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Abstract

In this paper, we present a visual ego-motion estima-

tion algorithm for a self-driving car equipped with a close-

to-market multi-camera system. By modeling the multi-

camera system as a generalized camera and applying the

non-holonomic motion constraint of a car, we show that this

leads to a novel 2-point minimal solution for the general-

ized essential matrix where the full relative motion includ-

ing metric scale can be obtained. We provide the analytical

solutions for the general case with at least one inter-camera

correspondence and a special case with only intra-camera

correspondences. We show that up to a maximum of 6 so-

lutions exist for both cases. We identify the existence of

degeneracy when the car undergoes straight motion in the

special case with only intra-camera correspondences where

the scale becomes unobservable and provide a practical al-

ternative solution. Our formulation can be efficiently imple-

mented within RANSAC for robust estimation. We verify the

validity of our assumptions on the motion model by com-

paring our results on a large real-world dataset collected

by a car equipped with 4 cameras with minimal overlap-

ping field-of-views against the GPS/INS ground truth.

1. Introduction

Self-driving cars such as those featured in the DARPA

Urban Challenge [4], rely heavily on sensors like Radar,

Lidar and GPS to perform ego-motion estimation, local-

ization, mapping and obstacle detection. In contrast, cam-

eras are only playing a minor role in self-driving cars but

are already commonly found in commercially-off-the-shelf

(COTS) cars for driving and/or parking assistance. An ex-

ample is the Nissan Quasquai Around View Monitor where

four cameras are mounted on the car to provide full omni-

directional view around the car. Although such camera sys-

tem is currently used only for driving and/or parking as-

sistance, it offers huge potential to be the main sensor for

self-driving cars without the need for major modifications.

Motivated by the fact that multi-camera systems are al-

Figure 1. Car with a multi-camera system consisting of 4 cameras

(front, rear and side cameras in the mirrors).

ready available in some COTS cars, we focus this paper

on using a multi-camera setup for ego-motion estimation

which is one of the key features for self-driving cars. A

multi-camera setup can be modeled as a generalized cam-

era as described by Pless [12]. In this work, he derived the

generalized epipolar constraint (GEC) and it was shown in

[8] that the full relative motion can be obtained with metric

scale. We make use of the fact that the generalized camera

that is rigidly fixed onto a car that has to adhere by the Ack-

ermann steering principle [15] to simplify the GEC and de-

sign an efficient and robust algorithm for visual ego-motion

estimation.

We show that two point correspondences are sufficient to

estimate the generalized essential matrix with metric scale

by using the Ackermann motion model (i.e. circular mo-

tion on a plane) where there are 2 free parameters - scale

and yaw angle for the relative motion between 2 consec-

utive frames. Consequently, we derive the analytical 2-

point minimal solution for the general case with at least one

inter-camera correspondence and a special case with only

intra-camera correspondences. A maximum of up to 6 solu-

tions exists for the relative motion in both cases. The small

number of necessary point correspondences and solutions

makes it suitable for robust estimation with RANSAC and

real-time operations. We show that the scale can always

be recovered from the general case with at least one inter-
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camera correspondence and identify the existence of degen-

eracy when the car undergoes straight motion in the spe-

cial case with only intra-camera correspondences where the

scale cannot be determined. We use the special case with

only intra-camera correspondences as the default case for

our implementation since there is always more intra-camera

correspondences than inter-camera correspondences. We

propose a practical method to retrieve the scale when the car

undergoes straight motion from one additional inter-camera

correspondence and the known yaw angle which essentially

reverts the special case to the general case.

The relative motions can be concatenated together to get

the full trajectory of the car. We implement Kalman fil-

ters with constant velocity prior to smooth out noisy esti-

mates for real-time operations. Finally, we relax the Ack-

ermann motion constraint by doing a full 6 degrees of free-

dom (DOF) pose-graph [11] optimization for loop-closure

followed by bundle adjustment for all the poses and 3D

points. We verify our approach by comparing our results

on a large real-world dataset collected from a generalized

camera setup that consists of 4 cameras mounted on a car

(see Figure 1) looking front, rear, left and right with mini-

mal field-of-views against the GPS/INS ground truth.

Our main contributions can be summarized as follows:

• A practical ego-motion estimation algorithm with met-

ric scale from a new formulation of the generalized es-

sential matrix using the GEC and Ackermann motion

model.

• Analytical 2-point minimal solutions for the general

case with at least one inter-camera correspondence and

a special case with only intra-camera correspondences.

• An investigation and a practical solution to the degen-

erate case of straight motion with only intra-camera

correspondences.

2. Related Works

Our work builds on top of previous works about general-

ized cameras and it is also related to other works with multi-

camera systems that are not using the generalized camera

formulation.

The idea of a generalized camera system where a single

epipolar constraint is used to describe the relative motion

of a set of cameras mounted rigidly on a single body over

two different frames was first proposed by Pless [12]. The

main difference between a generalized camera system and

a single pinhole camera is the absence of a single center

of projection. Pless derived a generalized essential matrix,

which is a 6x6 matrix with 18 unknowns from the GEC. He

suggested a linear 17-point algorithm to solve for the gen-

eralized essential matrix. Sturm also showed similar results

in [17]. However, both works did not show any results from

real-world data.

Li et al. [8] extended the work on the GEC by identify-

ing the degenerated cases for the locally-central generalized

camera setup. The locally-central generalized camera refers

to a configuration where the cameras only do intra-camera

correspondences. In contrast to the general case where the

generalized camera does inter-camera correspondences, Li

et al. showed that the rank of the GEC drops from 17 to

16 because the null motion always satisfies the GEC. He

noted that this solution is often found using the standard

Singular Value Decomposition (SVD) method [6] to solve

the GEC linearly. He suggested a new linear approach to

solve the GEC despite the degeneracy. He also pointed out

that the same approach can be used to solve for the GECs in

the degenerated cases of axial and locally-central-and-axial-

cameras. He showed results from a small-scale dataset col-

lected with a Point-Grey ladybug camera in a controlled lab-

oratory environment. The proposed linear algorithms need

17 or 16 point correspondences, a number, that induced high

computational cost when creating a robust estimator using

RANSAC.

A minimal solution for the generalized essential matrix,

suitable for RANSAC hypothesis generation, was proposed

by Stewénius et al. [16]. The derived minimal solution

uses 6-point correspondences to solve the GEC problem.

The method involves solving a polynomial equation system

and results in 64 solutions. The high number of solutions

also puts high computational costs on a robust estimator like

RANSAC. Nevertheless, a RANSAC implementation of the

6-point minimal solution was shown on synthetic datasets

but not on any real-world dataset.

In comparison with the works from Pless, Li et al. and

Stewénius et al., we proposed the 2-point algorithm from

the combination of the GEC and Ackermann motion model.

And for the first time, this allows an efficient motion estima-

tion of a generalized camera system with a robust estimator

like RANSAC on a large real-world dataset.

The motion model used has previously been used by

Scaramuzza et al. [13] where they proposed the 1-point

RANSAC algorithm for conventional monocular visual

odometry on a car. Similarly, they made used of the Ack-

ermann motion model in the epipolar constraint and this re-

duced the number of free parameters to two. However, they

used one omnidirectional camera with a single center of

projection and this prohibited the retrieval of metric scale.

The validity of the 1-point algorithm also came with the

constraint that the camera must be placed along the back-

wheel axis of the car. In an extension [14], Scaramuzza

et al. developed a method where the motion and metric

scale could be computed with a 2-point algorithm from a

single monocular camera. The camera has to be placed with

an offset to the back-wheel axis and this offset needs to be

known. Similar to our algorithm for generalized camera

with only intra-camera correspondences, the scale becomes
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unobservable for straight motion. In contrast, we propose a

practical method to retrieve the metric scale when the car is

moving straight with our formulation using the generalized

camera setup.

Other methods such as [2, 7] estimated the relative mo-

tions of the multi-camera setups without using the GEC.

In [2], Clipp et al. estimated the relative motion without

the scale using the 5-point algorithm [10] in one camera,

while the metric scale is retrieved from an additional point

from another camera. He showed results from both simula-

tions and a real-world dataset. However, a major limitation

is that the scale can only be retrieved under certain condi-

tions. In [7], Kazik et al. estimated the relative motions of

two cameras with non-overlapping field of view by using

the 5-point algorithm [10]. The metric scale is retrieved by

using the ’hand-eye’ calibration constraints. The success of

this method relies heavily on the estimation from the 5-point

algorithm in the individual cameras. They showed results

with small-scale datasets collected in controlled laboratory

environments. No discussion on how their method could be

extended to more than two cameras was provided.

3. Generalized Camera Model
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Figure 2. Illustration of a generalized camera on a car.

In this section, we briefly describe the concept of the

generalized camera model which is essential for under-

standing the remaining paper. More details can be found

in [12, 17]. Figure 2 shows an illustration of a general-

ized camera setup on a car. It is made up of individual

cameras denoted by Ci that are mounted rigidly on arbi-

trary locations on the car. The generalized camera has a

reference frame denoted by V . Let us denote the intrin-

sics and extrinsics of the respective cameras by Ki and

TCi
= [RCi

tCi
; 0 1]. The normalized image coordinate

of a point xij is then given by x̂ij = K−1
i xij . The depen-

dency on a single camera projection center to describe a 3D

point Xj is removed by using the 6-vector Plücker line

lij = [uT
ij (tCi

× uij)
T ]T (1)

which describes the light ray that connects xij and Xj .

uij = RCi
x̂j is the unit direction of the ray expressed in

the reference frame V . This changes the point correspon-

dences from 2 image coordinates to 2 intersecting rays and,

as shown in [12], the epipolar constraint now becomes

l
T
ij,k+1

[
E R

R 0

]

︸ ︷︷ ︸

EGC

lij,k = 0 (2)

where lij,k and lij,k+1 are the correspondence Plücker lines

from frame k and k + 1. EGC is the generalized essential

matrix from the GEC. R is the rotation matrix between the

generalized camera reference frames at k and k + 1. E

follows the conventional essential matrix [6] decomposition

E = ⌊t⌋xR where t is the translation vector between frame

k and k + 1. It is important to note that t is determined

only up to scale from the conventional essential matrix for

a single camera but the metric scale can be fully determined

using the generalized camera as shown in [8].

4. Motion Estimation
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Figure 3. System overview for motion estimation of the general-

ized camera on a car.

Figure 3 shows the overview of the pipeline for the esti-

mation of the relative motion between two consecutive car

frames using the generalized camera. A set of synchronized

images is obtained from the generalized camera. Intra-

camera point correspondences are computed from these im-

ages. Our 2-Point RANSAC algorithm always computes the

relative motion based on the intra-camera correspondences.

In the case where the relative yaw angle θ is found to be near

zero from the 2-Point RANSAC, the inter-camera point cor-

respondences are extracted and used to compute the scale ρ

from a 1-point exhaustive search. Note that θ is kept fixed

in the 1-point search. The estimated ρ and θ are further re-

fined using the non-linear refinement and Kalman filtering

steps.

4.1. Point Correspondences

Our motion estimation algorithm relies on two sets

of point correspondences - intra-camera and inter-camera.

Specifically, intra-camera point correspondences refer to

correspondences which are seen by the same camera over
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Figure 4. Example of intra- and inter-camera point correspon-

dences.

two consecutive frames and inter-camera refers to corre-

spondences which are seen by different cameras over two

consecutive frames as illustrated in Figure 4. We extract and

match SURF [1] features on the GPU for both intra-camera

and inter-camera. In principle, our generalized camera con-

figuration on the car always allows inter-camera point cor-

respondence. This is because part of the scene from the

front camera will be seen by the left and right cameras at

the next frame. Similarly, part of the scenes from the left

and right cameras will always be seen by the rear camera

in the next frame. The number of inter-camera correspon-

dences are however far lesser than intra-camera correspon-

dences. Hence, we chose to use intra-camera correspon-

dences as the default case for our implementation and rely

on one-additional inter-camera correspondences to retrieve

the scale in the degenerated case when the car is moving

straight. In the very rare occasion where no inter-camera

inliers are found, we propagate the scale from the previous

estimate with the Kalman filter (see Section 4.6).

4.2. 2Point Minimal Solution
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Figure 5. Relation between generalized camera in Ackermann mo-

tion.

Figure 5 shows the illustration of a generalized camera

on a car that undergoes the Ackermann motion over 2 con-

secutive frames k and k + 1. Specifically, the car under-

goes a circular motion about the Instantaneous Center of

Rotation (ICR) with the Ackermann model. The radius of

the circular motion goes to infinity when the car is mov-

ing straight. The main objective of motion estimation is to

compute the relative motion R and t between Vk and Vk+1.

Following the derivation in [13], using Vk as the reference

frame, it can be observed from the diagram that

R =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , t = ρ





cosϕv

sinϕv

0



 (3)

where θ is the relative yaw angle and ρ is the scale of the

relative translation. Here, the z-axis of Vk is pointing out of

the paper. It can be further observed from the diagram that

ϕv is the angle between ρ and the perpendicular line to the

radius of the circle at Vk, hence ϕv = θ
2 . We immediately

see that the relative motion between frame Vk and Vk+1 is

dependent on only 2 parameters - scale ρ and yaw angle θ.

Putting Equation 3 into EGC from Equation 2, we get

EGC =











0 0 ρ sin θ
2 cos θ − sin θ 0

0 0 −ρ cos θ
2 sin θ cos θ 0

ρ sin θ
2 ρ cos θ

2 0 0 0 1
cos θ − sin θ 0 0 0 0
sin θ cos θ 0 0 0 0
0 0 1 0 0 0











(4)

For brevity, let us now drop all the indices on the Plücker

line vector from Equation 2 and simply denote 2 correspon-

dence Plücker lines as l = [uT (tC × u)T ]T from frame k

and l
′ = [u′T (tC′ × u

′)T ]T from frame k+ 1. Equation 2

can then be written as

a cos θ + b sin θ + cρ cos
θ

2
+ dρ sin

θ

2
+ e = 0 (5)

where

a = −uw(tCxu
′
y − tCyu

′
x)− u′

w(tC′xuy − tC′yux)

+uy(tC′wu
′
x − tCwu

′
x) + ux(tCwu

′
y − tC′wu

′
y)

b = ux(tC′xu
′
w − tC′wu

′
x) + uy(tC′yu

′
w − tC′wu

′
y)

−ux(tCxuw − tCwux)− u′
y(tCyuw − tCwuy)

c = uwu
′
y − uyu

′
w

d = uxu
′
w + uwu

′
x

e = uw(tC′xu
′
y − tC′yu

′
x) + u′

w(tCxuy − tCyux)

Here, the subscripts x, y and w refer to the components

in the vector. Equation 5 is our new GEC with the Ack-

ermann motion model. We need 2 Plücker line correspon-

dences to solve for the 2 unknowns ρ and θ in Equation

5. Denoting each set of known coefficients obtained from

each Plücker line correspondence by (a1, b1, c1, d1, e1) and

(a2, b2, c2, d2, e2), and using the trigonometric half-angle

formula
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cos θ = 1− 2 sin2
θ

2
(6a)

sin θ = 2 sin
θ

2
cos

θ

2
(6b)

we get

ρ =
−e1 − a1(1− 2β2)− b1(2αβ)

c1α+ d1β
(7a)

ρ =
−e2 − a2(1− 2β2)− b2(2αβ)

c2α+ d2β
(7b)

where α = cos θ
2 and β = sin θ

2 . Combining Equations 7a

and 7b to eliminate ρ, we get

(2a1β
2 − 2b1αβ − e1 − a1)(c2α+ d2β)−

(2a2β
2 − 2b2αβ − e2 − a2)(c1α+ d1β) = 0

(8)

where the Pythagorean identity from Equation 9 has to be

satisfied.

sin2
θ

2
+ cos2

θ

2
= α2 + β2 = 1 (9)

Using the Sylvester Resultant [3] method to eliminate

α = cos θ
2 from the two polynomials in Equations 8 and

9, we get a 6 degrees polynomial equation in terms of β =
sin θ

2 which can be further reduced to a cubic polynomial

by making γ = β2. The roots of the cubic polynomial is

obtained in closed-form by using the cubic formula.

Aβ6 +Bβ4 + Cβ2 +D = 0 (10a)

Aγ3 +Bγ2 + Cγ +D = 0 (10b)

A,B,C and D are known coefficients made up of

(a1, b1, c1, d1, e1) and (a2, b2, c2, d2, e2). We drop the full

expressions of A,B and C for brevity but show D because

it has a special property.

D = −c22(e
2
1 + a21)− 2c22e1a1 − c21(e

2
2 + a22)− 2c21e2a2

+2c2c1(a1a2 + e1e2) + 2c2c1(e1a2 + a1e2)

(11)

An interesting observation is that when we do purely

intra-camera correspondences, i.e. tc = tc′ , the last 2 terms

of coefficient a cancel out and a = −e. Putting this new

relation into Equation 11, we see that all terms cancel out

and D = 0. Hence, Equation 10b becomes

γ(Aγ2 +Bγ + C) = 0 (12)

where one of the solution for γ is always 0 and the remain-

ing two solutions from the quadratic polynomial are given

by γ = −B±
√
B2−4AC
2A . Putting γ back into the relation

γ = β2, we get up to a maximum of six real solutions for

β where two are always 0. Finally, the yaw angle θ of the

relative motion can be computed from β = sin θ
2 and the

scale ρ can be be computed from Equation 7. We have ver-

ified that both Equation 10 and 12 are the minimal-degree

polynomials by computing the Gröbner Basis [3].

It was mentioned earlier that it is easier to get many more

reliable correspondences with intra- than inter-camera. In

addition, it is more efficient to compute the roots from the

quadratic polynomial from Equation 12 than the cubic poly-

nomial from Equation 10. Therefore, we adopted the intra-

camera point correspondences strategy in our implementa-

tion.

4.3. Degenerated Case: Metric Scale Computation

The metric scale of the relative motion cannot be

uniquely determined from the GEC when the car is mov-

ing straight i.e. θ = 0 with only intra-camera correspon-

dences. This can be observed by substituting θ = 0 into

Equation 7 where the numerator cancels out since a = −e.

This means that ρ is always 0 hence cannot be uniquely

determined for θ = 0. Nonetheless, we can still uniquely

identify that θ = 0 by assigning unit scale i.e. ρ = 1 for

the solution of θ = 0. This is because an unit scale still ful-

fills the Sampson error [6] computation within RANSAC

(see next section). The correct solution yields the highest

number of inliers from RANSAC.

It is important to note that the scale can always be

uniquely determined from the GEC when there is at least

one inter-camera point correspondence. We can be easily

see this by putting tc 6= tc′ into the coefficients a and e from

Equation 5 where we observed that a 6= −e. Hence, ρ can

be uniquely determined from Equation 7. This suggests that

we can make use of one additional inter-camera point cor-

respondence to find the metric scale when (ρ = 1, θ = 0)
turns out to be the solution with the highest inliers from

the pure intra-camera correspondences case. In practice,

this can be done effectively by doing an exhaustive search

through all inter-camera point correspondences for inliers.

4.4. Robust Estimation

We make our 2-point algorithm robust by implementing

it within RANSAC [5] to effectively reject outliers. We

do this by checking the Sampson error [6] for each point

correspondence within the individual camera. The essen-

tial matrix of each individual camera can be computed from

the hypotheses of the relative motion R and t between the

car reference frame V and the extrinsics TCi of the camera.

The number of iterations m needed in RANSAC is given

by m = ln (1−p)
ln (1−υn) where n is the number of correspon-

dences needed to form the hypothesis, p is the probability

that all selected features are inliers and υ is the probability

that any selected correspondence is an inlier. Assuming that

p = 0.99 and υ = 0.5, a total of 16 iterations are needed for

our 2-point algorithm. We compare this with the 6-, 16- and
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17-point algorithms which need 292, 301802 and 603606 it-

erations respectively. The total number of iterations needed

for our algorithm, including the additional 1-point exhaus-

tive search, is still far lower than the number needed by the

6-, 16- and 17-point algorithms.

4.5. NonLinear Refinement

A non-linear refinement is applied using all the inliers

that were found from RANSAC to get a better estimate of ρ

and θ. The cost function for the non-linear refinement over

two consecutive frames k and k + 1 is given by

argmin
X,ρ,θ

∑

i,i′∈ C

∑

j

{||π(Pi, Xj)− xij ||
2

+ ||π(Pi′ , Xj)− xi′j ||
2}

(13)

where (xij ↔ xi′j) are the point correspondences from

camera Ci and Ci′ over frame k and k + 1. Xj is the tri-

angulated 3D point from (xij ↔ xi′j). The set C gives

the intra- and inter-camera indices for all the point corre-

spondences over frame k and k + 1. π(.) is the projection

function that projects the 3D point onto the image. Pi and

Pi′ are the camera projection matrices given by

Pi = Ki[R
T
Ci

−RT
Ci
tCi

] (14a)

Pi′ = Ki′ [R
T
C

i′
RT −RT

C
i′
(RT t+ tC

i′
)] (14b)

K, RC and tC are the intrinsics and extrinsics of the cam-

era. R and t are the relative motion of the car defined by

Equation 3 which are functions of the parameters ρ and θ

we are optimizing over. The initial values for non-linear

refinement are taken from the RANSAC hypothesis and its

triangulated 3D points.

4.6. Kalman Filtering

We implement the Kalman filter with constant velocity

prior for both the scale ρ and yaw angle θ to smooth out any

noisy estimation from our algorithm. We know that the con-

trol inputs for a car involves independent steering and linear

speed. This means that two independent 1D Kalman filters

can be applied to smooth out the estimates for the scale ρ

and yaw angle θ respectively. Figure 6 shows examples of

the relative motions of our car from the 2-point algorithm

(blue line) and the smoothed estimates from the Kalman

filters (green line). We compare both estimates with the

GPS/INS ground truth (red line) and it can be seen that the

outputs from the Kalman filter follow more closely to the

GPS/INS ground truth.

5. Results

Figure 1 shows a picture of the car used to collect the

dataset for testing our algorithm. Four cameras with fish-

eye lens are mounted onto the car on the front and rear of
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Figure 6. Example of scales ρ (a) and yaw angles θ (b) between

consecutive frames after Kalman filtering.

(a) (b)

(c) (d)

Figure 7. Images from the 4 cameras with fish-eye lens on the car.

(a) Front, (b) Rear, (c) Left, (d) Right.

the chassis, and the two sides in the mirror holders. The in-

trinsics of the cameras are calibrated with [9] and the extrin-

sics are provided by the car manufacturer. The dataset was

collected while driving the car in a loop that is about 600m

around a car park. The dataset consists of mostly static ob-

jects with a few moving pedestrians. GPS/INS readings of

the trajectory were also captured during the drive for ground

truth. A total of 4 × 2500 images are used in the test of

our algorithm. Figure 7 shows an example of the images

from all the cameras for a frame. The inlier (green line) and

outlier (red line) point correspondences from our 2-point

algorithm are also shown on the images. The SURF key-

points and descriptors are extracted and matched over the
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raw fish-eye images. These keypoints are undistorted using

the fish-eye camera model from [9] before they are used for

triangulation to get the 3D points.
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Figure 8. Scales ρ (a) and yaw angles θ (b) between all consec-

utive frames from our motion estimation algorithm compare with

GPS/INS ground truth.

Figure 8(a) and 8(b) are the plots of all the 2499 rel-

ative motions - scales and yaw angles estimated with our

2-point algorithm. The blue lines are the estimated values

from our 2-point algorithm, the green lines are the estimated

values from after Kalman filtering and the red lines are the

GPS/INS ground truth. Figure 8(b) shows that the car is

moving straight for most of the trajectory except for three

major turns at around frame 900, 1300 and 2200. These

are the segments of the trajectory where both the scales and

yaw angles are estimated solely with intra-camera point cor-

respondences. An additional inter-camera correspondence

is used to compute the scale for 79.9% of the trajectory

when the car is moving straight. Figure 8(a) shows that

the scale estimations are very close to the GPS/INS ground

truth even without Kalman filtering. The remaining straight

or almost straight relative motions are degenerated or near-

degenerated cases where the yaw angles are computed from

the 2-point algorithm with the intra-camera point corre-

spondences and the scales are computed from the 1-point

exhaustive search with the inter-camera feature correspon-

dences. Figure 8(a) shows that the estimated scales from the

1-point exhaustive search are noisier with a standard devi-

ation of around 0.125m from GPS/INS ground truth. Here,

the Kalman filter helps to smooth out the noise. Figure 8(b)

shows that the estimates for the yaw angles follow closely

to the GPS/INS ground truth even without Kalman filtering.

Figure 9. Trajectories before and after pose-graph loop-closure

compared with GPS/INS ground truth.

The relative motions estimated with our algorithm are

concatenated together to form the full trajectory of the car.

The blue line on Figure 9 shows the trajectory recovered

from the relative motions estimated with Kalman filter-

ing. The accumulated drifts resulted in a loop-closure er-

ror which we removed by performing the pose-graph loop-

closure [11]. The trajectory after loop-closure (red line)

is significantly closer to the GPS/INS ground truth (green

line). Finally, we do a full bundle adjustment over the whole

trajectory and all the reconstructed 3D points. Note that we

relaxed the Ackermann constraint and do the full 6 DOF

optimization over the car poses in the loop-closure and bun-

dle adjustment. Figure 10 shows the top view of the final

trajectory and 3D points after bundle adjustment. The pose-

graph loop-closure and bundle adjustment are implemented

with the Google Ceres Solver 1.

We implemented the full pipeline on a Intel Core2 Quad

CPU @ 2.40GHz × 4 with 4G of memory and GeForce

GTX 285 GPU. The runtime is 6 fps not including pose-

graph loop-closure and full bundle adjustment. Images from

the cameras come at 12 fps and this means that a real-time

implementation on the car is possible if we skip every other

frame.

6. Conclusion

In this paper, we demonstrated visual ego-motion esti-

mation for a car equipped with a multi-camera system with

minimal field-of-views. The camera system was modeled as

a generalized camera and we showed that the generalized

essential matrix simplifies significantly when constraining

the motion to the Ackerman motion model (i.e. circular

motion on a plane). We derived an analytical 2-point min-

imal solution for the general case with at least one inter-

camera correspondence and a special case with only intra-

camera correspondences. We showed that a maximum of

up to 6 solutions exists for the relative motion in both cases.

We investigated the degenerate case of straight motion with

1http://code.google.com/p/ceres-solver/
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Figure 10. Top view of trajectory and 3D map points after pose-graph loop-closure and full bundle adjustment compared with GPS/INS

ground truth.

intra-camera correspondences (which appears frequently in

real data) and presented a practical solution using one ad-

ditional inter-camera feature correspondence. We evaluated

our method on a large real-world dataset and compared it

to GPS/INS ground truth. The results of the comparison

clearly showed that our assumptions on the vehicle motion

hold for real-world data.
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