ

2
− (xi + yj + zk) sin

θ

2

)

·

(

cos
θs

2
+ (xsi+ ysj + zsk) sin

θs

2

)

·

(

cos
θ

2
+ (xi + yj + zk) sin

θ

2

)

(5)

whereθ and(x, y, z)⊤ is the rotation angle and rotation axis
of a quaternionq. Consider the real part ofqc, asqreal

c . By
some simple deduction, we can obtain

qreal
c = cos

θs

2
(6)

Sinceqreal
c = cos θc

2
by definition, the relative rotation angles

θc and θs are equal. This means that the relative rotation
angle reading from the sensor can be directly used as the
relative rotation angle of the camera without knowing the
extrinsics.

III. PROBLEM FORMULATION

Substituting (4) into (1), we express the essential matrix as
a function of the rotation angle, rotation axis and translation:

E(θ, r, t) = [t]×
(

cos θI + (1− cos θ)rr⊤ + sin θ[r]×
)

(7)
wherer is a 3D unit vector andt is assumed to have unit
norm since it is up to scale. With the assumption that we
know θ from the sensor reading, the number of DoFs for
the relative camera pose is reduced from 5 to 4. By using 4
image point correspondences, we can solve forr and t for
the minimal case.

Thus, we form the equation system for solving for the
relative camera pose:

pi2
⊤

E(θ, r, t)pi1 = 0 for i = 1, 2, 3, 4 (8)

||r||2 = 1 (9)

||t||2 = 1 (10)

where r = (rx, ry , rz)
⊤ and t = (tx, ty, tz)

⊤ are six
unknowns.

IV. SOLUTION

Solving polynomial systems for minimal problems in
computer vision has become a focus of recent research.
However, for an equation system with a high degree and
many unknowns, it is often difficult to obtain an efficient
closed-form solution. The equation system (8) includes 4
cubic polynomials with the highest monomial in the form of
t⋆r⋆r⋆, where⋆ denotes any arrangement of ‘x’, ‘ y’, ‘ z’. (9)
and (10) are two quadratic polynomials. Compared with the
minimal problem for both the 5 and 6-point algorithms, the
above system has more variables and a higher degree, both
of which makes it more difficult to solve. In this section, we
propose two different solvers for our equation system. The
first one is a closed-form solution based on the Groebner
basis. The second one is an efficient numerical solution.

A. Closed-Form Solver

The Groebner basis provides a useful technique for solv-
ing general polynomial systems. In this paper, we use an
automatic solver generator [12] to generate the Groebner
basis solver for our problem. This generator works by first
generating a series of polynomials from the original problem.
Their coefficients are denoted in a coefficient matrix. Next,
the coefficient matrix is eliminated. An action matrix can
then be formed using elements of the elimination result. The
eigenvectors of the action matrix consist of solutions to the
original problem. Taking the 5-point algorithm for example,
this involves a10×20 coefficient matrix and a10×10 action
matrix. This is similar to the solver used in [5].

We first simplify our problem by replacing (10) with
tz = 1. This is easy to understand sincet is only defined
up to scale. Thus, we remove one unknown and only have
five unknownsr = (rx, ry, rz)

⊤ and t = (tx, ty, 1)
⊤ and 5

equations (8, 9) to solve. Note that this simplification may
cause numerical failure iftz is extremely small comparing
with tx andty. In practice, this simplification does not cause
a numerical failure because even if the camera is moving on
thexy plane,tz always has some small deviation from zero,
which is sufficient for the solver to work stably. Directly
solving the system without this simplification can avoid the
problem of numerical failure, but makes the solution much
more complex.

Inputting the simplified equation systems to the automatic
solver generator, we obtain a coefficient matrix of size270×
290. The action matrix is of size20× 20 which implies the
problem has 20 complex roots. We use all the real roots as
possible solutions forr and t.

This closed-form solver is elegant and easy to use. How-
ever, we point out two drawbacks. Firstly, decomposing
or eliminating a coefficient matrix of size270 × 290 can
be computationally expensive. Secondly, in some extreme
cases, the correct root may not be a real number due to
data noise. This can be illustrated by the following small
example. Consider the problem:(x − 1)2 = 0.01 where the
roots arex = 0.9 and x = 1.1. In the case of noisy data,
there is a case where we solve(x− 1)2 = −0.01. Then, the
root will be x = 1 ± 0.1i, which is not a real number. By
taking the real part of the root, we can approximately obtain
a real solution. However, for more complicated polynomial
systems, this sometimes can lead to a large deviation of the
estimated result from the actual result.

B. Numerical Solver

To avoid the drawbacks of the Groebner basis solver, we
hereby propose a numerical solver for our problem using the
gradient descent method. This solver can quickly solve the
problem and obtain real roots.

We reformulate equation (8) as:

f i
1(rx, ry , rz)tx + f i

2(rx, ry , rz)ty + f i
3(rx, ry , rz)tz = 0

for i = 1, 2, 3, 4 (11)

wheref i
⋆ is a polynomial whose terms includerx, ry and

rz . We can stackf i
⋆ as a matrix:

F (rx, ry, rz)t ≡

f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

f4
1 f4

2 f4
3

tx
ty
tz

 = 0 (12)

Since we know thatt is up to scale, the rank ofF must be
2. This means that the determinant of all3× 3 submatrices
must be 0. This is equivalent to the following equations.

∣

∣

∣

∣

∣

∣

f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

∣

∣

∣

∣

∣

∣

= 0 (13)

∣

∣

∣

∣

∣

∣

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3

f4
1 f4

2 f4
3

∣

∣

∣

∣

∣

∣

= 0 (14)

Combining (13), (14) and (9), we have a new equation
system that has three unknowns:rx, ry , rz . (13) and (14) are
of degree 5. Since (10) implies that(rx, ry, rz)⊤ is on the
surface of a unit sphere, we parameterize(rx, ry, rz)

⊤ in 2D
space and use the gradient descent method to find the roots
from a set of initial guesses. This gradient descent-based
method is inspired by [13], which uses a similar method
for solving the 5-point algorithm. Our initial guesses are
drawn from uniform sampling on the surface of a unit sphere.
Note that for the minimal case, there is a small chance that
the correct root is missed in the gradient descent method
as mentioned in [13]. We can minimize the probability
that convergence fails by increasing the number of initial
guesses. For our implementation, we find that 100 samples
are sufficient for convergence to the correct solution for
r. We found out from doing 10000 simulations that the
probability of missing the correct root is less than0.001. In
addition, when the solver is embedded in a robust estimation
framework, for example, RANSAC, a failure to converge can
entirely be avoided due to the multiple iterations in robust
estimation. In our simulation tests, we did not encounter a
convergence failure.

After rx, ry, rz are solved,F is then obtained andt is
the null vector ofF . Note that multiple rootsr exist for the
equation system, and for each possible solution(r, t), (r,−t)
is a possible solution too.

C. Robust Estimation

Similarly in the cases of the 5, 6, 7, and 8-point algorithms,
a robust estimation framework can be used for the 4-point
algorithm to find the optimal relative pose from a set of both
inlier and outlier point correspondences. Taking the widely-
used robust estimation framework RANSAC as an example,
in each iteration, 4 points are randomly sampled to generate
hypotheses for the relative camera pose estimate. From
the above discussion, we know that multiple relative pose
hypotheses may exist. By checking the reprojection error
such as the Sampson error for the whole point set, candidate
solutions are rejected until only two candidate solutions(r, t)
and (r,−t) remain. One of these two candidate solutions

is rejected by checking if the reconstructed 3D points have
positive depth. This is also called the cheirality check in [4].
In contrast to the 5-point algorithm, the 4-point algorithm
requires a lower number of iterations to achieve the same
confidence level. Consider a point set withw = 50% inliers;
in each iteration, the probability of selecting 4 inliers is
w4 = 6.25% while the probability of selecting 5 inliers
is w5 = 3.125%. The number of iterations required for
RANSAC is log 1−p

log 1−wn
where n is the number of point

correspondences andp is the confidence level. To get an
estimate with a confidence level ofp = 0.99, the 4-point
algorithm requires 71 iterations while the 5-point algorithm
requires 145 iterations.

V. EXPERIMENTS

A. Implementation Details and Timing Issues

We implemented both the Groebner basis solver and
numerical solver for our 4-point algorithm. In the Groebner
basis solver, we use the sparse QR decomposition implemen-
tation from the Eigen1 library to eliminate the coefficient
matrix. In the numerical solver, we use Powell’s hybrid
method from the GNU General Scientific Library (GSL)2.
Powell’s hybrid method retains the fast convergence of
Newton’s method but is more reliable. We also implemented
a 5-point algorithm based on the solver in [4]. The 5-
point solver implementation uses the uni-variable polynomial
solver from the OpenCV3 library. The three implementations
are available online4.

Figure 1 shows the computational times for the two 4-point
solvers and 5-point solver. The measured computational time
is for the minimal case. The reader can easily see that the
closed-form Groebner basis solver is the most computation-
ally expensive. The numerical solver is slightly slower than
the 5-point algorithm. Considering that additional constraints
make the relative pose estimation problem more complex, the
extra computational cost for the numerical solver is small;
the numerical solver is still fast enough for real-time use.

We would like to also point out a further optimization for
the numerical solver. The computation of the coefficients in
(13) and (14) involves a series of extremely large polynomi-
als generated by Maple; computing the coefficients take up
approximately70% of the computational time incurred by
the current implementation. We can reduce the computation
time by re-arranging the terms in the polynomials.

B. Performance under Noise

We use simulation data in this section to test the per-
formance of the 4-point and 5-point algorithms. We do not
consider the 6, 7 and 8-point algorithms as the 5-point algo-
rithm is known to outperform these algorithms for the case
of a calibrated camera. Therefore, in this section, we only
compare our algorithm with the 5-point algorithm. Detailed

1https://bitbucket.org/eigen/eigen/
2http://www.gnu.org/software/gsl/
3http://opencv.org
4https://sites.google.com/site/prclibo/four-point

Min Mean Max
0

0.005

0.01

0.015

0.02

0.025

se
c

4−pt gb
4−pt nm
5−pt

Fig. 1. Computation time for the minimal case for the variousrelative
pose estimation algorithms. 4-pt gb stands for the closed-form Groebner
basis solver. 4-pt nm stands for the numerical solver using gradient descent.

TABLE I

EXPERIMENT SETTINGS FOR SIMULATION DATA.

Minimal Distance 10
Depth 10
Baseline 1
Image Size 350 × 350

Field of View 60◦

Error Measurement Translation deviation angle
Error Estimator Lower quartile (minimal case)

Mean (RANSAC case)
Tests per Noise Level 1000 (minimal case)

100 (RANSAC case)

comparisons between the 5, 6, 7 and 8-point algorithms can
be found in [4], [5].

We structure our experiment setup in line with existing
research by using simulation settings such as image size,
field of view, and point distance from [4]. The settings are
summarized in table I and figure 2. The two algorithms are
tested with forward and sideways motions. The relative pose
estimation error is measured by the angle between the ground
truth translation and estimated translation vectors. Thiserror
measurement is based on the fact that the translation estima-
tion is much more sensitive to noise compared to the rotation
estimation; see [14] for details. In general, for both the 4-
point and 5-point algorithms, the rotation error is less than
0.1◦. We approximate the image feature noise as a zero-mean
Gaussian noise distribution with a varying range of standard
deviations. For the minimal case test, four and five point
correspondences are generated for the 4-point and 5-point
algorithms respectively. For the RANSAC case test, we use
50 point correspondences to run a RANSAC framework to
generate the best estimation. 1000 tests were executed for
each noise level in the minimal case test. 100 tests were
executed for each noise level in the RANSAC test. Figure 3
plots the relative pose error against the standard deviation of
the feature noise distribution. In figures 3a and 3b, we plot
the lower quartile of the relative pose error at each noise level
for the minimal case tests. In figures 3c and 3d, we plot the
mean error at each noise level for the RANSAC tests. The
test criterion were selected to be consistent with those in [4].
From the plots, we can clearly see that the 4-point algorithm
outperforms the 5-point algorithm.

We perform another test to show how the noise from

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

ns
la

tio
n

er
ro

r
(d

eg
)

4−pt
5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

ns
la

tio
n

er
ro

r
(d

eg
)

4−pt
5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

ns
la

tio
n

er
ro

r
(d

eg
)

4−pt
5−pt

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Noise (px)

T
ra

ns
la

tio
n

er
ro

r
(d

eg
)

4−pt
5−pt

(a) (b) (c) (d)

Fig. 3. Translation error in degrees against noise standarddeviation in pixels. (a) Minimal cases, forward motion. (b)Minimal cases, sideways motion.
(c) 50 points, forward motion. (d) 50 points, sideways motion.

sideway

fo
rw

a
rd

m
in

im
a
l

d
is

ta
n

c
e

d
e
p

th

Fig. 2. Experiment settings for simulation data. The two dashed cameras
mark the locations to which the camera moves with forward andsideways
motion respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

σ
o
=0

σ
o
=0.02

σ
o
=0.04

σ
o
=0.06

Noise (px)

T
ra

ns
la

tio
n

er
ro

r
(d

eg
)

4−pt w/ varying odo noise
5−pt

Fig. 4. Translation error in degrees against noise standarddeviation in
pixels. The standard deviationσθ of the relative rotation angle measurement
noise ranges between 0 and 0.06. 50 points are used to executea RANSAC
scheme for each test.

relative rotation angle measurements influences the 4-point
algorithm. We assume here that the relative rotation angle
θ is measured as(1 + e)θ by the sensor, wheree follows
a zero-mean Gaussian distribution. In this test, we select
the standard deviationσθ values to be 0, 0.02, 0.04, and
0.06. For each of the 4 noise levels, we generate a plot of
translation error against the noise level. We also use the
same settings with the above RANSAC tests except that
the translation direction is arbitrary and the relative rotation
angle is between−10◦ and10◦. The plot is shown in figure
4. We find that with the errore smaller than 0.04, the 4-point
algorithm gives a better result than the 5-point algorithm.In
practice, the error of the relative rotation angle measurements
provided by the rotation sensor is much smaller, and hence,
the 4-point algorithm outperforms the 5-point algorithm in
general.

C. Real-World Performance

In this section, we compare the 4-point algorithm with
the 5-point and 1-point algorithms which are two well-known
algorithms for relative pose estimation for a vehicle platform.
Here, we use the numerical solver for the 4-point algorithm
as the numerical solver has a significantly shorter compu-
tational time than the Groeber basis solver. Our platform
is a VW Golf outfitted with a camera, odometry and an
iTrace GPS/INS system. The camera is mounted at the front
of the vehicle and its intrinsics are calibrated beforehand.
In addition, the camera pose with respect to the odometer
and GPS/INS is known. We use these extrinsics to generate
reference camera trajectories from GPS/INS and odometry
data. The visual odometry generated by the 4-point algorithm
assumes no knowledge of the extrinsic calibration between
the camera and relative rotation angle sensor. In following
discussions, we use the words GPS/INS and odometry to
refer to the camera trajectories generated from GPS/INS and
odometry respectively. The plotted trajectories are shownin
figures 6 and 7. The GPS/INS trajectory is shown with other
trajectories in each image as ground truth for comparison.

We compare the algorithms on two datasets collected with
our platform. The first dataset is a single loop trajectory
consisting of 2000 keyframes with a keyframe distance of
0.4 m. The second dataset is taken from multiple loops in
a more challenging environment; 2800 keyframes are used
with the same keyframe distance of 0.4 m. Figure 5 shows the
aerial imagery of the scenes where the datasets are collected.
ORB [15] feature correspondences detected from image data

Fig. 5. Aerial imagery of the scenes used for the real-world experiments.
Left: The parking lot where the first dataset with 1400 framesis collected.
Right: The parking lot where the second dataset with 3000 frames is
collected. The GPS/INS trajectory of the vehicle is plottedin gray.

are passed as input into the compared algorithms. We provide
the results from the 4-point algorithm using both the heading
from the odometer readings and the rotation angle from
the INS readings. Since we only compare the relative pose
estimation results in this paper, the scale information between
each pair of frames is directly obtained from the GPS/INS
data for all the compared algorithms. Furthermore, only the
relative pose between consecutive frames is estimated, and
no bundle adjustment in any form is used.

From the plots, we clearly see that the 4-point algorithm
using relative rotation angle measurements from INS data
generates a trajectory closest to the ground truth. The 4-point
algorithm using relative rotation angle measurements from
odometry data generates a similar trajectory but with more
drift due to the higher inaccuracy of odometer readings. The
trajectories computed by the 5-point and 1-point algorithms
have larger drifts. For the 5-point algorithm, if the image
feature quality is low, the relative pose accuracy is signif-
icantly degraded. For the 1-point algorithm, the trajectory
is very smooth due to the Ackermann steering assumption;
however, the 1-point algorithm only works as long as the
camera is located on the vehicle’s rear axis. Our front camera
configuration does not adhere to the rear axis requirement,
leading to a continuous bias for each frame.

VI. CONCLUSIONS

In this paper, we show that by using relative rotation angle
measurements from a relative rotation sensor with unknown
extrinsics, the relative camera pose can be estimated from
only four image feature correspondences. In both simulated
and real experiments, the algorithm shows significant im-
provement in terms of accuracy over the 5-point and 1-point
algorithms. Intuitively, the 4-point algorithm outperforms
the 5-point algorithm as the 4-point algorithm is far more
likely to find a good initial estimate for the relative pose
from RANSAC given the same number of iterations, and

the use of relative rotation measurements narrows down the
space of possible solutions. Similarly, the 4-point algorithm
outperforms the 1-point algorithm; the assumption by the 1-
point algorithm that the camera lies along the vehicle’s rear
axis is violated. There is room for further optimization of
the implementation in terms of speed.

One limitation of the 4-point algorithm is that if large
instantaneous changes in rotation are observed, we require
the rotation sensor to be synchronized with the camera. Such
synchronization may be difficult to implement.

Our 4-point algorithm can be used for any platform with
a camera and a rotation sensor. For example, our 4-point
algorithm can be used on mobile phones for which computer
vision and augmented reality applications are increasingly
becoming popular. The internal gyroscope sensors provide
relative rotation angle measurements which are similar to
those from odometry and INS. In addition, the 4-point
algorithm is also applicable to robotic systems such as micro
aerial vehicles which move in 3D space.

The main advantage of the 4-point algorithm is that no
knowledge about the extrinsics is required, and thus, an
extrinsic calibration is not needed. This non-requirementcan
be extremely useful for hand-eye calibration implementations
in which rotation angle information can be used to improve
the visual odometry estimates, and thus, the resulting hand-
eye transform.

VII. A CKNOWLEDGEMENT

The second author was funded by the DSO National
Laboratories Postgraduate Scholarship. In addition, thiswork
was supported in parts by the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
#269916 (V-Charge) and 4DVideo ERC Starting Grant Nr.
210806.

REFERENCES

[1] R. Hartley and A. Zisserman,Multiple view geometry in computer
vision. Cambridge Univ Press, 2000, vol. 2.

[2] H. Stewénius, D. Nistér, F. Kahl, and F. Schaffalitzky, “A minimal
solution for relative pose with unknown focal length,”Image and
Vision Computing, vol. 26, no. 7, pp. 871–877, 2008.

[3] H. Li, “A simple solution to the six-point two-view focal-length
problem,” Computer Vision–ECCV 2006, pp. 200–213, 2006.

[4] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 26, no. 6, pp. 756–770, 2004.

[5] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on
direct relative orientation,”ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 60, no. 4, pp. 284–294, 2006.

[6] H. Li and R. Hartley, “Five-point motion estimation madeeasy,” in
Pattern Recognition, 2006. ICPR 2006. 18th International Conference
on, vol. 1. IEEE, 2006, pp. 630–633.

[7] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles,”Computer Vision–ECCV 2010, pp. 269–
282, 2010.

[8] D. Scaramuzza, “1-point-ransac structure from motion for vehicle-
mounted cameras by exploiting non-holonomic constraints,” Interna-
tional journal of computer vision, vol. 95, no. 1, pp. 74–85, 2011.

[9] G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Motion estimation for
self-driving cars with a generalized camera,” inComputer Vision and
Pattern Recognition, 2013.

−100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0

50

G/I

Odo

−100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0

50

G/I

4 INS

−100 0 100
−400

−350

−300

−250

−200

−150

−100

−50

0

50

G/I

4 Odo

0 200 400

−500

−400

−300

−200

−100

0

100

200

G/I

1

−200 0 200

−400

−300

−200

−100

0

100 G/I

5

Fig. 6. Visual odometry results on single loop data with 2000frames. All axis values are expressed in meters. We use the GPS/INS (G/I) trajectory as
ground truth as shown in each image for comparison. From leftto right: 1) Wheel odometry plot. 2) Visual odometry by 4-point algorithm with numerical
solver and using relative rotation angle measurements fromthe INS readings. 3) Visual odometry by 4-point algorithm with numerical solver and using
relative rotation angle measurements from odometry readings. 4) Visual odometry by 1-point algorithm. 5) Visual odometry by 5-point algorithm.

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

Odo

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

4 INS

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

4 Odo

0 50 100

−120

−100

−80

−60

−40

−20

0

G/I

1

−50 0 50

−120

−100

−80

−60

−40

−20

0

G/I

5

Fig. 7. Visual odometry results on multiple loop data with 2800 frames. All axis values are expressed in meters. We use theGPS/INS (G/I) trajectory
as ground truth as shown in each image for comparison. From left to right and top to bottom: 1) Wheel odometry plot. 2) Visual odometry by 4-point
algorithm with numerical solver and using relative rotation angle measurements from the INS readings. 3) Visual odometry by 4-point algorithm with
numerical solver and using relative rotation angle measurements from odometry readings. 4) Visual odometry by 1-pointalgorithm. 5) Visual odometry by
5-point algorithm.

[10] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and
efficient 3d robotics hand/eye calibration,”Robotics and Automation,
IEEE Transactions on, vol. 5, no. 3, pp. 345–358, 1989.

[11] Y. C. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic
sensors by solving homogeneous transform equations of the form ax=
xb,” Robotics and Automation, IEEE Transactions on, vol. 5, no. 1,
pp. 16–29, 1989.

[12] Z. Kukelova, M. Bujnak, and T. Pajdla, “Automatic generator of
minimal problem solvers,”Computer Vision–ECCV 2008, pp. 302–
315, 2008.

[13] D. Batra, B. Nabbe, and M. Hebert, “An alternative formulation for
five point relative pose problem,” inMotion and Video Computing,
2007. WMVC’07. IEEE Workshop on. IEEE, 2007, pp. 21–21.

[14] T. Y. Tian, C. Tomasi, and D. J. Heeger, “Comparison of approaches
to egomotion computation,” inComputer Vision and Pattern Recog-
nition, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society
Conference on. IEEE, 1996, pp. 315–320.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb:an efficient
alternative to sift or surf,” inComputer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 2564–2571.

