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Abstract

This paper presents a computational effective framework
for tracking and pose estimation of vehicles in videos reach-
ing comparable performance to state-of-the-art methods.
We cast the problem of vehicle tracking as ranking possible
poses for each frame and connecting subsequent poses by
exploiting a feasible motion model over time. As a novelty,
we use random forests trained on a set of existing 3D models
for estimating the pose. We discretize the viewpoint space
for training, where a synthetic camera is orbiting around
the models. To compare projections of 3D models to real
world 2D input frames, we introduce simple but discrimi-
native principle gradient features to describe both images.
A Markov Random Field ensures to pick the perfect pose
over time and the vehicle to follow a feasible motion. As
can be seen from our experiments performed on a variety
of videos with vast variation of vehicle types, the proposed
framework achieves similar results in less computational
time compared to state-of-the-art methods.

1. Introduction
Visual traffic surveillance is an important task in com-

puter vision which enables multiple novel applications
ranging from estimating the scene topology and geometry
of a traffic scene, controlling the traffic activities of 3D ob-
jects present in the scene, detecting abnormal behaviors and
making control decisions in real time up to autonomous ve-
hicle navigation. Using 3D information helps when per-
forming vehicle detection, classification and pose estima-
tion. First, the appearance of objects varies substantially
with the viewing angle and local features may often be oc-
cluded in 2D. Second, using 3D information allows mak-
ing some a-priori assumptions about the scene and relax-
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Figure 1. A computationally effective 3D model based vehicle de-
tection and tracking framework. See text for details.

ing the problem (e.g. a car is more likely to be located on
a road than in the sky). Unfortunately, most of the traf-
fic surveillance systems do only provide a single camera,
which means that the 3D information of a recorded scene
gets lost. Going back from a monocular video stream to the
3D reconstructed scene is therefore an ill-posed problem.

Object tracking in 3D space can be seen as a combina-
tion of determining the pose for each frame and these poses
following a feasible motion model over time. Traditional
pose estimation approaches try to exploit the diversity or
so-called intra-class variations by extracting a discrete set
of the diversity to perform object classification [5, 6]. Other
approaches learn a sparse 3D model from training images
taken from various viewpoints [17, 18]. Recent methods try
to exploit 3D models having known dimensions [16, 23, 9]
or generic models [12] for object classification, pose esti-
mation and tracking.

In this paper we exploit recent developments and try
to overcome the objects’ intra-class variations as well as
the ill-posed problem between a monocular image stream
and its 3D reconstruction by using a calibrated, monocular
video stream and 3D models having known dimensions for
pose estimation and tracking in videos.

As a contribution, we introduce a random forest (RF) en-
semble, which is trained on a set of existing 3D models and
used to rank the vehicles’ possible poses and locations in
real world input frames (see Fig. 1). Different to [9], the
pose estimation does not rely on the correct 3D model be-
ing in the training set. We have a generic classifier trained
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on multiple models, whereas [9] needs to have the correct
model available and evaluates all models in various poses
to obtain the correct pose. The synthetic camera orbiting
around the model gives us correctly labeled training im-
ages based on the viewpoints and provides the advantage
that we do not suffer from wrongly classified training im-
ages due to manual pose estimation in real world images.
We introduce simple but discriminative principle gradient
features to describe the training images as well as the input
images. These features give us the opportunity to describe
synthetically rendered objects without using depth, texture
or color information. Note that of course, the models can
also be rendered with color and texture information but the
synthesized appearances usually differ from the real world
counterparts due to illumination and other ambient factors.
To the best of our knowledge, RFs trained on existing 3D
models have never been used to overcome the problem of
pose estimation. Different to [3], we do not use regression
based RFs for pose estimation which gives us the oppor-
tunity to keep possible poses for each frame and remove
outlier poses at a later stage over time which makes the
whole pipeline more robust. We therefore use a classifica-
tion based approach, rank all possible poses and incorporate
Markov Random Field (MRF) to ensure temporal consis-
tency between poses of consecutive frames, as proposed by
[9].

2. Related Work
The field of object tracking and pose estimation using

existing 3D models has been studied extensively in the last
few years. A polyhedral 3D vehicle model for classification,
following a motion model over time, was first introduced by
[10]. Detailed 3D models of cars and motorcycles are first
exploited in [14] for classification in still images. The train-
ing is performed using a synthetic camera orbiting around
the models. Classification is done by comparing all possible
projections to the input image. An approach for matching
vehicles in still images under large body transformations us-
ing detailed 3D models is described in [8]. They gain an
initial pose from meta-data, match the 2D image projection
to the 2D model projection by using Chamfer distance and
the Iteratively Closest Point algorithm. Rendering is done
on manually labeled semantic parts, where occlusions in the
rendering are handled by filling gaps using an MRF. The ap-
proach of [14] was extended to videos in [23]. The area of
the projected model is matched to a segmented foreground
input image mask. The area overlap as well as the shape
similarity is used as matching score. The temporal infer-
ence is established by introducing a Conditional Random
Field. The authors in [24] utilize real images, HOG fea-
tures and RFs for training the pose estimator. Different to
our approach, they are not using 3D models. We proposed
to use principle gradient edge features instead of HOG fea-
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Figure 2. Vehicle, described by orientation α and its centroid on
the ground plane C = (x, y, z = 0).

tures because we found it empirically works better for the
2D to 3D model matching problem. Using a deformable
model [11] for vehicle tracking was first introduced by [12].
The authors are changing parts of the model online between
consecutive frames and align the rendered projection with
the input image. A Kalman filter is used to predict a pose
from a frame to a subsequent one.

The principle of an RF is described in [1] and extended
by [2]. The classifier is a very popular method in com-
puter vision classification problems due to the fact that i)
it can handle large training data sets and many classes, ii)
it is robust against outliers and iii) the classification task
is performed very quickly. Using classification-based RFs
for pose estimation of humans was first introduced by [19].
Human people are detected in a variety of real world im-
ages and a training set is built up to generate an RF. Classes
are generated by encountering both the pose and the action
of a human. Using regression instead of classification is
described in [7]. Objects are found by exploiting the gen-
eralized Hough transform. Detections of object parts in-
dividually vote for the localization of the complete object.
By using depth images, regression is used for determining a
human’s head pose [3]. These features are also used in [21]
for obtaining a human’s pose. Each body part casts votes
for a single class. The final pose is estimated by generating
confidence-scored 3D proposals of how the body parts are
connected. Conditional RFs are used for pose estimation in
[22] which allows incorporating relationships between out-
put variables by a global latent variable.

3. Vehicle Pose Estimation in Videos
In this paper we propose a framework for accurate 3D

vehicle tracking and pose estimation by using existing 3D
models and a video as input source. As others [12, 9], we
assume, that given the ground plane, the vehicle’s pose is
parameterized by p = (x, y, α) as shown in Fig. 2. The
car’s centroid on the ground plane is therefore denoted as
C = (x, y, z = 0), its orientation is described by the an-
gle α. Tracking a vehicle can be seen as finding the per-
fect pose in continuous space for each frame and connect-
ing subsequent poses by exploiting a feasible motion model
over time. Due to computational complexity, evaluating all
possible poses is not feasible in practice, so we cast the
problem as the determination of a set of poses in discrete
space. Having a video, which provides N frames and given



a discrete input vehicle sequence S = {s1 . . . st . . . sN} we
want to find the pose sequence R = {p1 . . .pt . . .pN}.
This is established by finding the best matching model pro-
jection at each time instance t as well as determining the
best transition between consecutive frames. This means the
model must move in 3D space by following a feasible mo-
tion. Finding a solution to this problem is done by calcu-
lating the sequential inference which is established by us-
ing an MRF, a chain-structured undirected graphical model.
The pose for a current frame is therefore inferred from past
and future poses in a batch process. Given S, the joint dis-
tribution for a model sequenceR is denoted by

P (R|S) = 1

Z(S)

N∏
t

Y (pt|S)Y (pt,pt−1|S), (1)

where Y (pt|S) is the matching score between a vehicle
pose and the vehicle shown in the video at time instance
t, Y (pt,pt−1|S) describes the transition of the model be-
tween consecutive frames and Z(S) assures a probability
distribution. The following sections explain how to get both
terms of Eq. 1 for our specific tracking problem.

3.1. Discrete Vehicle Pose Definition

In order to rank poses for each frame, we first need to
specify which poses are possible and how similar poses
are clustered to the same class. We therefore place the
3D model at the origin of the coordinate system and or-
bit a synthetic camera around it. Vehicles may provide a
vast variety of dimensions and shapes but all of them pro-
vide some common features if seen from the same view-
point. We therefore propose to tag all projections of multi-
ple models seen from the same viewpoint with a common
class label. As proposed by [14], we orbit around the ob-
ject in discrete space to decrease computational complex-
ity by varying azimuth and elevation angle, as well as the
distance between the synthetic camera and the coordinate
center, as can be seen in Fig. 3. To avoid misclassifica-
tions because of having too many classes, we sample the
3D model by a azimuth stepsize of 5◦, an elevation stepsize
of 10◦ and a distance stepsize of one meter. We set these pa-
rameters to be an empirically found trade-off between hav-
ing an accurate enough pose estimation whilst avoiding too
many classes. We do not use regression based RFs. Using
regression has the advantage of penalizing poses based on
their distance to a correct result but the problem is that this
method does not provide any confidence how well a certain
pose fits the input frame. When the regression based RF
obtains a completely wrong pose, our framework will not
recover any more which will yield to a wrong result. Using
classification instead gives us the opportunity to count the
number of trees voting for a specific class, take this as the
pose confidence and remove outliers over time. Decreasing
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Figure 3. Discrete rendering of 3D models placed at the origin of
the coordinate system. Multiple models in the dataset seen from
the same viewpoint are clustered into the same class, where each
class is defined by azimuth and elevation angle of the synthetic
camera as well as a distance between the camera and the origin.

the stepsize means increasing the number of classes. Hav-
ing too many classes is equal to using regression with the
same penalty for all wrong poses which does also result in
increasing the number of misclassifications and may not be
handled by further steps anymore. Vehicles provide low-
textured but specular surfaces. Following [12, 18, 9], edges
are the most informative and stable features to use in this
case. In our framework, we are therefore use synthetic 3D
model projections. Our training data is a set of syntheti-
cally rendered 3D models using a synthetic camera with a
given focal length. Edges must be shown when sharp edges
between adjacent faces or edges from the projection’s sil-
houette occur. We perform this rendering on the GPU due
to computational complexity. Contour edges are found by
projecting all faces onto the 2D image plane. Sharp edges
are drawn when normals of adjacent faces of a 3D model
are pointing in different directions. For obtaining realistic
looking projections, this difference is empirically chosen to
be 20◦.

3.2. Random Forests for Pose Estimation

For each frame, we rank all model projections based on
how well they fit to the input frame. This can efficiently be
done by exploiting RFs. An RF is a classifier which consists
of multiple decision trees and can be used for solving multi-
class labeling problems. It was first introduced by [1] and
extended in [2]. By evaluating a feature using all the trees in
the forest, each tree votes for a class. Each of those features
of course only provides a weak assumptions about which
class it belongs to but by evaluating multiple features and
cleverly building up the decision forest, the whole classifier
is proven to be very robust [21, 13].

Let an RF, built up by b = 1 . . . B of trees, classify be-
tween l = 1 . . . L classes. Each tree consists of split nodes
(denoted by ◦ in Fig. 4), built up by a feature θ and a thresh-
old as well as leaf nodes (denoted by � in Fig. 4). The
threshold is used for following the tree to its left or right
branch. Each of the trees then votes for a single class l. We
then use the whole vote distribution of the forest for ranking
the poses.
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Figure 4. Pose estimation by classification using RFs and multiple
features extracted at pixel X = (x, y). See text for details.

3.2.1 Random Forest Training

In our proposed framework, multiple principle gradient fea-
tures describe a 3D model projection. Synthetically gener-
ated data is a synthesized copy of its real world counterpart
without any noise, occlusions, or variations. The classifi-
cation of real world images can therefore be improved by
intentionally varying the training images on which the clas-
sifier is trained. This can be done by changing the threshold
for sharp edges, by introducing noise, and by varying the
2D location of the projection. All these variations can be
seen in Fig. 5, where the introduction of noise is performed
by simply placing the model projection on a different back-
ground image.

We first determine the gradient direction image G =
arctan(Gx

Gy
), where each pixel represents an angle in radi-

ans and Gx and Gy are the derivatives of an input image in
both horizontal and vertical direction. Since we are using
a synthetic camera, all training images are aligned to each
other. Given a pixel location X = (x, y), we determine two
points X1 = (x1, y1) and X2 = (x2, y2), both having a
random offset φ to X in both directions. Given a certain
blocksize (20 pixels in our experiments), we calculate the
mean gradient directions ψ(X1) and ψ(X2) of each block.
The feature at location X is then computed by

θ(X, φ) = mod (arctan(0.5(

2∑
i=1

sin(ψ(Xi))),

0.5(

2∑
i=1

cos(ψ(Xi)))), 2π). (2)

To cover variations between classes, we roughly even dis-
tribute M = 500 features randomly over the area cov-
ered by all 3D model projections to obtain random features
θ(X, φ1) . . . θ(X, φM ). To build up an RF, each tree within
the same RF chooses a location X at random but common
over all nodes of the tree. For each of the nodes of the tree,
X1 and X2 are chosen randomly. As stated in Sec. 3.1,
we render the models using a stepsize of one meter for the
distance between the model and the camera center. We de-
cided to generate an RF for each distance in order to keep
misclassifications and therefore wrong poses ranked high
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Figure 5. Feature Extraction for a variety of different projections
but for the same class. A class is defined by the same viewpoint,
where robustness to outliers is gained by placing the projection on
different backgrounds, changing the threshold for sharp edges at
the rendering process, shifting the model in 2D and using a variety
of different 3D models.

on a minimum. This gives L = 288 classes for each RF
within our framework.

3.2.2 Single Frame Pose Estimation

The RF can be used for localizing the vehicle in 2D. How-
ever, it is time-consuming because all decision trees at each
pixel location have to be evaluated. We hence did not use
the RF for localization but a state-of-the-art object detector
[4]. It is applied at each frame and returns a bounding box
for the 2D vehicle location. The detector by its nature does
also provide a rough pose estimation but it does not pro-
vide any 3D information. Hence, the detector’s pose output
cannot be used in this case. As can be seen in [23] it is
obviously not enough to perform background subtraction to
obtain an accurate foreground mask due to highlights and
shadows in the scene.

We determine the vehicle’s pose and its location on
the ground plane by exploiting an RF ensemble. We use
a = 1 . . . A RFs having b = 1 . . . B trees, where each tree
is trained with a different distance between camera and ve-
hicle model. To increase efficiency, the number of RFs to
be evaluated is minimized by determining the rough dis-
tance between the car and the camera center. For our exper-
iments, we choose the threshold between the rough distance
between camera and 3D model and the trained distance of
the RFs to be ± 1.4 meters, so that only the closest three
RFs are being evaluated for each frame. We then extract
a feature vector Θ(X) = θ(X, φ1) . . . θ(X, φM ) with the
same offsets φ1 . . . φM as in the training stage. The vehi-
cle’s 2D bounding box in the gradient image G of the input
image is aligned with the training images and the features
are calculated for the 2D bounding box of each video frame.
Each tree from the RF ensemble holds a vote distribution
Pa,b(l|G,Θ(X)) for label l. The probability for label l is



then given by

P (l|G,Θ(X)) =
1

A

A∑
a=1

1

B

B∑
b=1

Pa,b(l|G,Θ(X)). (3)

To solve the first part of Eq. 1, the matching score at time
instance t between a model projection pt and an input ve-
hicle st is given by

Y (pt|st) = P (l|G,Θ(X)). (4)

3.3. Temporal Inference for Accurate Vehicle
Tracking in Videos

After having a matching score, we determine the transi-
tion term Y (pt,pt−1|S). Ideally, the vehicle should move
with constant speed, which is established by using slow
speed and applying a L2 norm minimization. We ensure a
feasible motion model by applying the Ackermann steering
principle, [20]. The principle is defined by ϕ = γ

2 , where
ϕ and γ are the angles of the vehicle’s inner and outer turn-
ing radius, respectively. Forcing the vehicle to move with
constant and feasible motion is therefore described by [9]

Y (pt,pt−1|S) = exp(−(‖pt−1−pt‖2+λ2(ϕ−
γ

2
))), (5)

where λ2 assures equal weighting between the impact of
constant and feasible motion, p is the car’s pose. For solv-
ing Eq. (1) and finding the best fitting sequence R̂ for
a given S, we need to determine the maximum posterior
(MAP) configuration through the graph and compute both
Eq. (4) for each of the model projections and Eq. (5) for
each edge, where an edge should be from each projection
of frame at time t− 1 to each one at time t. The final MAP
of the MRF is then given by R̂ = argmaxR P (R|S).

4. Experiments
We test our algorithm on five sequences from [12] show-

ing a variety of different vehicles from different viewpoints.
They provide a resolution of 1280x720 pixels and a cal-
ibrated setup. As the ground truth distances for our se-
quences range from 16-32 and 125-140 meters, we trained
32 RFs (stepsize 1 meter), where each of them consists of
200 trees, with an azimuth angle ranging from 0◦ - 360◦,
stepsize 5◦, an elevation angle ranging from 0◦ to 30◦, step-
size 10◦. We use 9 different existing 3D models1 to train the
pose estimator (see Fig. 6) where the dimensions are taken
from the manufacturers’ specifications.

Quantitative experiments: We show the output for each
step of our pipeline (RF only (No Opt) and applying MRF
(Opt)) and compare them to Toshev’s [23], Leotta’s [12] and
Hoedlmoser’s [9] results. For generating ground truth data,

1The models can be downloaded from http://www.caa.tuwien.ac.at/
cvl/people/hoedl/

Figure 6. Models used for training the pose estimator.

we manually segment the 2D area of the vehicle as fore-
ground for each frame. Since the approaches of [23] and
[9] are not publicly available, we re-implemented them. For
Toshev’s method we used the manual foreground segmen-
tation which prevents wrong classifications due to a bad
segmentation. To assure fairness in our comparison, we
re-implemented both methods such that we get comparable
performance on similar videos. The dataset of [23] is gen-
erated with the same parameters as ours. Leotta’s approach
[12] is publicly available. First, we compare the overlap be-
tween the ground truth region and the projected 3D model.
As this metric is used for the evaluation of the detected pose,
it is only valid when the correct type of the vehicle is pro-
jected onto the image plane. When the vehicle’s pose is
known and a correct 3D model is available, its type can
be determined by rendering all vehicle types with the de-
termined pose. The best matching vehicle type is obtained
by using FDCM, which is an edge-based matching method
and known to be very robust against intra-class variations
[15, 9]. We use the same models for determining the type
as for training the pose estimator. In our experiments we
obtain a correct vehicle type for all sequences, [23] misclas-
sified the vehicle shown in sequence 1. Fig. 7(a) shows the
overlap rate for our implementation (No Opt, Opt) as well as
for Toshev’s, Leotta’s and Hoedlmoser’s approach. As can
be seen, we obtain similar results compared to their meth-
ods. Toshev’s approach is using all scales of a discretely
rendered model. This can lead to misclassifications, where
the wrong, discrete scale of a wrong model may fit better
than the next best discrete scale of the correct model. As
can be seen in Fig. 7(a), this does not directly influence the
overlap between ground truth and detected model. There-
fore we compare the offset of the vehicle’s centroid and its
orientation α on the ground plane to the ground truth data
(Tab. 8(b)). We clearly outperform Toshev’s implementa-
tion and get similar results compared to Leotta’s implemen-
tation both in terms of mean location and orientation error.
Toshev’s method is worse since it does not incorporate a
ground plane estimation but does only classify each single
frame based on the area overlap between training data and
the input frame. To obtain a fair comparison, we compen-
sate the missing ground plane of [23] by forcing poses to
be oriented roughly in the ground truth direction of move-
ment (±30◦). Fig. 7(b) shows the percentage of poses be-
ing below a certain difference between the calculated ori-
entation α and the ground truth data. Our optimized pose
estimator obtains comparable results to all other methods.

http://www.caa.tuwien.ac.at/cvl/people/hoedl/
http://www.caa.tuwien.ac.at/cvl/people/hoedl/
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Figure 7. (a) Area overlap between ground truth and results from all methods over all sequences for correctly classified vehicles. (b)
Difference of orientation α over all sequences between all methods and ground truth data. (c) Mean processing time for one frame in
seconds .

Sequence 03Sequence 02Sequence 01 Sequence 04 Sequence 05 Proposed (Opt)

Leotta et al., [12]
Toshev et al., [23]

Ground Truth

Proposed (No Opt)

Hoedlmoser et al., [9]

(a)

Proposed(Opt) Proposed(No Opt)
µ 30.15 49.12
σ 26.85 38.52

max 202.67 332.24

Leotta et al.,[12]Toshev et al.,[23] Hoedlmoser et al.,[9]
42.94
33.21

288.45

29.85
16.36

120.17

25.38
11.98

66.29

Proposed(Opt) Proposed(No Opt)
µ 17.60 28.72
σ 11.90 38.82

max 55.04 120.17

Leotta et al.,[12]Toshev et al.,[23] Hoedlmoser et al.,[9]
20.96
14.58

  58.95

13.20
14.49

  43.30

13.06
11.05

  37.68

Location Distance on Ground Plane to Ground Truth (cm) Orientation Distance on Ground Plane to Ground Truth (degrees)

(b)

Figure 8. (a) From left to right: Top-view 3D Tracks of the car’s centroid on a warped top-view image for all sequences. Comparison
between our approach (No Opt, Opt), as well as [23], [12], [9] and ground truth. (b) Offsets of the vehicle’s center (left) and orientation α
(right) on the ground plane compared to ground truth. Best viewed in color.

More than 50% of all poses yield an error smaller than 15◦.
Fig. 8(a) shows the trajectory of the vehicle’s centroid over
a whole sequence for each method for all sequences from
left to right. The vehicle’s starting position is denoted by
×, ?, 5, ♦, 7, ◦ for Opt, No Opt, Leotta, Toshev, Hoedl-
moser and ground truth, respectively. As can be seen, there
are more jumps in space between consecutive frames using
Toshev’s method than using ours since we assume the 3D
model to be located on the ground plane. The main advan-
tage of our approach is that we reach comparable results to
state-of-the-art methods in much less computational time.
The mean processing time for one frame can be seen in Tab.
7(c). As can be seen, we provide a much faster runtime than
the approach presented in [9] since they need to evaluate
all models in order to obtain a matching score between 3D
model and input video. We do only compare pose estima-
tion times for each method, where detecting and tracking

the vehicle are excluded. The test is performed on an In-
tel i5, 2.4 GHz and 8GB RAM, our method, Toshev’s and
Hoedlmoser’s are implemented in Matlab, Leotta’s in C++.

Qualitative experiments: Fig. 9 shows from left to
right the best matching five poses for random frames. The
rightmost image shows the best matching pose and its cor-
responding rank taken from the MRF. As can be seen, the
best pose must not be ranked first to get a smooth result but
all highly ranked poses are similar to the correct one. Fig.
10 shows qualitative example results using our approach.
One sequence is represented by four columns where each
column corresponds to our method, [23], [12] and [9]. The
upper left image of each sequence presents its first frame
and our optimized projected track. The following frames of
each row provide the refined pose in combination with the
vehicle type estimated by FDCM projected onto the image
plane. For viewing purposes, we crop out the region around



Figure 9. Best five poses for three random frames ranked from left to right. The rightmost image shows the pose and its rank chosen from
the MRF. Note that we use a random model type for visualization.

the vehicle. As can be seen, we obtain comparable results
for all evaluated methods. The last four columns on the
lower right show a wrong model projected onto the image
plane.

5. Conclusion
We presented a framework for estimating vehicles’ poses

in videos by exploiting existing 3D models having known
dimensions. We cast the problem of vehicle tracking as
ranking possible poses for each frame and connecting sub-
sequent poses by exploiting a feasible motion model over
time. We use a classification-based approach to rank all
possible poses for each frame. The random forest classifier
is trained on a synthetic set of existing 3D models, rendered
from discrete viewpoints. Different to existing approaches,
we train a generic pose estimator on a variety of 3D mod-
els which does therefore not rely on having a corresponding
3D models in the training set to the vehicle shown in the
input frame. A novel edge based feature was introduced to
match 2D projections to 2D input frames. These features
give us the opportunity to describe synthetically rendered
objects and compare them to their real world counterparts.
A Markov Random Field ensures a feasible vehicle motion
between consecutive frames. As can be seen from our ex-
periments, we obtained similar results compared to state-
of-the-art methods but dramatically outperformed them in
terms of processing time.
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