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Abstract. We combine uncalibrated Structure-from-Motion, lightfield
rendering and view-dependent texture mapping to model and render
scenes from a set of images that are acquired from an uncalibrated hand-
held video camera. The camera is simply moved by hand around the
3D scene of interest. The intrinsic camera parameters like focal length
and the camera positions are automatically calibrated with a Structure-
From-Motion approach. Dense and accurate depth maps for each cam-
era viewpoint are computed with multi-viewpoint stereoscopic matching.
The set of images, their calibration parameters and the depth maps are
then utilized for depth-compensated image-based rendering. The render-
ing utilizes a scalable geometric approximation that is tailored to the
needs of the rendering hardware.

1 Introduction

This contribution discusses realistic scene reconstruction and visualization from
real image streams that are recorded by an uncalibrated, freely moving hand-held
camera. This approach allows to easily acquire 3D scene models from real-world
scenes with high fidelity and minimum effort on equipment and calibration.

Recently, quite some approaches to this problem have been investigated.
Plenoptic modeling [11], lightfield rendering [10] and the lumigraph [5] have
received a lot of attention, since they can capture the appearance of a 3D scene
from images only, without the explicit use of 3D geometry. Thus one may be
able to capture objects with very complex geometry that can not be modeled
otherwise. Basically one caches views from many different directions all around
the scene and interpolate new views from this large image collection. For realistic
rendering, however, very many views are needed to avoid interpolation errors for
in-between views.

Structure from motion (SFM) approaches like [13] on the other hand try to
model the 3D scene and the camera motion geometrically and capture scene
details on polygonal (triangular) surface meshes. A limited set of camera views
of the scene are sufficient to reconstruct the 3D scene. Texture mapping adds
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the necessary fidelity for photo-realistic rendering of the object surface. Dense
and accurate 3D depth estimates are needed for realistic image rendering from
the textured 3D surface model. Deviation from the true 3D surface will distort
the rendered images.

The problem common to both approaches is the need to calibrate the image
sequence. Recently it was proposed to combine a structure from motion ap-
proach with plenoptic modeling to generate lightfields from uncalibrated hand-
held camera sequences [8]. When generating lightfields from a hand-held camera
sequence, one typically generates images with a specific distribution of the cam-
era viewpoints. Since we want to capture the appearance of the object from all
sides, we will sample the viewing sphere, thus generating a mesh of view points.
To fully exploit hand-held sequences, we will therefore have to deviate from
the regular lightfield data structure and adopt a more flexible rendering data
structure based on the viewpoint mesh. Another important point in combining
SFM and lightfield rendering is the use of scene geometry for image interpo-
lation. The geometric reconstruction yields a geometric approximation of the
real scene structure that might be insufficient when static texture mapping is
used. However, view-dependent texture mapping as in [2] will adapt the texture
dynamically to a static, approximate 3D geometry.

In this contribution we will discuss the combination of Structure-from-Motion,
lightfield rendering, and dynamic surface texturing. SFM delivers camera calibra-
tion and dense depth maps that approximate the scene geometry. Rendering is
then performed by depth-compensated image interpolation from a mesh of cam-
era viewpoints as generated by SFM. The novel image-based rendering method
takes advantage of the irregular viewpoint mesh generated from hand-held image
acquisition. We will first give a brief overview of the calibration and reconstruc-
tion techniques by SFM. We will then focus on the depth-compensated image
interpolation and show that only a coarse geometric approximation is necessary
to guide the rendering process. Experiments on calibration, geometric approxi-
mation and image-based rendering verify the approach.

2 Calibration and 3D-Reconstruction

Uncalibrated Structure From Motion (SFM) is used to recover camera calibra-
tion and scene geometry from images of the scene alone without the need for
further scene or camera information. Faugeras and Hartley first demonstrated
how to obtain uncalibrated projective reconstructions from image point matches
alone [4, 6]. Beardsley et al. [1] proposed a scheme to obtain projective calibra-
tion and 3D structure by robustly tracking salient feature points throughout an
image sequence. This sparse object representation outlines the object shape, but
does not give sufficient surface detail for visual reconstruction. Highly realistic
3D surface models need a dense depth reconstruction and can not rely on few
feature points alone.

In [13] the method of Beardsley was extended in two directions. On the
one hand the projective reconstruction was updated to metric even for varying



internal camera parameters, on the other hand a dense stereo matching technique
[3] was applied between two selected images of the sequence to obtain a dense
depth map for a single viewpoint. From this depth map a triangular surface
wire-frame was constructed and texture mapping from one image was applied
to obtain realistic surface models. In [7] the approach was further extended to
multi-viewpoint depth analysis. The approach can be summarized in 3 steps:

— Camera self-calibration and metric structure is obtained by robust tracking
of salient feature points over the image sequence,

— dense correspondence maps are computed between adjacent image pairs of
the sequence,

— all correspondence maps are linked together by multiple view point linking
to fuse depth measurements over the sequence.

2.1 Calibration of a mesh of viewpoints

When very long image sequences have to be processed with the above described
approach, there is a risk of calibration failure due to several factors. For one, the
calibration as described above is built sequentially by adding one view at a time.
This may result in accumulation errors that introduce a bias to the calibration.
Secondly, if a single image in the sequence is not matched, the complete cali-
bration fails. Finally, sequential calibration does not exploit the specific image
acquisition structure used in this approach to sample the viewing sphere.

In [8] a multi-viewpoint calibration algorithm has been described that allows
to actually weave the viewpoint sequence into a connected viewpoint mesh. This
approach is summarized in the following section.

Image pair matching The basic tool for viewpoint calibration is the two-view
matcher. Corresponding image features m;, my, have to be matched between the
two images of the camera viewpoints F;, P. The image features are projections
of a 3D feature point M into the Images I;, I}, in homogeneous coordinates:

mi = piPiM , my=pPM , P=K][R"|-R"(| (1)

with p a non-zero scaling factor, K = camera calibration matrix, R = orien-
tation and ¢ = position of the camera. To solve for P from m;, my we employ a
robust computation of the Fundamental matrix Fj;, with the RANSAC (RAN-
dom SAMpling Consensus) method [14]. Between all image correspondences the
fundamental image relation (the epipolar constraint) holds

m,TFi,kmk =0 (2)

F; k(323) is a linear rank-2 matrix. A minimum set of 7 feature correspon-
dences is picked from a large list of potential image matches to compute a
specific F. For this particular F' the support is computed from the other po-
tential matches. This procedure is repeated randomly to obtain the most likely
F;, with best support in feature correspondence. From F we can compute the



3 x 4 camera projection matrices P; and Pj. The fundamental matrix alone does
not suffice to fully compute the projection matrices. In a bootstrap step for the
first two images we follow the approach by Beardsley e.a. [1]. Since the camera
calibration matrix K is unknown a priori we assume an approximate K to start
with. The first camera is then set to Py = KJ[I|0] to coincide with the world
coordinate system, and the second camera P; can be derived from the epipole e
(projection of camera center into the other image) and F as

P =K [[el,F +ea”lpe] | [el, = [ 5, & <] 3)

P, is defined up to global scale p and the unknown plane Ty, encoded in a”

(see also [12]). Thus we can only obtain a projective reconstruction. The vector
a” should be chosen such that the left 3 x 3 matrix of P; best approximates an
orthonormal rotation matrix. The scale p is set such that the baseline length
between the first two cameras is unity. K and a” will be determined during
camera self-calibration.

Once we have obtained the projection matrices we can triangulate the cor-
responding image features m;, my with P;, P, to obtain the corresponding 3D
object features M. The object points are determined such that their reprojection
error in the images is minimized. In addition we compute the point uncertainty
covariance to keep track of measurement uncertainties. The 3D object points
serve as the memory for consistent camera tracking, and it is desirable to track
the projection of the 3D points through as many images as possible. This pro-
cess is repeated by adding new viewpoints and correspondences throughout the
sequence. Finally constraints are applied to the cameras to obtain a metric re-
construction. A detailed account of this approach can be found in [12,13].

Estimating the viewpoint topology Since we are collecting a large amount
of images from all possible viewpoints distributed over the viewing sphere, it
is no longer reasonable to consider a sequential processing along the sequence
frame index alone. Instead we would like to evaluate the image collection in order
to robustly establish image relationships between all nearby images. We need to
define a distance measure that allows to estimate the proximity of two viewpoints
from image matches alone. We are interested in finding those camera viewpoints
that are near to the current viewpoint and that support calibration. Obvious
candidates for these are the preceding and following frames in a sequence, but
normally those viewpoints are taken more or less on a linear path due to camera
motion. This near-linear motion may lead to degeneracies and problems in the
calibration. We are therefore also interested in additional viewpoints that are
perpendicular to the current direction of the camera motion. If the camera sweeps
back and forth over the viewpoint surface we will likely approach the current
viewpoint in previous and future frames. Our goal is now to determine which of
all viewpoints are nearest and most evenly distributed around our current view.
So far we do not know the position of the cameras, but we can compute the F-
Matrix from corresponding image points. For each potential neighbor image I;



we compute F, ; w.r.t. the current image I.. To measure prozimity and direction
of the matched viewpoint w.r.t. the current one, we can exploit the image epipole
as well as the distribution of the correspondence vectors.

Direction: The epipole determines the angular direction a, of the neighboring
camera position w.r.t. the current image coordinates, since it represents the
projection of the camera center into the current image. Those viewpoints whose
epipoles are most evenly distributed over all image quadrants should be selected
for calibration.

Proximity: The distribution of the corresponding matches determines the dis-
tance between two viewpoints. Consider a non-planar scene and general motion
between both cameras. If both camera viewpoints coincide we can cancel out the
camera orientation change between the views with a projective mapping (rec-
tification) and the corresponding points will coincide since no depth parallax
is involved. For a general position of the second camera viewpoint, the depth
parallax will cause a residual correspondence error e, after rectification that is
proportional to the baseline distance between the viewpoints. We can approx-
imate the projective rectification by a linear affine mapping that is estimated
from the image correspondences. We therefore define the residual correspon-
dence error e, after rectification as proximity measure for nearby viewpoints.
The viewpoints with smallest e, are closest to the current viewpoint.

Weaving the viewpoint mesh With the distance measure at hand we can
build a topological network of viewpoints. We start with an arbitrary image of
the sequence and compute a, and e, for subsequent images. If we choose the
starting image as first image of the sequence, we can proceed along the frame
index and find the nearest adjacent viewpoints in all directions. From this seed
views we proceed recursively, building the viewpoint mesh topology over all
views. The mesh builds along the shortest camera distances very much like a
wave propagating over the viewpoint surface.

2.2 3D geometry estimation

Once we have retrieved the metric calibration of the cameras we can use image
correspondence techniques to estimate scene depth. We rely on stereo matching
techniques that were developed for dense and reliable matching between adjacent
views. The small baseline paradigm suffices here since we use a rather dense
sampling of viewpoints.

For dense correspondence matching an area-based disparity estimator is em-
ployed. The matcher searches at each pixel in one image for maximum normal-
ized cross correlation in the other image by shifting a small measurement window
(kernel size 7x7) along the corresponding epipolar line. Dynamic programming
is used to evaluate extended image neighborhood relationships and a pyramidal
estimation scheme allows to reliably deal with very large disparity ranges [3].



The geometry of the viewpoint mesh is especially suited for further improve-
ment with a multi viewpoint refinement [7]. Each viewpoint is matched with all
adjacent viewpoints and all corresponding matches are linked together to form
a reliable depth estimate. Since the different views are rather similar we will
observe every object point in many nearby images. This redundancy is exploited
to improve the depth estimation for each object point, and to refine the depth
values to high accuracy.

2.3 Experimental results for surface mesh calibration

To evaluate our approach, we recorded a test sequence with known ground truth
from a calibrated robot arm. The camera is mounted on the arm of a robot of
type SCORBOT-ER VII. The position of its gripper arm is known from the
angles of the 5 axes and the dimensions of the arm. The robot sampled a 8 x 8
spherical viewing grid with a radius of 230 mm. The viewing positions enclosed a
maximum angle of 45 degrees which gives an extension of the spherical viewpoint
surface patch of 180x180 mm?. The scene (with size of about 150x150x100 mm?)
consists of a cactus and some metallic parts on a piece of rough white wallpaper.
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Fig. 1. Top left: one image of the robot sequence. Top middle: The distribution of the
camera viewpoints over the 3D scene. Top right: sequential camera path as obtained
from tracking along the camera path. Bottom: Intermediate steps of the mesh building
after 4, 32, and 64 images. The camera viewpoints are indicated by pyramids that are
connected by the viewpoint mesh. The black points in the background are tracked 3D
feature points. One can see how the 2D mesh topology is building over the viewpoint
surface.



Table 1. Ground truth comparison of 3D camera positional error between the 64
estimated and the known robot positions [in % of the mean object distance of 250
mm)].

Camera position | projective | similarity
Tracking Error [%]|mean|s.dev|mean|s.dev
sequential 1.08 {0.69| 2.31 | 1.08
2D viewpoints 0.5710.37|1.41 | 0.61

One of the original images is shown in fig. 1(top left) together with the dis-
tribution of the camera viewpoints of the robot arm (top middle). Each camera
position is visualized as little pyramid. In fig. 1(bottom) calibration using a view-
point mesh results are shown. The mesh buildup is indicated by the estimated
camera viewpoints (pyramids) and their topological relation (mesh connecting
the cameras). Each connection indicates that the fundamental matrix between
the image pair has been computed.

A quantitative evaluation of the tracking was performed by comparing the
estimated metric camera pose with the known Euclidean robot positions. We
anticipate two types of errors: 1) a stochastic measurement noise on the camera
position, and 2) a systematic error due to a remaining projective skew from
imperfect self-calibration. We also compared the simple sequential calibration
that estimates Fjj along adjacent images of the recording path only (fig 1, top
right), with the novel 2D mesh calibration method (see fig 1, bottom).

For comparison we transform the measured metric camera positions into
the Euclidean robot coordinate frame. With a projective transformation we can
eliminate the skew and estimate the measurement error. We estimated the pro-
jective transform from the 64 corresponding camera positions and computed the
residual distance error. The distance error was normalized to relative depth by
the mean surface distance of 250 mm. The mean residual error dropped from
1.1% for sequential tracking to 0.58% for viewpoint weaving (see table 1). The
position repeatability error of the robot itself is 0.08%.

If we assume that no projective skew is present then a similarity transform
will suffice to map the coordinate sets onto each other. A systematic skew how-
ever will increase the residual error. To test for skew we estimated the similarity
transform from the corresponding data sets and evaluated the residual error.
Here the mean error increased to 1.4% for mesh tracking which is still good for
pose and structure estimation from fully uncalibrated sequences.

3 Plenoptic Modeling and Rendering

After determining the pose and projection properties of the moving camera we

want to use the calibrated cameras to create a scene model for visualization.
One possible method is lightfield rendering[10]. To create a lighfield model for

real scenes, a large number of views from many different angles are taken. Each



view can be considered as bundle of light rays passing through the optical center
of the camera. The set of all views contains a discrete sampling of light rays
with according color values and hence we get discrete samples of the plenoptic
function. The light rays which are not represented have to be interpolated.

The original 4-D lightfield data structure uses a two—plane parameterization.
Each light ray passes through two parallel planes with plane coordinates (s,t)
and (u,v). Thus the ray is uniquely described by the 4-tuple (u,wv,s,t). The
(s,t)-plane is the viewpoint plane in which all camera focal points are placed on
regular grid points. The projection parameters of each camera are constructed
such, that the (u,v)-plane is their common image plane and that their optical
axes are perpendicular to it.

Often, real objects are supposed to be Lambertian, meaning that one sur-
face point has the same radiance value viewed from all possible directions. This
implies that two viewing rays have the same color value if they intersect the
surface at the same point. If specular effects occur, this is not true any more.
The radiance value will change with changing viewing direction, but for a small
change of the viewing angle, the color value also will change just a little. Con-
sequently, two viewing rays have similar color values, if their direction is similar
and if their point of intersection is near the surface of the scene.

To render a new view we suppose to have a virtual camera pointing to the
scene. For each pixel we can determine the position of the corresponding virtual
viewing ray. The nearer a recorded ray is to this virtual ray the greater is its
support to its color value. So the general task of rendering views from a collection
of images will be to determine those viewing rays which are nearest to the virtual
one and to interpolate between them depending on their proximity.

Linear interpolation between the viewpoints in (s,t) and (u,v) introduces a
blurred image with ghosting artifacts. In reality we will always have to choose
between high density of stored viewing rays with high data volume and high
fidelity, or low density with poor image quality. If we know an approximation of
the scene geometry (see fig. 2, left), the rendering result can be improved by an
appropriate depth-dependent warping of the nearest viewing rays as described
in [5].

Having a sequence of images taken with a hand-held camera, in general the
camera positions are not placed at the grid points of the viewpoint plane. In
[5] a method is shown for resampling this regular two—plane parameterization
from real images recorded from arbitrary positions (re-binning). The required
regular structure is re-sampled and gaps are filled by applying a multi-resolution
approach, considering depth corrections. The disadvantage of this re-binning
step is that the interpolated regular structure already contains inconsistencies
and ghosting artifacts due to errors in the scantily approximated geometry. To
render views, a depth corrected look—up is performed. During this step, the effect
of ghosting artifacts is repeated, so duplicate ghosting effects occur.



3.1 Representation with Recorded Images

Our goal is to overcome the problems as described in the last section by relaxing
the restrictions imposed by the regular lightfield structure and to render views
directly from the calibrated sequence of recorded images using local depth maps.
Without loosing performance we directly map the original images onto a surface
viewed by a virtual camera.

2-D Mapping: In this paragraph, a formalism for mapping image coordinates
onto a plane A is described. The following approaches will use this formalism
to map images onto planes and vice versa. We define a local coordinate system
on A giving one point ag on the plane and two vectors a; and az spanning the
plane. So each point p of the plane can be described by the coordinates z 4,
ya: p = (a1,az,a0) (Xa,YyA, l)T. The point p is perspectively projected into a
camera which is represented by the 3 x 3 matrix Q = KRT and the projection
center ¢ (same notations as above). Matrix R is the orthonormal rotation matrix
and K is an upper triangular calibration matrix. The resulting image coordinates
z, y are determined by p(z,y, 1)T = Qp — Qc. Inserting above equation for p
results in

x TA
pPlY = Q(ala az,ap — C) Ya . (4)
1 1

The value p is an unknown scale factor. Each mapping between a local plane
coordinate system and a camera can be described by a single 3 x 3 matrix
B = Q(a1,a2,ap —c).

We can extend our mapping procedure to re—project the image of one camera
(with center c;) onto the plane followed by a projection into the other camera
(with center cy). Then the whole mapping is performed by

('Z.V:yV7 1)T = BVB;I(XiniJ l)T . (5)

The 3x3-matrix BvB; 1 describes the projective mapping from one camera to
another via a given plane. Figure 2(right) shows this situation for two camera
positions ¢y and c¢;.

Mapping via global plane: We apply the previously described method of
mapping an image via a given plane to create a virtual scene view directly
from real ones. In a first approach, we approximate the scene geometry by a
single plane A. This step seems to be really erroneous but as mentioned before,
the lightfield—approach exactly supposes this approximation. In the most simple
approach, we follow this method, although at regions, where the scene surface
differs much from the plane A, a blurring effect will be visible. But in the next
section we will improve our approach for refined geometric scene descriptions.
Following the lightfield approach, we have to interpolate between neighboring
views to construct a specific virtual view. Considering the fact mentioned above
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Fig. 2. Left: depth-dependent interpolation errors in the two-plane lightfield approach.
The new viewing ray r is interpolated by the weighted sum of I; and !;41 from the ad-
jacent cameras s; and s;+1. Since the real surface geometry deviates from the planar
intersection point u at the focal plane, ghosting artifacts occur. Right: Projective map-
ping from one camera into another via a plane.

that the nearest rays give the best support to the color value of a given ray, we
conclude that those views give the most support to the color value of a particular
pixel whose projection center is closest to the viewing ray of this pixel. This is
equivalent to the fact that those real views give the most support to a specified
pixel of the virtual view whose projected camera centers are close to its image
coordinate. We restrict the support to the nearest three cameras (see figure 3).
To determine these three neighbors we project all camera centers into the virtual
image and perform a 2-D triangulation. Then the neighboring cameras of a pixel
are determined by the corners of the triangle which this pixel belongs to. The
texture of such a triangle — and consequently a part of the reconstructed image
— is drawn as a weighted sum of three textured triangles.

These textures are extracted from the original views by directly mapping
the coordinates z;,y; of image ¢ into the virtual camera coordinates zy,yy by
applying equation 5.

To overlay these three textures, we calculate a weighted sum of the color
values. Each triangle is weighted with factor 1 at the corner belonging to the
projection center of the corresponding real view and with weight 0 at both others.
In between, the weights are interpolated linearly similar to Gouraud—Shading,
where the weights describe a plane ramp in barycentroic coordinates. Within
the triangle, the sum of the three weights is 1 at each point. The total image
is built as a mosaic of these triangles. Although this technique assumes a very
sparse approximation of geometry, the rendering results show only few ghosting
artifacts (see section 4) at those regions where the scene geometry differs much
from the approximating plane.



Mapping via local planes: The results can be further improved by consider-
ing local depth maps. Spending more time for each view, we can calculate the
approximating plane of geometry for each triangle in dependence on the actual
view. As the approximation is not done for the whole scene but just for that part
of the image which is seen through the actual triangle, we don’t need a consistent
3-D model but we can use the — normally erroneous — local depth maps. The
depth values are given as functions z; of the coordinates in the recorded images
2i((w,yi,1)"). They describe the distance of a point perpendicular to the image
plane. Using this depth function, we calculate the 3-D coordinates of those scene
points which have the same 2-D image coordinates in the virtual view as the
projected camera centers of the real views. The 3-D point p; which corresponds
to the real camera i can be calculated as

pi = zi(Qidi)d; +¢; (6)

where d; =n(c; — cv). The function n scales the given 3-D vector such, that its
third component equals one. We can interpret the points p; as the intersection
of the line ¢y ¢; with the scene geometry (see figure 3). The 3-D coordinates of
triangle corners define a plane which we can use to apply the same rendering
technique as described above for one global plane.

_ virtual camera

virtual camera

recording positions

scene geometry

scene geometry

Fig. 3. Left: Drawing triangles of neighboring projected camera centers and approx-
imating scene geometry by one plane for the whole scene or for one camera triple.
Right: Refinement of triangulation by inserting new 3-D points corresponding to the
midpoints of the triangle sides.



Refinement: Finally, if the triangles exceed a given size, they can be subdivided
into four sub—triangles by splitting the three sides into two parts, each. We
determine the 3-D points corresponding to the midpoint of each side by applying
the same look-up method as used for radiance values to find the corresponding
depth value. After that, we reconstruct the 3-D point using equation 6 and
project it into the virtual camera resulting in a point near the side of the triangle.
It is just in the neighborhood of the side, but this doesn’t matter really. Merely,
the triangulation structure will be changed slightly. One has to take care of
avoiding inconsistencies caused by this look-up. For a given pair of neighboring
views, the look-up always has to be done in the same depth map. A simple
method is to do this look-up not for each triangle causing several look-ups for the
same triangle side, but to determine the 3-D points for each pair of neighboring
views in a preprocessing step. This also improves efficiency.

For each of these so created sub—triangles, a separate approximative plane is
calculated in the above manner. Of course, further subdivision can be done in
the same way to improve accuracy. Especially, if just few triangles contribute to
a single virtual view, this subdivision is really necessary. This hierarchical refine-
ment of the geometry can be performed adaptively depending on the required
accuracy and available computational resources, hence allowing easy scalability
towards scene complexity.

3.2 Scalable Geometry for Interpolation

The approach as discussed above can be used directly for scalable geometric scene
approximation. The SFM reconstruction delivers local depth maps that contain
the 3D scene geometry for a particular view point. However, sometimes the depth
maps are sparse due to a lack of features. In that case, no dense geometric recon-
struction is possible, but one can construct an approximate geometry (a mean
global plane or a very coarse triangulated scene model). This coarse model is not
sufficient for geometric rendering but allows depth compensated interpolation.
In fact, the viewpoint-adaptive light field interpolation combined with approxi-
mative geometry combines to viewpoint-dependent texture mapping. Since only
the nearby images are used for interpolation, the rendered image will be quite
good even when only a very coarse geometry is used. The standard lightfield
interpolation for example uses only a planar scene approximation that is not
even adjusted to the mean scene geometry. Hence our approach is less distorting
than standard lightfield rendering. The rendering will also be more realistic than
standard texture mapping since we capture the reflectance characteristics of the
scene.

The adaptive refinement of the geometry (starting with a mean global planar
geometry and adapting to surface detail) can be used to control the amount of
geometry that we need for interpolation. For every viewpoint the scene is divided
into local planes until a given image quality (measured by image distortion) has
been reached. On the other hand, one can select a fixed level of geometric subdi-
vision based on the available rendering power of the texture mapping hardware.



For a given performance one can therefore guarantee that rendering is done in
constant time.

This geometric scalability is very useful in realtime environments where a
fixed frame rate is required, or in high realism rendering where imaging quality
is premium.

Fig. 4. Top: Two images from hand-held office sequence. Please note the changing
surface reflections in the scene. Middle: Camera tracking with viewpoint mesh(left)
and depth map from a specific viewpoint (right). Bottom: 3D surface model of scene
rendered with shading (left) and texture (right).



4 Experimental results

We tested our approach also with an uncalibrated hand-held sequence. A digital
consumer video camera (Sony DCR-TRV900 with progressive scan) was swept
freely over a cluttered scene on a desk, covering a viewing surface of about 1 m?.
The resulting video stream was then digitized on an SGI O2 by simply grabbing
187 frames at more or less constant intervals. No care was taken to manually
stabilize the camera sweep.

Fig. 4 (top) shows two images of the sequence. Fig. 4 (middle, left) illustrates
the zigzag route of the hand movement as the camera scanned the scene. The
viewpoint mesh is irregular due to the arbitrary hand movements. The black dots
represent the reconstructed 3D scene points. From the calibrated sequence we
can compute any geometric or image based scene representation. As an example
we show in fig. 4 (bottom) a geometric surface model of the scene with local scene
geometry that was generated from the depth map (see fig. 4 middle, right).

Fig. 5 shows different refinement levels of the same geometry as viewed from
a particular camera viewpoint. Even with this very rough approximation, very
realistic view interpolation can be achieved.

Fig. 6 shows rendering of the same scene without depth compensation (left)
and with depth compensation using geometric refinement (mesh 1x subdivided,
middle). Even without geometry the rendering looks good, but due to the missing
depth compensation some ghosting artifacts occur. This is the result achievable
with the standard lightfield approach, but already exploiting the general view-
point mesh calibration. With geometry compensation the rendering is improved
substantially and the ghosting artifacts disappear. Note that we utilized a very
coarse geometrical approximation only as displayed in fig 5 (top right) but still
achieve high rendering quality.

Fig. 5. Viewpoint geometry for depth-compensated interpolation with with different
levels of adaptive refinement (level of mesh subdivision: 0,1,2, 4 (top left to bottom
right).



Fig. 6. Top: Novel views rendered from the viewpoint mesh without (left) and with
(middle) depth-compensation. Only a coarse geometrical approximation is used (see
upper right image of fig. 5). Right: Two views of the scene rendered from different
viewpoints with changing reflections. The rendering quality is very high due to the
natural appearance of the reflections.

The main advantage of lightfield rendering is that the rendering is local,
meaning that all depth and color information for a pixel is taken from the three
nearest camera images only. This allows changes in surface reflectivity when
viewing the scene from different angles. Some rendering results with surface
reflections are shown in fig. 6 (right). The same part of the scene is rendered
from different viewpoints, demonstrating that the reflections are preserved and
the images appear very natural.

5 Conclusions

We have presented a system for calibration, reconstruction, and plenoptic ren-
dering of scenes from an uncalibrated hand-held video camera. The calibration
exploits the proximity of viewpoints by building a viewpoint mesh that spans the
viewing sphere around a scene. Once calibrated, the viewpoint mesh can be used
for image-based rendering or 3D geometric modeling of the scene. The image-
based rendering approach was discussed in detail and a new rendering approach
was presented that renders directly from the calibrated viewpoint using depth-
compensated image interpolation. The level of geometric approximation is scal-
able, which allows to adapt the rendering to the given rendering hardware. For
the rendering only standard planar projective mapping and Gouraud-weighting
is employed which is available in most rendering hardware.
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