
MAV Visual SLAM with Plane Constraint

Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys

Computer Vision and Geometry Laboratory, Department of Computer Science, ETH Zürich, Switzerland

glee@student.ethz.ch, fraundorfer@inf.ethz.ch, marc.pollefeys@inf.ethz.ch

Abstract— Bundle adjustment (BA) which produces highly
accurate results for visual Simultaneous Localization and Map-
ping (SLAM) could not be used for Micro-Aerial Vehicles
(MAVs) with limited processing power because of its O(N3)
complexity. We observed that a consistent ground plane often
exists for MAVs flying in both the indoor and outdoor urban
environments. Therefore, in this paper, we propose a visual
SLAM algorithm that make use of the plane constraint to
reduce the complexity of BA. The reduction of complexity is
achieved by refining only the current camera pose and most
recent map points with BA that minimizes the reprojection
errors and perpendicular distances between the most recent
map points and the best fit plane with all the pre-existing map
points. As a result, our algorithm is approximately constant
time since the number of current camera pose and most
recent map points remain approximately constant. In addition,
the minimization of the perpendicular distances between the
plane and map points would enforce consistency between the
reconstructed map points and the actual ground plane.

I. INTRODUCTION

In the recent years, there is a growing interest among

various research groups [1]–[3] in the development of au-

tonomous MAVs for urban environments. This increase of

interests could largely be attributed to the high maneuverabil-

ity of MAVs which promises the possibilities of achieving

more sophisticated robotics tasks in urban environments. For

the MAVs to interact autonomously with the environment, it

must possess the ability to learn a map of its environment

and to localize itself with respect to this map. This is

referred to as the SLAM problem. A camera is an excellent

sensor for MAVs to do SLAM. Besides being a light-weight

device which is suitable for MAVs with limited payload,

images from a camera also provide rich information of the

environment.

Two main groups of algorithms exist for visual SLAM

- BA from structure from motion [6]–[8] and the Bayesian

filters such as the Extended Kalman Filter (EKF) [9] and

Particle Filter [10]. BA works by minimizing the reprojection

errors from an initial estimate of the full camera trajectory

and map points using non-linear least square minimization

methods such as the Levenberg-Marquardt algorithm. Results

of high accuracy are often obtained from BA. However,

because BA requires an initial estimate of the full camera

trajectory and map points, it is therefore an offline algo-

rithm for visual SLAM. In addition, non-linear least square

minimization of reprojection errors involves inversion of

Jacobian matrices which has a complexity of O(N3), making

it difficult to work for long trajectories and MAVs with

limited on-board processing power.

The Adaptive Relative Bundle Adjustment [4] reduces

the complexity of BA by re-parameterizing the absolute

coordinates of the camera trajectory and map points into

relative coordinates. This allows optimization of only the

parameters that might change when there is new informa-

tion thus greatly reduces computation cost. However, the

recovery of absolute coordinates from relative coordinates

becomes extremely slow as the number of camera poses

and map points grow. In the Local Bundle Adjustment [5],

computation complexity is reduced by only considering a

number of most recent camera frames and the map points

seen by these camera frames in the BA process. This keeps

the number of parameters in BA approximately constant

and hence its complexity is approximately constant time.

However, significant drifts could be observed in the estimates

from Local BA because it completely ignores all the previous

camera poses and map points.

Klein demonstrated monocular SLAM in real-time with

his PTAM framework [22]. The PTAM framework is divided

into two threads. One thread constantly does local localiza-

tion which estimates the camera pose with respect to the

existing map. The other thread does a BA on the whole map

and all the camera poses when resources become available.

The PTAM framework works very fast with the local local-

ization thread. However, it slows down significantly when

the BA thread is activated thus causing it to work only in

small environments.

Bayesian Filters on the other hand provide the solution

to online Visual SLAM. Davison’s MonoSLAM [9] made

used of the EKF which is free from Jacobian inversion thus

making it an online SLAM. However, its limitation as an

online SLAM algorithm sets in as the number of features on

the map grows. This is because EKF maintains a covariance

matrix of all features and current camera pose that requires

O(N2) complexity to update. Furthermore, the linearization

of the non-linear camera projection model causes important

information to be lost and eventually leading to inconsisten-

cies in the estimation of the camera poses and map [11].

Ethan tried to overcome these problems in his Scalable

Monocular SLAM [10] by making use of the particle filter.

However, the particle filter also suffers the same fate of

inconsistencies because it does not store the covariance

between map features and camera poses [12]. In addition,

particle filter suffers from the curse of dimensionality. In-

finite number of particles is needed for optimal estimates.

However, this also requires infinite processing time.

This paper focuses on the development of a visual SLAM

algorithm suitable for MAVs navigating in urban environ-

ments. We observed that a consistent ground plane often

exists in most indoor and outdoor urban environments, for

example, the ground plane along a corridor or a street. By

mounting a downward looking camera on the MAV, features

could be extracted from the ground plane. With the prior

knowledge of the plane constraint, our visual SLAM algo-

rithm estimates the plane parameters from RANSAC [14]

plane fitting with all the pre-existing map points, followed by

a refinement of the current camera pose and the most recent

map points with a BA process that minimizes the reprojection

errors and the perpendicular distances between the plane and

3D map points. This process is repeated with the incoming

of every set of new camera pose and map points. Our method

is most similar to Local BA, instead of optimizing the full

(6n + 3m) camera poses and map features with BA, we

reduces complexity significantly by estimating only 4 plane

parameters with RANSAC, and (6 + 3m′) current camera

pose and most recent map points with BA where m′ << m.

Since the total number of current camera pose and m′ map

points stay approximately constant, our visual SLAM with

plane constraint is approximately constant time. In contrast

with Local BA, our method has a significant advantage of

information from previous estimates not being lost because

we use the pre-existing map points to estimate the plane for

enforcing planar constraint on incoming map points.

This paper is structured as follows. In Section II, we briefly

discuss BA which is a prerequisite to understand our visual

SLAM algorithm. Section III describes our visual SLAM

algorithm in detail. In Section IV, we show the simulation

and implementation results of our visual SLAM algorithm.

Lastly, we show in Section V that it is also possible to extend

our algorithm to handle environments with multiple planes.

II. BUNDLE ADJUSTMENT

In this section, we briefly describe the BA process which is

needed to derive our visual SLAM algorithm in the next sec-

tion. A more detailed explanation is given in [8]. Given the

initial estimates of the m 3D map points [XT
1
, XT

2
, ..., XT

m]T ,

their corresponding 2D image features over n views

[XT
11
, XT

12
, ..., XT

1m, XT
21
, XT

22
, ..., XT

2m, ..., XT
nm]T , and the

initial estimates of the camera poses [C1, C2, ..., Cn]
T . The

objective of BA is to find the optimal values for the 3D

map points and camera poses that minimize a cost function

that is made up by the total reprojection errors of the map

features onto the respective images as shown in Equation

1. d(.) denotes the Euclidean distances between the image

points and its reprojection, and Q(.) is the camera projection

function. Note that d(.) = 0 when Xj is not in the view of

camera Ci.

argmin
C,X

n∑

i

m∑

j

d (Q (Ci, Xj)− xij) (1)

The Levenberg-Marquardt algorithm is the most com-

monly used method for solving the BA problem.

Let β = [C1, C2, ..., Cn, X
T
1
, XT

2
, ..., XT

m]T . Levenberg-

Marquardt iteratively moves β towards the optimal values for

minimizing Equation 1 by solving for δβ in the augmented

normal equation shown in Equation 2. A better β value

for minimizing the reprojection errors is obtained from

βi = βi−1 + δβ after every iteration. The Jacobian J =
[JC , JX] where JC and JX denote the camera projection

function Q(.) with respect to the camera poses and 3D map

points, ǫ is the reprojection errors and λ is the non-negative

damping parameter for controlling the rate of convergence.

The Levenberg-Marquardt iteration is terminated when ǫ falls

below a threshold value.

(
JTJ + λI

)
δ = −JT ǫ (2)

The Levenberg-Marquardt algorithm is very effective in

minimizing the total reprojection errors. However, the algo-

rithm requires an inversion of
(
JTJ + λI

)
at every iteration

which has a complexity of O(N3).
(
JTJ + λI

)
grows

linearly with the number of camera poses and map features.

This means that it is difficult to do BA on MAVs with limited

processing power over a long trajectory.

III. OUR VISUAL SLAM ALGORITHM

The 3D map points of our visual SLAM algorithm are

initialized from the first two keyframes. With the prior

knowledge of plane constraint, we optimize the plane pa-

rameters, first two camera poses and 3D map points with

a BA process that minimizes the reprojection errors and

perpendicular distances between the plane and map points.

Subsequent camera poses and map points are estimated by a

process that estimates the plane parameters from RANSAC

plane fitting with all the pre-existing map points, followed

by refinement of the current camera pose and map points

with a BA process that minimizes the perpendicular distances

between the plane and map points. This process is repeated

with the incoming of every set of new camera pose and map

points. A subtle difference between initialization and subse-

quent estimations is that the plane parameters are included in

the BA for initialization. This is to ensure accurate estimation

of the plane parameters in the absence of pre-existing map

points. Our algorithm is approximately constant time since

we are only estimating 4 plane parameters with RANSAC

and (6+3m′) current camera pose and map points where the

number of map points m′ remains approximately constant.

A. Features Extraction and Correspondences

The primary step for all visual SLAM algorithms is the

extraction of salient features from the image and get their

2D-2D correspondences across a sequence of images. In this

paper, we choose to extract SIFT features from the images

and their 2D-2D correspondences are found via the second

nearest neighbor approach [15]. Other features such as SURF

[16], Randomized Trees [17] and Ferns [18] could also be

used.

Not all frames in the image sequence are used for fea-

ture correspondences because the 5-point and linear 4-point

algorithms (see Sections III-B and III-C for more details)

for estimating the camera poses work best when there is

sufficient movements between the camera poses. As such,

only keyframes with sufficient movements are selected for

feature extraction and correspondences. An image frame is

chosen as a keyframe if the average pixel movements of all

the feature correspondences exceed a threshold value.

B. Initialization

Our SLAM algorithm is initialized with the first two

keyframes from the image sequence. First, the Essential

matrix that relates this pair of images is computed from the 5-

point algorithm [13]. Next, the relative camera pose between

the two keyframes is extracted from the Essential matrix. The

RANSAC algorithm [14] is used for a more robust estimation

of the Essential matrix. Lastly, with the knowledge of the

relative pose between the first two keyframes, triangulation

of the image features to get the 3D map points follows. These

3D map points generally do not lie on a plane due to the noise

presented in the features extracted from the images. Figure

1 shows a possible distribution of the 3D map points around

the ground plane π.

Fig. 1. A possible distribution of 3D map points obtained from triangula-
tion.

We propose to improve the accuracy of the initial 3D map

points and relative pose between the first pair of keyframes

by minimizing the cost function given in Equation 3. This

cost function is made up from the reprojection errors and the

perpendicular distances d̂ between the 3D map points and the

ground plane π. The ground plane π is parameterized by 4

parameters [π1, π2, π3, π4] which describe the plane equation

π1x+π2y+π3z+π4 = 0. An initial estimate of these plane

parameters is obtained from a RANSAC plane fitting process

of the initial 3D map points. d⊥(.) is the function used to

compute the perpendicular distance d̂ between a plane and a

point, and it is given by Equation 4.

argmin
C1,C2,X,π

m∑

j

{
2∑

i=1

d (Q (Ci, Xj)− xij) + d⊥ (π,Xj)

}

(3)

d⊥ (π,Xj) =
|π1xj + π2yj + π3zj + π4|√

π2

1
+ π2

2
+ π2

3

(4)

The cost function from Equation 3 is minimized by

iterating through the augmented normal equation shown

in Equation 2 from the Levenberg-Marquardt algorithm

mentioned in Section II. This can be achieved by aug-

menting d⊥(.) into the normal equation. As a result, the

parameters which we try to estimate is given by β =
[C1, C2, X

T
1
, XT

2
, ..., XT

m, π1, π2, π3, π4]
T , and the error ǫ =

[ǫd, ǫd⊥
]T where ǫd is the reprojection errors and ǫd⊥

is the

perpendicular distances of each 3D map feature from the

estimated plane. The Jacobian is given by

J =

(
JC JX 0
0 JXπ Jπ

)
(5)

where JXπ and Jπ are the Jacobians of d⊥(.) with respect

to the 3D map points and plane parameters.

C. Subsequent Pose Estimations

The 3D map points are used to estimate the subsequent

camera poses after the two frames initialization. This in-

volves finding the 2D-3D correspondence between the fea-

tures in the current image frame and the 3D map points

followed by solving the perspective problem [19] to obtain

the current camera pose.

Fig. 2. The relation between 2D-2D and 2D-3D correspondences.

Figure 2 gives an illustration on how we can find out the 2D-

3D correspondences between the current image features and

the existing 3D map points. Supposed that Xj is a 3D map

point triangulated from the 2D-2D correspondence between

frames Cn−2 and Cn−1 , the 2D-3D correspondence between

Xj and a image feature from the current frame Cn would

be established if the image feature from the current frame is

found to be a 2D-2D correspondence with the image feature

that correspondence to Xj from the previous frame.

Once all the 2D-3D correspondences are found, the current

camera pose is obtained from the linear 4-point algorithm

[19]. The advantage of this method is that the relative scale

of the current pose would also be found. We improve the

robustness of the algorithm by coupling it with the RANSAC

process. This is followed by addition of new points into the

map. These new points are triangulated from new 2D-2D

correspondences between the current and previous frames.

D. Bundle Adjustment with Plane Constraint

BA to the current camera pose and newly added 3D map

points is done after solving the perspective problem for every

new camera pose. Prior to BA, the plane parameters has to be

estimated from RANSAC plane fitting of all the pre-existing

map points. The estimated plane parameters are then used in

BA as an additional constraint. In this way, we ensured that

global information from all the pre-existing map points are

not lost in the BA process. At the same time, we reduce the

number of parameters to be estimated in the BA from all the

camera poses and map points (6n+3m) to the current camera

pose and the newly added map points (6 + 3m′) where

m′ << m. As a result, our visual SLAM algorithm becomes

approximately constant time since the number of current

camera pose and newly added points stays approximately

constant. To make our algorithm more robust, we remove

any outliers from the map after RANSAC plane fitting.

Fig. 3. Parameters used in our bundle adjustment.

Figure 3 shows an illustration of the parameters used in our

BA. π is the plane parameters estimated from the RANSAC

process mentioned earlier. The current camera pose Cn and

m′ newly seen 3D map points are the parameters to be

estimated in our BA. Let us denote the m′ newly seen

features as Xnew. The cost function for our BA is defined

in Equation 6. Note that the previously seen points are also

included into the cost function. Previously seen features

are the 3D map points seen by the most recent 3 frames,

Cn, Cn−1, Cn−2 as illustrated in Figure 3. The reason for

including the previously seen features is to provide additional

constraints thus preventing wrong convergence of our BA. X ′

denotes all the previously and newly seen 3D map points

and m′′ denotes the total number of X ′. It is important

to note that the cost function in Equation 6 is minimized

only with respect to Cn and Xnew. The plane parameters π

remain unchanged here. This is because the plane parameters

contains information from the pre-existing map points and

should only be changed after each BA process.

argmin
Cn,Xnew

m′′∑

j=1

{
n∑

i=n−1

d
(
Q
(
Ci, X

′

j

)
− x′

ij

)
+ d⊥

(
π,X ′

j

)
}

(6)

Similar to the 2 frames initialization, we minimize the

cost function in Equation 6 with the Levenberg-Marquardt

algorithm. The parameters that we estimate now is given by

β = [Cn, X
newT
1

, XnewT
2

, ..., XnewT
m′]T , and the error ǫ =

[ǫ′d, ǫ
′

d⊥
]T where ǫ′d is the repojection errors for all X ′ in

Cn−1 and Cn, and ǫ′d⊥
is the perpendicular distances of all

X ′ with the estimated plane parameters prior to the BA. The

Jacobian is given by

J =

(
JCn

JXnew

0 JXnewπ

)
(7)

where JCn
and JXnew are the Jacobians of the projection

function Q(.) with respect to the current camera pose Cn

and the newly seen 3D map points Xnew. JXnewπ is the

Jacobian of d⊥(.) with respect to the newly seen map points.

IV. SIMULATION AND IMPLEMENTATION RESULTS

Fig. 4. (Top) Simulated planar environment. (Middle) Camera poses and
3D map points estimated from Local BA. (Bottom) Camera poses and 3D
map points estimated from our visual SLAM algorithm.

Figure 4 (Top) shows a simulated environment with 1000

points lying on a plane with unit thickness (to show that the

points need not fully lie flat on a plane for our algorithm

to work) and 50 camera poses distributed evenly along

the x-axis with no rotation. Image features are generated

by projecting the points onto the images with a camera

projection matrix. For each image, we retain the features that

are found within the defined image size. The image features

are perturbed with Gaussian noise to make the simulation

more realistic. Figure 4 (Middle) and (Bottom) show the

estimated camera poses and 3D map points from Local BA

and our visual SLAM algorithm. A window size of 3 is used

for the Local BA. Note that the plots have different scales

because the absolute scale could not be recovered from a

single camera. We can see that the estimated camera poses

from the Local BA drifts significantly and the reconstructed

3D map points do not lie on a plane. In comparison, there is

almost no drift in the camera poses estimated from our visual

SLAM algorithm and the reconstructed 3D map points lie on

a plane which are more consistent with the groundtruth.

Figure 5 (Right) shows the laboratory setup where image

data is collected to verify our visual SLAM algorithm for the

single plane case. Unique markers from the ARToolKitPlus

software [20] are placed on the ground to increase the

number of image features. These regular-shaped markers also

make it easier for us to visually inspect the accuracy the

map produced from our visual SLAM algorithm. Images

are collected from a downward looking PointGrey Firefly

MV 1 USB camera mounted on our quadrotor shown in

Figure 5 (Left) overlooking the markers over a trajectory

of approximately 930cm.

Fig. 5. (Left) Our Quadrotor with a downward looking camera. (Right)
Laboratory setup where we collect visual data to verify our visual SLAM
algorithm.

Figure 6 (Top) shows the camera trajectory and 3D map

points estimated from the 5-point and linear 4-point algo-

rithms. It can be seen from the plots that the map becomes

less consistent with the ground plane as the camera advances

through its trajectory. This is because the errors from the 5-

point and linear 4-point algorithms are left unchecked and

accumulates with the advances of the camera trajectory. We

also observed from the arbitrary rotated side-view of the map

that a significant number of map points do not lie on a plane.

The L2 norm of the distances between all points and their

best fit plane is 111.7155 units (we do not assign any SI units

for this distance since the scale of the reconstructed points

is not known) and the L2 norm of the reprojection errors is

113.3352 pixels.

Figure 6 (Bottom) shows the camera trajectory and 3D

map points after our visual SLAM algorithm. Our visual

SLAM algorithm is performed after pose estimation for every

frame. It is obvious from the plots that our visual SLAM

algorithm produces more consistent results with the ground

plane. On top of being able to correct the errors from the

pose estimation, our visual SLAM algorithm is also able to

produce 3D map points that lies on a plane. This means that

the 3D map points from our visual SLAM algorithm is closer

to the groundtruth. The L2 norm of the distances between

the points and their best fit plane is 35.2910 units and L2

norm of the reprojection errors is 103.4431 pixels.

We also did a comparison of the processing time needed

for full BA and our visual SLAM algorithm. In this case,

BA is performed after pose estimation for every frame.

Figure 7 shows the recorded processing time from our Matlab

implementations of BA and our visual SLAM. It is clear

from the plot that the processing time for BA increases after

the addition of every frame, but the processing time for our

visual SLAM algorithm remains approximately constant.

V. MULTIPLE PLANES

We show theoretically in this section that our visual SLAM

algorithm can be extended to handle environments with

multiple planes.

1http://www.ptgrey.com/

Fig. 6. (Top) Camera trajectory and 3D map points estimated with the
5-point and linear 4-point algorithms. (Bottom) Camera trajectory and 3D
map points estimated from our visual SLAM algorithm.

Fig. 7. The processing time for BA increases with each frame while
the processing time for our visual SLAM algorithm stays approximately
constant.

A. Initialization

In cases where there are more than one plane, we first do

plane extraction on the images using methods such as [21]

and classify the extracted features according to the plane it lie

on. Next, the respective plane parameters are estimated with

RANSAC after triangulation. Lastly, the relative pose, map

points and plane parameters are optimized by minimizing

the reprojection errors and the perpendicular distances of the

map points and their respective plane. The cost function is

given by

argmin
C1,C2,X,Π

m∑

j

{
2∑

i=1

d (Q (Ci, Xj)− xij) +

p∑

k

d⊥
(
πk, Xj

)
}

(8)

where Π = [π1, π2, ..., πp] and πp = [πp
1
, π

p
2
, π

p
3
, π

p
4
] are the

plane parameters. Note that d⊥(.) = 0 if Xj does not belongs

to the plane πp. Similar to the single plane case, Equation 8

can be minimized with the Levenberg-Marquardt algorithm.

The parameters which we try to estimate is now given by

β = [C1, C2, X,Π]T , and the error ǫ = [ǫd, ǫd⊥
]T where ǫd is

the reprojection errors and ǫd⊥
is the perpendicular distances

of each 3D map feature from its corresponding plane. The

Jacobian is given by

J =

(
JC JX 0
0 JXΠ JΠ

)
(9)

where JXΠ and JΠ are the Jacobians of d⊥(.) with respect to

the 3D map points and parameters from the multiple planes.

B. Subsequent Pose Estimations

Subsequent pose estimations for multiple plane case is the

same as the single plane case (Section III-C) except for the

need to detect and add new planes. Planes are detected with

plane extraction on the image and are classified as new planes

if all the 3D points found on it are newly added points.

C. Bundle Adjustment with Plane Constraint

BA for the multiple planes case is preceded by individual

RANSAC process to estimate the parameters Π for the

multiple planes from all existing map points. This is followed

by a BA that estimates the current camera pose and newly

seen map points by minimizing the reprojection errors and

perpendicular distances between the newly seen points and

their respective planes. The cost function is given by

argmin
Cn,Xnew

m′′∑

j=1

{
n∑

i=n−1

d
(
Q
(
Ci, X

′

j

)
− x′

ij

)
+

p∑

k

d⊥
(
πk, X ′

j

)
}

(10)

Note that d⊥(.) = 0 if Xj does not belongs to plane πp.

The Levenberg-Marquardt algorithm is used to minimize the

cost function in Equation 10. Similar to the single plane case,

only the current camera pose and newly seen points given by

β = [Cn, X
newT
1

, XnewT
2

, ..., XnewT
m′]T are optimized. The

error is ǫ = [ǫ′d, ǫ
′

d⊥
]T where ǫ′d is the repojection errors

for all X ′ in Cn−1 and Cn, and ǫ′d⊥
is the perpendicular

distances of all X ′ with their corresponding plane parameters

πk estimated prior to the BA. The Jacobian is given by

J =

(
JCn

JXnew

0 JXnewΠ

)
(11)

where JXnewΠ is the Jacobian of d⊥(.) with respect to the

newly seen points.

The computation cost of our visual SLAM algorithm in the

multiple plane case remains approximately the same because

the number of parameters to be estimated remain as (6+3m′)
in the BA. The only part that incurs additional computation

cost is the RANSAC processes required to estimate 4p
parameters from the multiple planes, which however does

not increases the computation cost by a huge amount.

VI. CONCLUSIONS

In this paper, we proposed a visual SLAM algorithm

for MAVs navigating in the urban environments with a

consistent ground plane. We showed from simulation and

implementation results that our algorithm is able to enforce

planar consistency between the reconstructed map points and

the actual ground plane in approximately constant time. We

also showed theoretically that an extension of our algorithm

to handle multiple planes is possible.

VII. ACKNOWLEDGMENTS

This work was supported in part by the European Com-

munity’s Seventh Framework Programme (FP7/2007-2013)

under grant #231855 (sFly) and by the Swiss National

Science Foundation (SNF) under grant #200021-125017.

REFERENCES

[1] “MIT Robust Robotics Group”, http://groups.csail.mit.
edu/rrg/index.html.

[2] “Ascending Technologies GmbH”, http://www.asctec.de/.
[3] “Swarm of Micro Flying Robots: sFly”, http://projects.asl.

ethz.ch/sfly/doku.php.
[4] G Sibley, C Mei, I Reid and P Newman, “Adaptive Relative Bundle

Adjustment”, in Robots: Science and Systems (RSS), June 2009.
[5] Zhengyou Zhang and Ying Shan, “Incremental Motion Estimation

Through Local Bundle Adjustment”, in Internation Conference on

Image Processing (ICIP), September 2003.
[6] Yi Ma, Stefano Soatto, Jana Kosecka and Shankar S. Sastry, “An

invitation to 3-D vision: From images to geometrical approaches”,
Springer-Verlag, November 2003.

[7] Hartley, R. I. and Zisserman, A., “Multiple View Geometry in Com-
puter Vision”, Second Edition, Cambridge University Press, 2004.

[8] Bill Triggs, P. McLauchlan, Richard Hartley and A. Fitzgibbon,
“Bundle Adjustment – A Modern Synthesis”, in Vision Algorithms:

Theory and Practice, Lecture Notes in Computer Science, pp 298–
372, 2000.

[9] Andrew J. Davison, “Real-Time Simultaneous Localization and Map-
ping with a Single Camera”, in International Conference on Computer

Vision (ICCV) , 2003.
[10] Ethan Eade and Tom Drummond, “Scalable Monocular SLAM”, in

IEEE Computer Vision and Pattern Recognition (CVPR), 2006.
[11] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens and Eduardo

Nebot, “Consistency of the EKF-SLAM Algorithm”, in IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS), 2006.
[12] Tim Bailey, Juan Nieto and Eduardo Nebot, “Consistency of the

FastSLAM Algorithm”, in IEEE International Conference on Robotics

and Automation (ICRA), 2006.
[13] D. Nister, “An efficient solution to the five-point relative pose prob-

lem”, in Proceedings IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2003), Volume 2, pages. 195-
202, 2003.

[14] Fischler, Martin A. and Bolles, Robert C.,“Random sample consensus:
a paradigm for model fitting with applications to image analysis
and automated cartography”, in Readings in computer vision: issues,

problems, principles, and paradigms, 1987, pp. 726–740.
[15] David G. Lowe, “Distinctive image features from scale-invariant

keypoints”, in International Journal of Computer Vision, 2004, pp.
91-110.

[16] Herbert Bay, Andreas Ess, Tinne Tuytelaars and Luc Van Gool,
“SURF: Speeded Up Robust Features”, in Computer Vision and Image

Understanding (CVIU), Volume 110, Nr. 3, pp. 346–359, 2008.
[17] Vincent Lepetit and Pascal Fua, “Keypoint Recognition Using Ran-

domized Trees”, in IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, Volume 28, Issue 9, September 2006.
[18] M. Özuysal, M. Calonder, V. Lepetit, P. Fua, “Fast Keypoint Recogni-

tion using Random Ferns”, in IEEE Transactions on Pattern Analysis

and Machine Intelligence, Volume 32, Nr. 3, pp. 448–461, March 2010
[19] Long Quan and Zhongdan Lan, “Linear N-point camera pose deter-

mination”, in IEEE Pattern Analysis and Machine Intelligence, 1999.
[20] Wagner Daniel and Schmalstieg Dieter, “ARToolKitPlus for Pose

Tracking on Mobile Devices”, Proceedings of 12th Computer Vision

Winter Workshop, February 2007.
[21] MIA Lourakis, AA Argyros, SC Orphanoudakis, “Detecting planes

in an uncalibrated image pair”, in British Machine Vision Conference

(BMVC), 2002.
[22] Georg Klein and David Murray, “Parallel Tracking and Mapping for

Small AR Workspaces”, in International Symposium on Mixed and

Augmented Reality (ISMAR), 2007.

