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Abstract— We present a novel stereo-based obstacle avoid-
ance system on a vision-guided micro air vehicle (MAV) that
is capable of fully autonomous maneuvers in unknown and
dynamic environments. All algorithms run exclusively on the
vehicle’s on-board computer, and at high frequencies that allow
the MAV to react quickly to obstacles appearing in its flight
trajectory. Our MAV platform is a quadrotor aircraft equipped
with an inertial measurement unit and two stereo rigs. An
obstacle mapping algorithm processes stereo images, producing
a 3D map representation of the environment; at the same time,
a dynamic anytime path planner plans a collision-free path to
a goal point.

I. INTRODUCTION

This work presents efficient real-time obstacle mapping
and path planning algorithms for micro air vehicles (MAVs).
The size of unmanned aerial vehicles in this class typically
ranges between 15cm and 60cm, and these vehicles can be
operated in both indoor and outdoor environments. MAVs
are a challenging platform to work with; their payloads
are limited by weight, thus often limiting the choice of
exteroceptive sensors to cameras which make autonomy an
even more non-trival task. Furthermore, the flight dynamics
of a MAV are hard to model.

In this paper, we describe in detail the on-board algorithms
that enable autonomous navigation and give an overview
of our MAV platform as shown in Figure 1. The obstacle
mapper efficiently constructs 3D virtual scans from range
data derived from stereo image pairs; a virtual scan projects
rays at regular angular intervals outward from the MAV until
the rays either extend a maximum distance or intersect an
obstacle. In turn, the mapper uses the virtual scan data to
incrementally build a 3D map of the MAV’s environment. At
the same time, a path planning algorithm rapidly computes
a suboptimal path, and improves the suboptimal bound of
the initial path based on available planning time while
immediately repairing the path upon discovery of previously
unobserved obstacles. Finally, we discuss the results of
autonomous flight experiments, and explore future directions.

A. Related Work

Recent research on MAVs has focused on real-time local-
ization, perception, and path planning. An AscTec Humming-
bird quadrotor [1] collects sensor data from both a Hokuyo
URG laser rangefinder and a stereo camera, and transmits
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Fig. 1. The PIXHAWK quadrotor platform.

the data to a computer cluster which runs a localization
algorithm. An operator selects waypoints on the map for
the quadrotor to follow. Similarly in [2], a laptop runs a
SLAM algorithm based on laser data from a MAV, and
a person remotely controls the MAV. Blöesch et al. [3]
demonstrates visual localization using a camera on an USB
tether cable and processing on a laptop. The outdoor MAV
of [4] utilizes an analog camera for object tracking and a
GPS/INS system for position control. It is worthwhile to
note that all these systems depend on a close-by processing
unit to run mission-critical algorithms such as localization.
They lack one important element of autonomy: to both
map out obstacles and avoid these obstacles especially at
close range in cluttered settings while in flight. Hence, the
MAV inevitably crashes if the connection to its processing
system is interrupted, even for a brief moment. This issue
is particularly challenging in typical indoor environments
where concrete walls block wireless signals and it is common
to experience heavy interference from 2.4 GHz sources
common in households such as Wi-Fi networks, ZigBee
house installations, DECT phones, and wireless surveillance
cameras. On-board processing resolves these issues, but
requires computationally efficient algorithms, especially in
the case of stereo vision where significant computational
resources have to be allocated to image processing. The
challenge of working with cameras is further exacerbated by
the high level of noise associated with range data from stereo
vision. Celik et al. [5] first demonstrated on-board indoor
SLAM on a MAV using a monocular camera; however the
MAV did not perform obstacle mapping and path planning.

Reactive behaviors for collision avoidance [6] are suscep-



tible to the well-known local minima problem. Furthermore,
most on-board planning algorithms [7], [8] for MAVs are
not able to efficiently and quickly repair paths in unknown
environments, especially when a large number of obstacles
are observed over time. These algorithms can fail to react
timely to moving obstacles.

Our work is novel in the aspect that we perform vision-
based incremental mapping and path planning on a MAV
with 100% on-board processing. We particularly adapt tech-
niques successfully applied to ground robots which plan in
high-dimensional spaces and in large-scale environments.

II. PIXHAWK PLATFORM

The PIXHAWK quadrotor platform is a soft- and hardware
system optimally designed to support real-time on-board
computer vision algorithms. In contrast to recent work [1],
[2], [3], [4], our system design is computationally powerful
enough to process in parallel up to four cameras on-board.
Two stereo rigs on our vehicle point ahead and downwards,
and allow the vehicle to localize itself and detect obstacles
in its vicinity. Tight, hardware-guaranteed synchronization
of images from all four cameras with the IMU paves the
way for cutting-edge multi-view-IMU fusion algorithms. In
the context of this paper, the synchronization is crucial in
correctly matching the 3D stereo reconstruction results from
the two front cameras to the global localization data based
on the bottom cameras. Without this synchronization method,
the global obstacle map will be signficantly distorted due to
inaccurate 3D world coordinates of the point cloud data.

A. PIXHAWK Toolkit

The MAV middleware supports three important main
features: reliable vision-IMU synchronization (and synchro-
nization of multiple cameras) on the hardware level, an
efficient central image hub which allows multiple algorithms
to simultaneously use image output from the same cameras
in parallel, and a homogenous, efficient communication
architecture for on- and off-board communication that scales
from serial ports to UDP sockets.

1) Camera - IMU Synchronization: Synchronization of
all on-board cameras is extremely crucial for multi-view
geometry applications such as stereo vision. For approaches
using vision-IMU fusion, it is important to have IMU
measurements available at the time the cameras capture
each image. The toolkit triggers all on-board cameras using
the inertial measurement unit hardware, and attaches IMU
metadata to the images.

2) Image Transfer: To enable localization, pattern recog-
nition, and depth triangulation from stereo images, several
computer vision algorithms work in parallel on the platform.
This is facilitated by the central image hub, which distributes
the images of all cameras with IMU metadata to all sub-
scribing processes. With an efficient implementation based
on shared memory, the distribution is resource-effective.

3) Communication: Several robotics packages for large
unmanned ground, surface, and air vehicles exist; examples
include CARMEN, ROS and CLARAty. However, these

packages implicitly assume that all processes using their
frameworks support either IEEE 802.3 Ethernet or IEEE
802.11a/b/g/n Wi-Fi. Many system components in the MAV
domain are connected via UART, and inter-system commu-
nications, in particular, between the MAV and the ground
station, are not based on Wi-Fi, but rather on radio modems
and wireless UART emulation. For outdoor MAVs, this mode
of communications is necessary for long-range data transmis-
sion; for indoor MAVs operating in buildings, radio modems
are much more robust to interference sources in the 2.4 GHz
band. Therefore, our communication backend in the form of
the MAVLink protocol scales from UART to UDP interfaces
and is used by both on- and off-board components operating
the unmanned air vehicle. Messages are transparently routed
without the need for bridge and adapter processes, effectively
reducing the system latency to a minimum. The MAVLink
protocol messages are serialized and deserialized using C89-
compliant C-code which can execute on the ARM7 micro-
controller of the inertial measurement unit. Manual coding
of the serialization routines such as in [9] is error-prone;
all code is automatically generated from a XML protocol
definition, enabling quick addition of new message types.
The automated code generation ensures that all messages
are well-formed.

B. Quadrotor Design

The high payload capacity of 400g with a maximum
dimension of 55cm is made possible with an optimized
vehicle design and carbon composite materials. The entire
mechanical structure is fabricated from 0.5cm thick carbon
fiber sandwich sheets reinforced with an internal layer of
honeycomb material.

1) Electronics: The on-board electronics includes the px-
IMU inertial measurement unit (IMU) for camera triggering,
and on-board position estimation and control. The pxCOMex
processing board can carry any processing module that
adheres to the microETXexpress form factor. It is currently
used with a Kontron module with an 1.86 GHz Intel Core 2
Duo processor and 2 GB DDR3 RAM.

2) Frame and Propulsion: The four motors, motor con-
trollers, the on-board computer, and the IMU are mounted on
a cross-shaped carbon fiber composite frame. Two pairs of
motors rotate in the opposite direction, with the motors along
the x-axis rotating clockwise and the motors along the y-axis
rotating counter-clockwise. Each motor with its attached 8”
propeller contributes a maximum thrust of 452g, yielding a
thrust-to-weight ratio of 2:1. The camera mount holds up
to four Point Grey Firefly MV cameras with remodeled S-
mount lens holders; we use two stereo camera setups with a
5cm baseline each.

3) Attitude and Position Estimation and Control: The
IMU estimates the current attitude with a state observer filter
which predicts the gravity vector using the accelerometers,
gyroscopes, and either the magnetometer or estimated yaw
from the computer vision pipeline. The position is estimated
using a standard Kalman filter, implemented as four indepen-
dent Kalman filters following a constant speed model. These



filters each estimate the linear and angular displacements
and velocities. As the dynamics of a quadrotor are loosely
coupled in the x, y, and z directions, the quadrotor dynamics
can be modelled in these three independent dimensions
together with the yaw. Hence, the overall vehicle control
system is decomposed into four independent PID controllers
which control the x, y, and z positions and yaw angle. The
output of these controllers is the set of roll and pitch angles
along with the rotational difference δw of the two rotor pairs.
This attitude setpoint is used as the input to three PID attitude
controllers which regulate the roll, pitch and yaw angles. The
output of these attitude controllers is the orientation of the
collective thrust normal vector spanned by the four motor
thrust vectors. The additional degree of freedom (scaling of
the x vs y axis vectors) is used to control the rotational speed
around the yaw axis.

4) Operator Control Unit: We use an open-source ground
control station software called QGroundControl that we
earlier developed as part of the PIXHAWK project to monitor
and control the MAV. Figure 2 shows QGroundControl in the
data plotting mode.

Fig. 2. QGroundControl operator control unit.

III. INCREMENTAL OBSTACLE MAPPING

We compute disparity data from stereo image pairs, and
subsequently, compute a point cloud. We build a 3D virtual
scan from the point cloud data, and use this scan to update
a 3D global occupancy map. Obstacles are then inferred by
applying a cost threshold to each cell in the occupancy map.

A. Range Data from Stereo

With each stereo image pair, we use the OpenCV imple-
mentation of the sum-of-differences block matching stereo
correspondence algorithm to build a dense 320 x 240 dis-
parity map. Subsequently, we compute the depth to points in
the scene using the disparity-to-depth matrix:
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where (i, j) are the image coordinates of the pixel, d is the
disparity, (cx, cy) are the coordinates of the principal point
of the camera, f is the focal length, b is the baseline, and
[x y z]

T
= 1

W [X Y Z]
T are the world coordinates of the

pixel relative to the camera coordinate system. The values of
cx, cy , f , and b are obtained from an one-time calibration.

B. 3D Virtual Scan

Since a typical point cloud built from stereo range data is
very dense, it is not computationally feasible to process each
point. In addition, the point cloud has a significant number
of outliers. Hence, we downsample the data and remove
outliers by building a 3D spherical grid centered on the MAV
and taking the median of the range readings located in each
spherical cell; a virtual ray is defined as extending from the
MAV to that median point. We then define a virtual scan as
a set of virtual rays; each ray r(θ, ϕ) records the distance
to the obstacle it first hits where θ is the elevation angle
and ϕ is the azimuth angle. An example of a virtual scan
is shown in Figure 3. Since we treat a stereo camera as a
multi-beam sensor, the virtual scan structure is a natural data
representation for efficient downsampling with minimal loss
of information.

Fig. 3. An image of the scene with a corresponding visualization of the
point cloud data and virtual scan.

C. 3D Occupancy Map

We use a modified version of the octree-based 3D map
structure [10] to represent the MAV’s environment; the 3D
map is aligned to the world coordinate system. Each cell
in the map represents the log odds of the probability of
occupancy given the measurements z1, ..., zt:

L(mx,y,z|z1:t) = log
p(mx,y,z|z1:t)

1− p(mx,y,z|z1:t)
(2)

where mx,y,z is a binary variable indicating whether the cell
with coordinates (x, y, z) is occupied. We update the cells
which the virtual rays traverse across using the update rule:

L(mx,y,z|z1:t) = L(mx,y,z|z1:t−1) + L(mx,y,z|zt) (3)

where L(mx,y,z|zt) is the inverse sensor model that accounts
for the uncertainty inherent in stereo range data at varying
distances. We determine whether a cell is an obstacle by
recovering its occupancy probability from the log odds value
and performing a simple threshold on the probability.

The multi-resolution sampling and compact size make
the map represention a natural fit for MAVs with limited
computational resources. A lossless compression method



converts the map structure to a binary stream which is then
transmitted through the middleware to the path planner.

IV. INCREMENTAL PATH PLANNING
Our path planner searches for a path from the current

position of the MAV to an user-defined goal in 3D state
space (x, y, z). In this paper, we assume the MAV to be a
holonomic vehicle, and hence, we do not include the roll-
pitch-yaw in the state vector.

A. State Lattices
We use the state lattice concept [11] to decouple the

path planning problem into two distinct subproblems: vehicle
mobility constraints and graph search. Within our state lattice
of resolution 0.25m, a trajectory is discretized into a set of
motion primitives which can be computed offline: one factor
that improves the efficiency of our path planner. Figure 4
shows an example of a control set with 3D motion primitives.

Fig. 4. A control set with 26 motion primitives.

To determine the cost of a motion, we add the costs of
the cells in the motion’s swath. A swath is the set of map
cells occupied by the MAV’s volume during the motion, and
is precomputed for each motion primitive. This method is
more efficient than the widely-used method of simulating the
motion to check which cells the MAV can safely traverse.

B. Graph Search
For graph search, we use an anytime replanning search

algorithm called Anytime Dynamic A* (ADA*) [12]. At the
beginning, ADA* quickly computes a suboptimal path to
the goal, and continually improves the bound on the initial
solution based on available planning time. The heuristic
inflation factor ε is the key; as shown in Figure 5, by
decreasing the inflation factor, the solution improves in terms
of optimality but more states are explored.

Throughout the planning process, ADA* uses the same
search tree. Furthermore, ADA* incrementally repairs the
current path in response to new obstacles that have just
been observed. We use an admissible and consistent heuristic
required by ADA* to guide the search: the cost of a path from
the MAV to the goal given an obstacle map. We calculate
the path cost via Dial’s implementation of Dijkstra’s search
algorithm [13].

V. IMPLEMENTATION
We focus on autonomous flight at a fixed height in a lab

environment and discuss the details of the implementation
used to achieve this autonomy.

(a) ε = 2.5 (b) ε = 1.0

Fig. 5. Any computed path can be decomposed into motion primitives.
ADA* gradually improves the computed path over time by decreasing the
heuristic inflation factor.

A. Pose Estimation

We estimate the MAV’s pose using either our artificial
feature-based localization software or a Vicon motion capture
system. The feature-based localization [14] tracks unique
ARTK markers [15] with known positions on the ground
using downward-pointing cameras and estimates the pose
of the camera; we apply a coordinate transform to find the
MAV’s pose. In our Vicon motion capture system, strobe
units reflect infrared light off small retro-reflective markers
attached to the MAV. Camera units use the reflectance
information to compute the image positions of the reflected
markers, and subsequently, the MAV’s pose.

B. Obstacle Mapping and Path Planning

We use a virtual scan resolution of 0.5◦ in our obstacle
mapping. For path planning in a state lattice, we use a control
set with 16 motion primitives, all of which lie on the same
z-plane. Every planned path maintains a minimum safety
clearance of 1m from obstacles.

Fig. 6. Our control set implementation contains 16 motion primitives.

On the MAV platform, both the obstacle mapping and path
planning software run at approximately 10 Hz.

VI. EXPERIMENTS AND RESULTS

In one set of experiments, we placed an obstacle directly
between the MAV and a designated goal. A snapshot of
the obstacle mapping process is shown in Figure 7. The
MAV was able to plan a path around the obstacle as shown
in Figure 8; blue cells denote obstacles, red cells denote
locations in close proximity to obstacles and which are not
considered safe for the MAV, and yellow cells represent
states that the MAV has yet to explore. For other cells, the
grayscale color indicates the cell cost; the more white the



Fig. 7. The chessboard and the chair as seen on the left are marked as
candidate obstacles in the virtual scan shown on the right.

cell, the closer the cell to the goal. The planned path is
marked in green.

Fig. 8. A visualization of the path planning in progress.

Another set of experiments demonstrates the path planning
algorithm adjusting the MAV’s path when unseen obstacles
are detected. In Figure 9, the top image shows the obstacle
configuration, the middle image illustrates the initial plan
generated at the beginning of the test run, and the bottom
image illustrates the repaired path due to newly observed
obstacles. At the start, the MAV detects the row of four chairs
but does not detect the other two chairs as they are hidden
from the MAV’s view by the row of chairs. When the MAV
moves into a position where it detects the two previously
unobserved chairs, the new obstacles are added to the global
map, and the path planner repairs its path to avoid these new
obstacles.

Using the results of another experiment, we compare the
planned path to the actual trajectory of the MAV which is
shown in red in Figure 10. We observe that the trajectory
significantly diverges from the planned path at two points;
at the beginning and mid-way. Initial large PID errors occur
as a result of the MAV lifting off from the ground towards
the first waypoint; the position controller attempts to stabilize
the MAV which explains the beginning part of the trajectory.
Near the midpoint of the trajectory, the MAV’s close prox-
imity to an obstacle affects the air flow around the MAV;
the air turbulence pushes the MAV away from the obstacle.

Fig. 9. Various stages of path planning in an unknown environment.

In turn, the position controller attempts to compensate for
the resulting disturbance; the MAV slowly returns to the
trajectory before continuing to track its planned path.

The results of one experiment in which the MAV flies in
a S-curve can be viewed in the accompanying video or at
http://www.inf.ethz.ch/˜hengli/mav.mp4.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Limited on-board computing resources and the helicopter’s
3D mobility greatly motivate our work on fast obstacle
mapping and path planning methods that are able to scale



Fig. 10. Comparison of the actual trajectory with the planned path.

to large environments. We have demonstrated a standalone
system that is capable of maneuvering around obstacles in
unknown environments. Our path planning framework leaves
a small computational footprint. In addition, our presented
system provides a novel on- and off-board architecture for
autonomous and computer vision-based flight with tightly-
coupled IMU and GPS integration. This architecture facil-
itates the development of onboard computer vision algo-
rithms.

B. Future Work

As the system presented in this paper is a suitable platform
for on-board computer vision applications, future work will
focus on natural feature-based localization and mapping for
autonomous indoor and outdoor flight. The current system
load for artificial feature-based localization is 10% of the
maximum CPU capacity; sufficient capacity is available on-
board for mapping and planning. As the system design pro-
vides a precise common time base, fusion of IMU, GPS, and
vision data will be a future extension for outdoor navigation.
On a multi-system level, the lightweight MAVLink protocol
provides an ideal basis for future swarm extensions. As all
processing is done on-board and allows the vehicle to be
fully autonomous, the communications bandwidth does not
limit the number of vehicles.

Furthermore, we are working on fully extending the
MAV’s autonomous navigation capabilities to 3D space. Path
planning will be done in higher-dimensional state spaces to
obtain smooth paths that incorporate the kinematic motion
constraints of the helicopter.
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