
Relative Pose Estimation for a Multi-Camera System with Known Vertical
Direction

Gim Hee Lee1, Marc Pollefeys1, and Friedrich Fraundorfer2

Department of Computer Science1
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Abstract
In this paper, we present our minimal 4-point and lin-

ear 8-point algorithms to estimate the relative pose of a
multi-camera system with known vertical directions, i.e.
known absolute roll and pitch angles. We solve the min-
imal 4-point algorithm with the hidden variable resultant
method and show that it leads to an 8-degree univariate
polynomial that gives up to 8 real solutions. We identify
a degenerated case from the linear 8-point algorithm when
it is solved with the standard Singular Value Decomposi-
tion (SVD) method and adopt a simple alternative solution
which is easy to implement. We show that our proposed al-
gorithms can be efficiently used within RANSAC for robust
estimation. We evaluate the accuracy of our proposed algo-
rithms by comparisons with various existing algorithms for
the multi-camera system on simulations and show the feasi-
bility of our proposed algorithms with results from multiple
real-world datasets.

1. Introduction

A multi-camera system refers to a system of cameras
that are rigidly fixed onto a single body and it offers sev-
eral advantages for ego-motion estimation. Since the multi-
camera system is made up of individual cameras, it can be
set in a configuration that maximizes the field-of-view. A
maximal field-of-view of the environment means that more
image features can be robustly detected and tracked, which
is the most fundamental but crucial step in ego-motion es-
timation. One other major advantage of the multi-camera
system is the fact that the metric scale can be directly ob-
tained from the epipolar geometry as described in earlier
works [13, 16, 11]. This means that as compared to a stereo
camera, there is greater flexibility in the configuration of the
multi-camera system because there is no need for large or
any overlapping field-of-view to retrieve the metric scale.
Figure 1 shows an example of our multi-camera system
made up of four fish-eye cameras fixed onto a car for ego-
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Figure 1. An example of a multi-camera system with known verti-
cal from the IMU on a car.

motion estimation.
The main difference between the multi-camera system

and the standard pinhole camera is the absence of a single
center of projection. The light rays that passed through the
multi-camera system do not meet at a single center of pro-
jection, i.e. non-central projection. To overcome this prob-
lem, Pless [13] proposed to express the light rays as Plücker
lines and requires 17-point correspondences to compute the
relative motion linearly. In a later work [16], Sturm also
came up with similar formulations. In [11], Li et al. built
on the work of Pless by identifying several cases of degen-
eracies and proposed the linear 16-point and 14-point al-
gorithms to overcome the degeneracies. The high number
of correspondences needed for these algorithms however
made them impractical for robust estimation with RANSAC
[3] in real-world applications for ego-motion estimation.
The minimal 6-point algorithm [15] proposed by Stewénius
et al. requires much lesser point correspondences but yields
up to 64 solutions, which makes the process of identifying
the correct solution difficult and computationally expensive.

More recently, Lee et al. [9] made used of the fact that
their multi-camera system is fixed onto a car to constrain the
relative motion with the Ackermann motion model, which
requires only 2-point correspondences and gives up to 6 so-
lutions. As a result, it became possible for them to use
RANSAC for robust estimation and show results on large
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real-world datasets. In [10], Lee et al. relaxed the Acker-
mann motion constraint to a planar constraint to allow for
the computation of loop-closure constraints. Despite their
success in applying the multi-camera system on real-world
datasets for ego-motion estimation, their algorithms work
on a very strict assumption that the ground has to be pla-
nar. While this assumption is valid for a large part of the
roads, there are instances such as ramps at highway en-
trances or exits, multi-level parking garages and off-road
drivings where the assumption would be violated.

In this paper, we make use of the known vertical direc-
tion from an Inertial Measurement Unit (IMU) to keep the
number of point correspondences low while allowing the
full 6 degree-of-freedom for the relative motion to be es-
timated. While relative [4, 6] and absolute pose [8] esti-
mation with known vertical direction has been shown for
a monocular camera, no prior work exists for relative mo-
tion estimation with known vertical direction for the multi-
camera system. Figure 1 shows our car equipped with a
multi-camera system and the iTrace1 IMU. In particular, we
propose the minimal 4-point and linear 8-point algorithms
to estimate the relative pose of a multi-camera system with
known vertical direction, i.e. known absolute roll and pitch
angles. We show that the minimal 4-point algorithm can be
solved with the hidden variable resultant [2] that gives up
to 8 solutions. We identify a degenerated case in the linear
8-point algorithm when it is solved with the standard SVD
approach [5] and adopt a simple strategy from [11] to solve
it. We show that our proposed algorithms can be efficiently
used within RANSAC for robust estimation. The accuracy
of our proposed algorithms is compared with the existing al-
gorithms in simulations and we also demonstrate the feasi-
bility our algorithms on non-planar roads with several real-
world datasets taken on a multi-level parking garage.

2. Generalized Epipolar Constraint

In this section, we give a brief description of the multi-
camera epipolar constraint, otherwise known as the gener-
alized epipolar constraint, which is needed to follow the
derivations of our minimal 4-point and linear 8-point algo-
rithms in the next sections. More details on the generalized
epipolar constraint can be found in [13]. The main differ-
ence between the generalized camera and a standard pinhole
camera is the absence of a single center of projection. To
overcome this problem, the light rays from all the cameras
in the multi-camera system are expressed as the 6-vector
Plücker line with respect to a common arbitrarily chosen
reference frame V . Let us denote each camera as Ci and its
extrinsics expressed in the reference frame V as [tCi , RCi ].
The intrinsics of each camera is denote byKCi .The Plücker
line that represents the light ray that passes through Ci and

1http://www.imar-navigation.de/index.php/de/

the normalized image point x̂ij = K−1Ci
xij is given by

lij = [uTij , (tCi
× uij)T ]T (1)

where uij = RCi
x̂ij is the unit direction of the light ray

expressed in the reference frame V . As a result, the gener-
alized epipolar constraint can be written as

l′
T
ij

[
E R
R 0

]
︸ ︷︷ ︸
EGC

lij = 0 (2)

where l′ij ↔ lij are the ray correspondences between two
generalized camera frames V ′ and V . EGC is the 6 × 6
generalized essential matrix made up of the conventional
essential matrix E = btcxR, where R and t are the rotation
and translation between the two frames [5]. The fact that
the generalized epipolar constraint is made up the Plücker
line correspondences which consist of the extrinsics trans-
lation tCi

in metric scale means that the metric scale of the
relative translation t between the two frames can be fully
determined.

3. Problem Definition
The problem of relative pose estimation for a multi-

camera system with known vertical direction is defined as:

Definition 1. Given a calibrated multi-camera system (i.e.
known intrinsics and extrinsics), the vertical directions (roll
and pitch angles from the IMU) of two multi-camera system
frames and image point correspondences between the two
multi-camera system frames, find the relative pose between
the two multi-camera system frames.

4. Minimal 4-Point Algorithm
The pipeline of our minimal 4-point algorithm first trans-

forms the Plücker line correspondences with the roll and
pitch angles of the correspondence frames from the IMU.
Next, the minimal 4-point algorithm gives the relative pose
estimated from the transformed Plücker line correspon-
dences. Lastly, the relative pose in the original correspon-
dence frames is computed.

4.1. Apply Roll and Pitch Angles

The roll and pitch angles from the IMU are given with
respect to a reference frame W , where the xy plane is par-
allel to the ground plane and x-axis aligned with the True
North. In a calibrated setting where the relative rotation be-
tween the generalized camera frame and IMU is known, let
us denote the rotation matrices from the roll and pitch an-
gles of the two correspondence generalized camera frames
V ′ and V with respect to W as (R′r, R

′
p)↔ (Rr, Rp). The

relative rotation R can now be written as
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R = R
′T
r R

′T
p R̂yRpRr (3)

where R̂y = R
′T
y Ry and R′y ↔ Ry are the rotation matri-

ces from the yaw angles of the two correspondence gener-
alized camera frames V ′ and V with respect to W . Putting
Equation 3 into the generalized essential matrix EGC from
Equation 2, we get[

btcxR
′T
r R

′T
p R̂yRpRr R

′T
r R

′T
p R̂yRpRr

R
′T
r R

′T
p R̂yRpRr 0

]
(4)

where we can factorize out RpRr to the right hand side of
the matrix to get[
btcxR

′T
r R

′T
p R̂y R

′T
r R

′T
p R̂y

R
′T
r R

′T
p R̂y 0

] [
RpRr 0

0 RpRr

]
(5)

The generalized essential matrix can be further simpli-
fied by replacing btcxR

′T
r R

′T
p with R

′T
r R

′T
p bt̂cx, where

R
′T
r R

′T
p can be factorized to the left hand side of the matrix

to get[
R

′T
r R

′T
p 0

0 R
′T
r R

′T
p

] [
bt̂cxR̂y R̂y
R̂y 0

]
︸ ︷︷ ︸

ÊGC

[
RpRr 0

0 RpRr

]

(6)
ÊGC is the new generalized essential matrix to be solved
after factorizing out the roll and pitch rotation matrices.
Putting Equation 6 into the generalized epipolar constraint
from Equation 2, and dropping the camera and image point
indices ij for brevity, we get([

R′pR
′
r 0

0 R′pR
′
r

]
l′
)T

︸ ︷︷ ︸
l̂′

ÊGC

([
RpRr 0

0 RpRr

]
l

)
︸ ︷︷ ︸

l̂

= 0

(7)
where l̂′ ↔ l̂ are the correspondence Plücker lines after the
respective xy plane from the generalized camera frames V ′

and V are aligned, i.e. the roll and pitch angles are removed.

4.2. Minimal Problem

The task is to solve for t̂ and R̂y after the alignment of the
two correspondence generalized camera frames. We write t̂
and R̂y as

t̂ =

t̂xt̂y
t̂z

 , R̂y =
1

1 + q2

1− q2 −2q 0
2q 1− q2 0
0 0 1 + q2


(8)

where q = tan θ̂
2 , hence cos(θ̂) = 1−q2

1+q2 and sin(θ̂) = 2q
1+q2

are the trigonometric identities to remove the sines and
cosines in the rotation matrix. θ̂ is the yaw angle that make

up R̂y . Putting the expressions for t̂ and R̂y into the gener-
alized epipolar constraint from Equation 7, we get the fol-
lowing polynomial equation

a1t̂xq
2 + a2t̂xq + a3t̂x + a4t̂yq

2 + a5t̂yq + a6t̂y+

a7t̂zq
2 + a8t̂zq + a9t̂z + a10q

2 + a11q + a12 = 0
(9)

where a1 to a12 are the coefficients formed with the Plücker
line correspondence l̂′ ↔ l̂. We need a minimal of four
Plücker line correspondences to solve for the four un-
knowns t̂x, t̂y, t̂z and q. Hence, we get a system of four
polynomials with the other three polynomials in similar
form as Equation 9 with the coefficients denoted by b1 to
b12, c1 to c12, and d1 to d12.

We use the hidden variable resultant [2] method to solve
for the unknowns in the system of polynomial. The idea
is to group the unknown variable q with the known coeffi-
cients, i.e. “hidden variable” so that the system of polyno-
mials can be rearrange into

Z(q)X = 0 (10)

where X =
[
t̂x, t̂y, t̂z, 1

]T
and Z(q) is a 4 × 4 matrix

formed from the polynomial coefficients a, b, c, d and the
unknown variable q. Since Z(q) is a square matrix, we
know from linear algebra that Equation 10 has a non-trivial
solution only if the determinant of Z(q) becomes zero, i.e.

det(Z(q)) = 0 (11)

This determinant, which is otherwise known as the hidden
variable resultant, gives an 8-degree univariate polynomial

Aq8+Bq7+Cq6+Dq5+Eq4+Fq3+Gq2+Hq+I = 0
(12)

where A,B,C,D,E, F,G,H, I are formed from the co-
efficients a, b, c, d of the system of polynomials. The uni-
variate polynomial can be solved using the Companion ma-
trix [2] or Sturm bracketing [12] methods which gives up to
8 real solutions. We chose the Companion matrix method
in our implementation because it is easier to implement al-
though it is less efficient than the Sturm bracketing method.
The system of polynomials becomes linear once q is solved,
and it becomes easy to solve for the remaining unknowns
t̂x, t̂y and t̂z . Finally, we recover the rotation matrix R̂y
with the known q from Equation 8.

4.3. Recover Relative Pose

It is important to note that the rotation matrix R̂y and
translation vector t̂ solved in the previous section are not the
relative pose of the two generalized camera frames V ′ and
V . The relative pose [R, t] has to be computed from [t̂, R̂y],
and the roll and pitch angles which we have removed earlier.
We compute the relative rotation R from Equation 3, and
the relative translation t can be found from the expression
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btcxR
′T
r R

′T
p = R

′T
r R

′T
p bt̂cx which we have used earlier to

factorize outR
′T
r R

′T
p from the generalized essential matrix.

This gives

t = R
′T
r R

′T
p t̂ (13)

4.4. Degenerated Case
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Figure 2. Illustration of intra- and inter-camera correspondences.

Our minimal 4-point algorithm degenerates when the
multi-camera system undergoes pure translation while hav-
ing only intra-camera correspondences. Figure 2 shows an
illustration of the intra- and inter-camera correspondences.
From the generalized epipolar constraint in Equations 1 and
2, and dropping the camera and image point indices for
brevity, we have

u′TEu+ (t′C × u′)TRu+ u′TR(tC × u) = 0 (14)

We see that in the case of pure translation and intra-camera
correspondences, i.e. R = I and t′C = tC , (t′C ×u′)TRu+
u′TR(tC × u) becomes (tC × u′)Tu+ u′T (tC × u), which
is zero because of the anti-symmetry of the triple product.
Here, t′C ↔ tC are the translation components of the extrin-
sics from the correspondent pair of cameras that see the line
correspondence l′ ↔ l. As a result, the epipolar constraint
from Equation 14 becomes

u′TEu = 0 (15)

which is equivalent to the conventional epipolar constraint
[5] where the scale can no longer be estimated.

We note that the univariate polynomial from Equation
12 gives q = 0 in the degenerated case. This means that we
are able to identify the degenerated case with our minimal
4-point algorithm and obtain the relative translation with-
out metric scale denoted by t̄. We use an additional inter-
camera correspondence, i.e. t′C 6= tC to circumvent the
scale problem in the degenerated case. Here, we solve for
the unknown scale s from the following equation

su′T bt̄cxu+ (t′C × u′)Tu+ u′T (tC × u) = 0 (16)

It is important to note that in practice under presence of
noise, q takes a small value (not exactly 0) in the degener-
ated case. In our implementation, we take it as a degener-
ated case when q ≤ 0.01. This value was obtained from
simulation under the condition of 1 pixel noise.

5. Linear 8-Point Algorithm
In this section, we show that it is also possible to solve

for t̂ and R̂y from Equation 6 linearly with eight Plücker
line correspondences. Here we write

R̂y =

cos θ̂ − sin θ̂ 0

sin θ̂ cos θ̂ 0
0 0 1

 (17)

Putting R̂y and t̂ into the generalized essential matrix ÊGC ,
we get

ÊGC =


−e1 −e2 e3 r1 −r2 0
e2 −e1 −e4 r2 r1 0
e5 e6 0 0 0 r3
r1 −r2 0 0 0 0
r2 r1 0 0 0 0
0 0 r3 0 0 0

 (18)

which consists of only nine unique entries, i.e.

e1 = t̂z sin θ̂, e2 = t̂z cos θ̂, e3 = t̂y, e4 = t̂x,

e5 = t̂x sin θ̂ − t̂y cos θ̂, e6 = t̂x cos θ̂ + t̂y sin θ̂,

r1 = cos θ̂, r2 = sin θ̂, r3 = 1

Putting the generalized essential matrix from Equation 18
back into the generalized epipolar constraint from Equation
2, we get[

g1 g2 g3 g4 g5 g6 g7 g8 g9
]
E = 0 (19)

where g1 to g9 are the coefficients formed
from the Plücker line correspondence and E =
[e1, e2, e3, e4, e5, e6, r1, r2, r3]T . With eight
Plücker line correspondences, we get the following linear
system

AE = 0 (20)

whereA is a 8× 9 matrix. An unique solution for Equation
20 exists when the rank of A equals to 8. In this case, the
solution is obtained via the standard SVD method [5] and
enforcing the constraint of r3 = 1, i.e. divide E with its last
element.

We note that in the case where the there is no difference
in the roll and pitch angles between the relative general-
ized camera frames, i.e. R′r = Rr and R′p = Rp, and
only intra-camera correspondences, the rank of A drops to
7. As a result, the solution found from the standard SVD
method is no longer unique but given by a family of solu-
tions (λÊGC , λR̂y + µI), where the ambiguity lies only
in the rotation matrix R̂y . We circumvent this problem by
adopting the strategy proposed in [11] since similar prob-
lem has also been observed in the linear 17-point algorithm.
Since the ambiguity in the solution lies only in the rota-
tion matrix, the idea is to enforce the constraint of ‖e‖ = 1
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on the elements of the essential matrix instead of ‖E‖ = 1
while minimizingAE using the SVD method. Formally, we
are minimizing

‖A
[
eT , rT

]T ‖ s.t. ‖e‖ = 1 (21)

This is equivalent to solving

(ArA+
r − I)Aee = 0 (22)

where Ae and Ar are made up of the first six and last three
columns ofA respectively, andA+

r is the pseudo-inverse of
Ae. An unique solution for e can be obtained by applying
the SVD method on the matrix (ArA+

r − I)Ae.
The conventional essential matrix Ê is obtained from the

first 3× 3 matrix block in ÊGC with e. This means that the
unique solution for R̂y and t̂ can be solved from the de-
composition of Ê and cheirality considerations [5]. Note
that the solution for t̂ has no scale ambiguity. In the case
of pure translation, t̂ is computed up to scale and one ad-
ditional inter-camera point is needed to retrieve the metric
scale using the method described in Section 4.4. Finally, the
relative motion R and t can be recovered with the method
described in Section 4.3.

6. Robust Estimation

Table 1. Comparisons on total number of iterations needed for
RANSAC (w = 0.5 and p = 0.99) and evaluation of solutions.

Algorithm RANSAC Loops # of Solutions Total
Minimal 4-Point 71 8 568
Linear 8-Point 1177 1 1177

Linear 17-Point 603606 1 603606
Minimal 6-Point 292 64 18688

*Ackermann 2-Point 17 6 102

*Does not give the full 6 degree-of-freedom for relative motion estimate.

We apply the RANSAC algorithm [3] for robust estima-
tion to reject outlier correspondences as well as to deter-
mine the correct solution from the multiple solutions ob-
tained from the minimal 4-point algorithm. The main fac-
tors that affects the computation cost, i.e. total number of it-
erations needed, are the number of correspondences needed
for the problem and the number of solutions to be evaluated.
The number of iterations k needed in RANSAC is given by
k = ln (1−p)

ln (1−wn) , where n is the number of correspondences
needed for the algorithm (for example n = 4 for the 4-point
algorithm), w is the probability that any selected correspon-
dence is an inlier and p is the probability that all the selected
correspondences are inlier. The total number of iterations
m needed to run RANSAC while evaluating all the s num-
ber of solutions is given by m = k × s. This is the worst
case complexity. Assuming that w = 0.5 and p = 0.99,
we need 71 × 8 = 568 iterations for our minimal 4-point
algorithm and 1177 × 1 = 1177 iterations for our linear 8-
point algorithm. We compare this with the linear 17-point

algorithm [13] which requires 603606 × 1 = 603606 iter-
ations and minimal 6-point algorithm [15] which requires
292 × 64 = 18688 iterations. The high number of itera-
tions needed for the linear 17-point and minimal 6-point al-
gorithms made it impossible for practical applications. Al-
though the Ackermann 2-point algorithm [9] requires only
17 × 6 = 102 iterations, it does not give the full 6 degree-
of-freedom for the motion estimate (see Section 7 for more
comparisons). Table 1 shows the summary of the compari-
son of the total number of iterations needed for the different
methods.

7. Results
We show the accuracy of our proposed minimal 4-point

and Linear 8-point algorithms by comparing its perfor-
mances with other existing algorithms under various noisy
conditions in simulations. We also show the feasibility of
our minimal 4-point algorithm on real-world datasets.

7.1. Simulations

Pixel Noise: The accuracy of our proposed minimal 4-
point and linear 8-point algorithms are compared with the
existing linear 17-point [13] and Ackermann 2-point [9]
algorithms. In addition, we do the comparison with the
Gröbner basis solution for our minimal 4-point formula-
tion generated from the automatic generator [7]. We make
the simulated multi-camera system realistic by following
the number of cameras, intrinsics and extrinsics parame-
ters from our car setup in Figure 1. For each trial, the rel-
ative motion of the multi-camera system is randomly cho-
sen from the range of θ = [0.1, 0.2] rad and ρ = [0.5, 1.0]
m, where θ and ρ are the relative yaw and scale following
the Ackermann motion defined in [9]. The 3D points are
also randomly generated within the range of [−10, 10] m in
the respective axis of the first multi-camera system frame.
The randomly generated 3D points are reprojected onto the
camera to get the image points. We make sure that each 3D
point is seen by at least one camera over the two consecutive
frames.

A total of 1000 trials each are carried out for the differ-
ent image pixel noise with standard deviation ranging from
0.1 to 1.0 pixel at an interval of 0.1 pixel. Following the
definition in [14], the relative translational error is defined
as 2||t − t̃||/(||t|| + ||t̃||), where t and t̃ are the estimated
and ground truth translations. The relative rotational error is
computed as the norm of the Euler angles from RR̃T where
R and R̃ are the estimated and ground truth rotation matri-
ces. Figures 3(a) and 3(b) shows the average translational
and rotational errors against the pixel noise. The linear 17-
point algorithm shows the highest errors and the highest in-
crement in error with the increment of the pixel noise. Our
minimal 4-point and the Gröbner basis solution display very
similar errors. This is because the Gröbner basis solution is
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derived from the exact formulation of our minimal 4-point
algorithm. Our linear 8-point and the Ackermann 2-point
algorithms show the lowest errors, but it should be noted
that the Ackermann 2-point algorithm has the disadvantage
of not able to estimate the full 6 degree-of-freedom in the
relative motion. All the minimal 4-point, Gröbner basis,
linear 8-point and Ackermann 2-point algorithms show rel-
atively little increment in errors with the increment of the
pixel noise.

IMU Noise: We test the resilience of our minimal 4-
point and linear 8-point algorithms against the presence of
IMU noise in both the roll and pitch axes. The simulation
setup is similar to the test on pixel noise except that now
we fix the pixel noise standard deviation at 0.5 pixel and
add noise to the roll and pitch from the IMU over the range
of [0, 0.6] deg. The upper bound of the noise is chosen to
follow the noise from the lower grade MEMS IMUs such as
the one used for quadrotors2. The higher end IMUs such as
the iTrace system used in our car system has a upper bound
for roll and pitch noise at 0.01 deg.

Figures 3(c)-3(f) show the average errors from the 1000
trials at each IMU roll and pitch noise levels of our minimal
4-point and linear 8-point algorithms compared with the lin-
ear 17-point and Gröbner basis algorithms. The average er-
rors from the linear 17-point algorithm remains stable over
the different noise level. This is because the linear 17-point
algorithm does not depend on the roll and pitch readings
from the IMU. It can be seen from the plots that our mini-
mal 4-point and linear 8-point algorithms do not deteriorate
much with the increase in IMU noise and still stay within
the error range of the linear 17-point algorithm. Similar to
the pixel noise simulation, the Gröbner basis errors follow
our minimal 4-point algorithm closely.

Off Ackermann Tests: We compare the performances
of our minimal 4-point and linear 8-point algorithms with
the Ackermann 2-point algorithm in the cases where the
Ackermann motion constraint is violated. The simulation
setup is similar to the test on pixel noise except that now
we fix the pixel noise standard deviation at 0.5 and relative
motion at θ = 0.1 and ρ = 0.5. Three sets of tests are car-
ried out by varying the (a) relative roll from [0, 5] deg, (b)
relative pitch from [0, 5] deg and (c) relative z from [0, 2] m.
Figures 4(a)-4(f) show huge increase in the errors from the
Ackermann 2-point algorithm with the off Ackermann mo-
tion in the relative roll, pitch and z axes respectively while
the errors from our minimal 4-point and linear 8-point al-
gorithms remain approximately constant. This shows the
advantage of our minimal 4-point and linear 8-point algo-
rithms over the Ackermann 2-point algorithm for motion
estimation.

2http://www.asctec.de/

7.2. Real-World Datasets

(a) (b)

(c) (d)

Figure 5. Sample images from the multi-camera system on our car.

We demonstrate the feasibility of our minimal 4-point al-
gorithm by showing results from three real-world datasets
collected from our car (see Figure 1) equipped with the
multi-camera system and iTrace IMU for roll and pitch an-
gles in an indoor multi-level parking garage. Figure 5 shows
an example of the images collected from our multi-camera
system. Note that we chose to collect the datasets while the
car transits between different levels to highlight the strength
of our minimal 4-point algorithm in estimating the full 6
degree-of-freedom of relative motion over the existing Ack-
ermann 2-point algorithm. We extract the SURF features
[1] and match them over consecutive frames. These fea-
ture correspondences are used to estimate the relative mo-
tion with our minimal 4-point algorithm. The relative mo-
tions are then concatenated together to form the full trajec-
tory. Similar to [9], we also implemented four independent
Kalman filters for tx, ty, tz and θ respectively to smooth the
estimated trajectory. Full bundle adjustment3 is also used to
refine the trajectory and reconstructed 3D structures.

Figures 6(a), 7(a) and 8(a) show the full trajectories and
reconstructed 3D structures of the scenes from the three
datasets. We show the accuracy of the results with the
reconstructed 3D structures due to the absence of ground
truth trajectory. The first dataset was collected when the
car moved up a ramp as shown in Figure 6(c), the second
dataset was collected when the car moved down a ramp as
shown in Figure 7(c) and the third dataset was collected
when the car moved down two consecutive ramps shown
in Figure 8(c). The datasets consist of a total of 309 × 4,
298×4 and 498×4 images that span over approximately 50
m, 55 m and 85 m respectively. Figures 6(b), 7(b) and 8(b)
show the transitions between different levels in the parking
garage from the xz views of the trajectories.

3http://code.google.com/p/ceres-solver/
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Figure 3. Comparison of the translational (no units) and rotational (rad) errors over (a)-(b) image noise in pixel, (c)-(d) IMU roll and (e)-(f)
pitch angle noise in degrees with a fixed 0.5 pixel image noise.
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Figure 4. Comparison of the translational (no units) and rotational (rad) errors over off Ackermann motion in the relative (a)-(b) roll angles,
(c)-(d) pitch angles and (e)-(f) z axis with a fixed 0.5 pixel image noise.

8. Conclusion

We have proposed two different algorithms to solve for
the relative motion of a multi-camera system with known
vertical, i.e. known absolute roll and pitch angles. In par-
ticular, we derived the minimal 4-point and linear 8-point
algorithms. We show that in comparison to other existing
methods, our proposed algorithms are practical to be used
within RANSAC for real-world ego-motion estimation and
free from any constraints, i.e. the full 6 degree-of-freedom
for the relative motion is obtained. The results from both
simulations and real-world datasets demonstrated the feasi-
bility of our proposed algorithms.
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lutions to minimal generalized relative pose problems. In
OMNIVIS, 2005.

[16] P. Sturm. Multi-view geometry for general camera models.
In IEEE CVPR, volume 1, pages 206–212, June 2005.

8


