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Abstract

In this paper we investigate shape and motion retrieval in
the context of multi-camera systems. We propose a new low-
level analysis based on latent silhouette cues, particularly
suited for low-texture and outdoor datasets. Our analysis
does not rely on explicit surface representations, instead us-
ing an EM framework to simultaneously update a set of vol-
umetric voxel occupancy probabilities and retrieve a best
estimate of the dense 3D motion field from the last consecu-
tively observed multi-view frame set. As the framework uses
only latent, probabilistic silhouette information, the method
yields a promising 3D scene analysis method robust to many
sources of noise and arbitrary scene objects. It can be used
as input for higher level shape modeling and structural in-
ference tasks. We validate the approach and demonstrate its
practical use for shape and motion analysis experimentally.

1. Introduction
Building 4D space-time representations of scenes ob-

served from multiple calibrated views is a major challenge
in computer vision, for acquisition of full 3D sequences
from images. They are relevant to many fields in research
and industry, for free-viewpoint video, automatic 3D shape
and human performance acquisition methods, virtual real-
ity and HCI applications, 3D shape matching and recogni-
tion. Efficient representations are needed, to track and build
time-coherent 3D shape geometry, analyze and acquire 3D
motion of subjects in the scene. Often such problems are
cast as an estimation of a 3D surface, wether tracked using
a 3D template[27, 8], or temporally aligned [24]. Low level
approaches exist to estimate 3D motion and help surface es-
timation and tracking, such as scene flow techniques [25] to
estimate local surface displacements, but they generally rely
on specific surface geometry or appearance assumptions for

Figure 1. Recovered dense flow and the 3D probabilistic occu-
pancy grid. The volumes are rendered with near-transparent α-
value to voxels of lower than 0.98 occupancy probability. The
motion vectors are in red. Part of t0’s motion field is magnified at
the bottom left. The cumulated point tracks over t0− t3 in blue as
on the bottom right. Best viewed in color.

scene objects. All such approaches can run into limitations
due to apparent topology changes and self-occlusion of ob-
served surfaces, inability to deal with arbitrary scenes or
objects, image noise and variability in outdoor, uncontrolled
acquisition environments. Probabilistic occupancy grids are
an interesting representation to address many of these prob-
lems because they assume little about the observed scene
and can be associated to generative models of images to
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explicitely deal with noise. They have been shown to be
particularly useful not only in computer vision [3, 1, 11],
but also in other fields such as robotics [10]. The ability
to propagate such probabilistic representations over time
is required when dealing with temporal sequences, but is
a challenging scientific problem seldom addressed by ex-
isting methods, which usually address updates of explicit
shapes or surfaces.

In this paper we propose an optimal (MAP) and efficient
solution to address occupancy grid updates. We apply this
analysis to the case of silhouette cues, but other types of
inputs could be used in the framework. To solve this prob-
lem we model the intuition that shape and motion estima-
tion are mutually helpful, and thus naturally solve the re-
sulting probabilistic problem using an iterative, EM algo-
rithm. This enables the method to cooperatively estimate a
probabilistic 3D shape representation and dense 3D scene
flow for a pair of consecutive frame-sets in the sequence.
As such, the proposed framework explores what minimal
constraints and data can be used for 3D motion analysis
from multiple views in difficult conditions, and provides a
new tool which can be used for higher level analysis such as
kinematic chain discovery, shape tracking and incremental
improvement across time.

1.1. Related works

Image-based modeling The problem of 3D shape acqui-
sition across time was first approached in a purely frame-
by-frame manner. Photocoherence [3], and wide-baseline
stereo [21] are widely useful to reconstruct surface el-
ements, but have intrinsic limitations and computational
overhead related to object self-occlusion, degraded color
inputs and often simplistic BRDF assumptions. The over-
head of these methods pays off for well-textured regions
but yields no additional information with poorly textured
data, often the case with casual clothing (e.g. Fig. 1 and
Fig. 3(2)&(3)). Silhouette-based methods [18, 19] have
complemented such techniques as they are generally fast
and robust under various types of image noise, and uncon-
venient appearance properties, such as weak texture. Most
aforementioned shape modeling approaches focus on sur-
face representations, yet alternative representations, such as
volumetric probability grids, have emerged to improve ro-
bustness to noise of various methods including photometric
space carving [3], by removing some premature hard deci-
sions on shape location. The use of such representations
with latent silhouette data has been shown to be particularly
robust for difficult, outdoor environments [11, 13, 14, 1],
a property we wish to leverage in this paper. But, to our
knowledge, no paper addresses temporal updates of proba-
bilistic occupancies from images as proposed here.

Shape tracking approaches. Recently, mesh tracking
methods have proven to be successful for time-consistent
shape acquisition and refinement. Many such methods fit
existing, fixed-topology mesh model templates [8] to image
data. These methods are however often particularized for
the case of a specific shape, usually human [27], by under-
lying geometric or kinematic assumptions. Some methods
do aim for more general surfaces and can sometimes deal
with surface topology changes [24]. To constrain surface
estimation, the methods use a variety of image cues, such as
dense optical flow [8], sparse feature matches [24]. Alterna-
tive methods exist, e.g. Cheung et al. combine voxel-based
representations with silhouette inputs, albeit in the case of
rigid or articulated objects [6]. Because of the inherent diffi-
culties and ill-posed nature of shape tracking, most methods
currently use some form of manual input or specific initial-
ization.

Remarkably, a large majority of these methods use
silhouette-based constraints to stabilize estimation, given
that real-life scenes generally provide too few reliable
sparse matches to constrain surface estimation, as noted
in [7]. In particular, some surface-tracking methods actually
use silhouette data alone [27], a testament to their constrain-
ing power, which we wish to leverage in our method. Also,
the vast majority of 4D shape tracking methods has only
been tested in completely controlled environments, where
silhouettes and features are easy to obtain. This suggests the
large difficulty in using them with uncontrolled inputs and
outdoor acquisitions. These methods could thus potentially
benefit from our probabilistic analysis, which can produce
results outdoors with no geometric assumptions about the
scene, to constrain or initialize mesh motion estimates.

Scene flow approaches The method we propose is related
to scene flow approaches. These methods compute motion
fields associated to various shape representations including
voxels [25], level sets [20], stereo disparity maps [28], sur-
fels [5], or meshes [8]. Scene flow approaches require ad-
dressing self-occlusion as they estimate surface properties.
This is often dealt with by assuming an underlying surface
representation is already computed [25, 8] or built simul-
taneously [20]. A large family of scene flow methods rely
on the estimation of spatial derivatives of the image sig-
nal, and rely on restrictive BRDF assumptions are used for
method simplicity. As noted in [22], flow-based approaches
are generally limited to small displacements, as a conse-
quence of finite difference approximations of derivatives.
6D carving of spatiotemporal voxel pairs based on photo-
consistence and bounded voxel motion assumptions is an
alternative [26], but leads to combinatorial searching. Re-
cent methods such as [20] address BRDF and derivative ap-
proximation related issues, but require high computational
complexity algorithms to estimate a surface model and still



strongly rely on high texture content to produce good re-
sults. Our flow analysis solves a similar yet new problem,
with two key differences and contributions: (1) solving the
flow problem in a 3D volume rather than a 2D manifold
to improve robustness, genericity and deal with occupancy
grid updates; (2) use of different cues obtained from silhou-
ettes exclusively, while showing that usable information can
still be obtained, including in the case of degraded inputs
and difficult, low-textured subjects.

1.2. Overview

We cast the problem as the simultaneous registration
and probability update of two time-consecutive occupancy
grids. Our formulation and assumptions (§2) are analog to
probabilistic interpretations of 2D optical methods [23] ex-
tended to 3D volumes and silhouette inputs. In particular
we only use the spatial continuity of the motion field as reg-
ularization. Initialization is automatic and no specific kine-
matic or structural assumptions are used. Shape and mo-
tion are jointly estimated with an Expectation Maximization
algorithm (§3), which alternates between estimating voxel
occupancy probabilities in the E-step (§3.1), and finding a
motion field best estimate in the M-step (§3.2). Discretizing
motion possibilities casts the M-step as a multi-label MRF,
which we efficiently solve using a coarse-to-fine approach
allowing large displacements (§4). The method is validated
on several indoor, outdoor, and synthetic datasets (§5).

2. Problem Formulation

Figure 2. Overview of main statistical variables and geometry of
the problem. GX is the occupancy at voxel X .

We represent the scene with a 3D lattice of points in
space (Fig. 2), denoted as X . At time t, we observe a set
of images I, specifically I1, · · · , In from n camera views
with known projection matrices. We associate to each point
X ∈ X a binary occupancy state, empty or occupied, de-
noted by GX ∈ {0, 1}. The conjunction of all grid states is
noted G. We shall use the previous grid state from time t−1
given a certain time discretization, noted Ĝ. The motion of
matter from t− 1 to t is represented by a displacement field
D. Specifically, we associate to each pointX the vectorDX

that displaces matter from location X − DX to X between

time t−1 and t. Since no surface representation is used, we
assume the motion field is defined everywhere in space.

2.1. Expected properties

As the intent is to estimate the physical motion of ob-
jects underlying to the probability grid, continuity of the
motion field should be encouraged for probably occupied
regions, and is indifferent in probably empty regions. To be
physically correct, the motion field should generally regis-
ter the two object instances at t − 1 and t. In practice this
translates in our model to a propagation probability term
p(GX |ĜX−DX

) (see §2.2) that favors mapping a probably
occupied voxel at t − 1 to a probably occupied voxel at t.
This does not necessarily mean it should only map voxel
pairs with exact probability values: occupancy probabilities
are not equivalent to a physical opacity measure. Note that
the estimated probability of voxels at t intuitively depends
on the silhouette cues in images at t, but should also depend
on probabilities of voxels mapped at t − 1 to allow tempo-
ral filtering of occupancies. Thus a given choice of motion
field influences the resulting occupancy probabilities, and
vice-versa, naturally leading to an iterative EM formulation.

2.2. Joint Distribution

The relationship between the different factors of the sys-
tem can be modeled by the joint probability of the variables:
p(ĜGDI), which we decompose in Eq. (1) with the follow-
ing intuitions: occupancies G only depends on the displace-
ments D and previous occupancies Ĝ. To predict images I,
only occupancies G at time t are needed. We more specif-
ically assume conditional independence of voxel occupan-
cies GX given the knowledge of DX and the previous oc-
cupancy before displacement, ĜX−DX

. This is analog to
classic 2D optical flow formulations and their probabilis-
tic interpretation given in [23], where pixel observations are
predicted given only the optical flow vector at this pixel and
the color of the previous frame’s displaced pixel. Also, we
assume that pixels to which a voxel center X projects have
silhouette measurements that can be independently associ-
ated to that voxel. Thus no dependencies between voxels
of the same viewing line need to be considered, which is
completely analog to deterministic silhouette-based meth-
ods. Additionally assuming conditional independence of a
voxel X’s pixel measurements given the knowledge of the
voxel’s state GX , we can express p(ĜGDI) as a product
over the voxels, images and pixels:

p(D)
∏
X

(
p(ĜX−DX

)p(GX |ĜX−DX
)
∏
i

p(IiPX |GX)

)
,

(1)

where i is the camera view index. IiPX is the color of X’s
pixel projection in image i. For convenience, we later de-



note time t’s measurement term Φ(GX) =
∏

i p(IiPX |GX).
The term p(D) models the prior over the 3D motion field,
used to regularize the field as described in §3.2. As we as-
sume probabilistic inference information is already avail-
able for the previous time step t− 1 for ĜX , we treat ĜX as
a latent variable of our problem. This enables to retain the
probabilistic information p(ĜX) from t−1 by marginalizing
out ĜX in all subsequent inferences.

3. Estimating 3D Motion and Occupancy
To solve the estimation problem we focus on estimating

the Maximum A Posteriori (MAP) of p(D|I), treating D as
our parameter set and G as our latent variable set. While EM
was intially conceived for maximum likelihood problems,
we need to use the MAP-EM generalization to incorporate
a prior over D, necessary to model motion field continuity.
MAP-EM was shown to have identical convergence proper-
ties as EM [9]. The MAP-EM’s goal is to find the optimal
motion field d∗ such that:

d∗ = argmaxD P (D) with P (D) = p(D|I). (2)

This goal is to be achieved iteratively starting from an
initial guess d0, by building a sequence of motion field es-
timates d0, d1, · · · , d∗ which increase the log-posterior ob-
jective function P (D), i.e. P (d0) ≤ · · · ≤ P (d∗) (M-Step).
This is usually obtained at each step by maximizing a lower
bound of P (D), whose maximum coincides with an analyt-
ically simpler function Q(D|dk) defined as follows [9]:

Q(D|dk) = EG|I,dk{ln p(I,G,D)}

=
∑
G
p(G|I, dk) ln p(I,G,D). (3)

The E-step first evaluates p(G|I, dk) of Eq. (3), i.e. the
grid occupancy probabilities given images I and the pre-
viously predicted displacement dk. Then, the M-Step ob-
tains the next motion field estimate dk+1 by maximizing
Q(D|dk) which garantees an increase of the log-posterior:

M-Step: dk+1 = argmaxD Q(D|dk). (4)

3.1. E-step: Occupancy Probability Update

In order to compute voxel probabilities at a given EM it-
eration, we need to express p(G|I, dk) in terms of the joint
probability distribution (1). We use Bayes’ rule (5) and
refactor the summations (6) to depending terms, with ∝ de-
noting proportionality up to a unit normalization factor:

p(G|I, dk) ∝
∑
Ĝ

p(ĜGdkI) (5)

∝
∏
X

Φ(GX) ·
∑
Ĝ
X−dk

X

p(ĜX−dk
X
)p(GX |ĜX−dk

X
), (6)

where
∑
Ĝ
X−dk

X

p(ĜX−dk
X
)p(GX |ĜX−dk

X
) sums possibili-

ties over occupancy states of the voxelX−dkX that has been
mapped to X through displacement dkX . For simplicity we
set p(GX |ĜX−dk

X
) deterministically: if the previous voxel

X − dkX was occupied (resp. empty), then once displaced
to X it is still occupied (resp. empty) with probability 1.
Expression (6) then becomes:

p(G|I, dk) ∝
∏
X

(
Φ(GX) · p([ĜX−dk

X
= GX ])

)
. (7)

For the purpose of providing a probabilistic shape esti-
mate, each voxelX’s probability after an E-step can thus be
identified as p(GX |I, dk) ∝ Φ(GX) · p([ĜX−dk

X
= GX ]),

the product of current observation terms at time t, with the
probability of the voxel mapped to X from t− 1.

Φ(GX) can be computed by expliciting the image forma-
tion terms p(IiPX |GX). For every pixel x in every image, we
assume the parameters B of a background model have been
learned offline from images of a quasi-static scene with no
object of interest. Thus p(IiPX |GX) can be set as follows:

p(IiPX |GX) = p(GX=0)p(IiPX |B) + p(GX=1)U(IiPX ),

where U(IiPX ) is the uniform distribution over pixel color
space, used to model the appearance of objects of interest
since we use no information about it, and p(IiPX |B) is the
probability of IiPX to be drawn from the background model
B. p(IiPX |B) can be, for instance, a Normal or Gaussian
Mixture Model distribution. The silhouette information is
latent in this representation and does not require any binary
segmentation decision.

3.2. M-step: 3D Motion Field Update

To optimize Eq. (4), we need to expand the expression
of Q(D|dk) in Eq. (3). The distribution p(I,G,D) can be
computed by marginalizing Eq. (1) over Ĝ, and simplified
similarly to Eq. (6):

p(I,G,D) ∝ p(D)
∏
X

Φ(GX) · p([ĜX−DX
= GX ]). (8)

Taking the logarithm of Eq. (8) to compute Q(D|dk),
and noting that the Φ(GX) term doesn’t depend on D, the
M-step becomes:

dk+1 = argmaxD ln(p(D)) (9)

+
∑
X

∑
GX

p(GX |I, dk) · ln p([ĜX−DX
= GX ]),

where p(GX |I, dk) is computed in the E-step (Eq. (7)).
To model 3D motion field continuity, we choose p(D) to

be a Markov Random Field. The M-step in our EM frame-
work becomes a standard first-order MRF MAP problem.



From time t to t+1, if we quantize the displacement possi-
bilities at every point to n displacement options denoted as
a label set L = {l1, · · ·, ln}, then we can rewrite Eq. (9) as
a standard graph optimization with the following energy:

EMRF =
∑
X

∑
Y ∈N (X)

EXY (lX , lY ) +
∑
X

EX(lX), (10)

where N (X) is the neighborhood system of point X in
the 3D graph. In Eq. (10),

∑
X

∑
Y ∈N (X)EXY (lX , lY )

are the binary terms, and
∑

X EX(lX) are the unary
terms. They correspond to the negative of ln(p(D)) and∑

X

∑
GX p(GX |I, d

k) · ln p([ĜX−DX
= GX ]) in Eq. (9)

respectively.
The M-step in our EM framework becomes a discrete

multi-labeling problem, with the goal of computing a label-
ing L ∈ L|X |, which assigns each grid node X ∈ X a label
from L such that the energy EMRF is minimized. Thus

dk+1 = argminLEMRF . (11)

The solution to this MRF thus provides the updated dis-
placement field in the EM iteration. We give further details
on MRF implementation in the sections below.

4. Motion Field Optimization
Because of the large state space and ill-posed nature of

the problem, and because MAP-EM has the potential to
converge to unwanted local minima, additional steps must
be taken to ensure convergence. We first review precisely
how to regularize the motion field and ensure its continuity
(§4.1). The resulting energy function can be optimized us-
ing Fast-PD approaches [17] (details in §4.2). We propose
to apply Fast-PD in a coarse-to-fine approach for method
stability, efficiency and convergence (§4.3).

4.1. Motion Field Properties

To ensure continuity of the motion field, we use the bi-
nary terms of the graph to enforce smoothness. We could
define the pairwise energy function VXY in Eq. (10) as a
distance function computing the magnitude of vector differ-
ences [12]:

EXY (lX , lY ) = λXY |d(lX)− d(lY )|0.8 , (12)

where λXY is a weighting factor, d(l) is the motion vector
that label l represents and the index 0.8 is specially chosen
to be less than one, motivated by statistics of velocity differ-
ence distribution studied for optical flow constraints [23].

However, as pointed out in [12], a more desirable pair-
wise energy term can be defined specifically to avoid overly
fluid-like deformations in the case of iterative, coarse-to-
fine approaches:

EXY (lX , lY ) = λXY |DX+d(lX)−DY −d(lY )|0.8 ,
(13)

where DX and DY are the motions that have been recov-
ered at location X and Y from previous iterations.

4.2. Fast-PD Optimization

The minimization of Eq. (10) in our M-step can be
solved by discrete graph optimization schemes. We choose
the Fast-PD approach [17], which builds upon principles
drawn from the duality theory of linear programming in or-
der to efficiently derive almost optimal solutions for a very
wide class of NP-hard MRFs [16]. Indeed this approach has
several advantages: it is faster than state-of-the-art graph
cut α-expansion methods [2] and guarantees an optimality
bound. In addition, it handles cost functions with arbitrary
pair-wise potentials, lifting the submodularity constraint of
previous approaches [15]. This gives us freedom to use
the more elaborate forms of motion field local properties
EXY (lX , lY ), such as the one we use in Eq. (13).

4.3. Coarse-to-Fine Approach

We opt for a coarse-to-fine approach and parametriza-
tion used for 3D volumetric registration in medical imag-
ing [12]. We initialize the EM with a coarse global transla-
tion registration of grids. We then embed 3D space in a 3D
B-Spline free form deformation (FFD) controlled by a uni-
form grid of sparse control points. At each chosen scale,
the MRF previously identified is solved for the control
points, and initialization for finer scales obtained by inter-
polation of the coarser scale. The control points are allowed
discrete displacements possibilities L in the cubic range
[−ds/2, ds/2] along the three axis, where ds is the control
point spacing. This avoids self-folding and constrains the
FFD to be a diffeomorphism over the volume. Addition-
ally we repeat the deformation optimization at each control
scale until it stabilizes to null displacements (in practice 4
iterations are generally sufficient) which proves more ro-
bust [12]. This also allows us to recover motions even larger
than the maximal allowed in the coarsest scale.

5. Results
Since the problem of 3D occupancy grid probability up-

dates from images has not yet been addressed, we first val-
idate our solution, using various synthetic and real world
datasets, shown in this section and the supplemental video.
All of them are challenging for 4D analysis because of
poorly textured surfaces, noise, outdoor lighting conditions,
subject occlusion and object variety. Since ground truth
motion and shape estimates are hardly accessible for real
datasets, we provide a numerical analysis of the algorithm
for synthetic datasets. Because existing 4D methods com-
pute updates and flows of 2D manifolds, comparisons are
difficult as they would require extracting and mapping a sur-
face to each technique’s particular surface estimates, which



introduces a bias. We will investigate this in future work.
For all datasets, we use a 1283 occupancy grid and three
levels of control grid with control points 11, 7 and 3 vox-
els apart respectively. The EM converges in less than three
iterations for all datasets. Our simple multi-threaded imple-
mentation takes less than 1 minute per frame for all datasets
on an 8-core CPU. Vast speedups are still possible (GPU),
as 99% of computation time is currently used to compute
graph edge weights, and 1% for actual Fast-PD execution.

5.1. Synthetic Datasets

We generate motion sequences for a single ellipsoid in
9 known camera views. The algorithm is evaluated with
different motions (translation and rotation), object shapes,
and noise levels. The computed motion is examined against
the ground truth motion in Fig. 4.

Figure 4. Synthetic dataset evaluation against the ground truth.
Each plotted dot represents the average error of all voxels inside
the ground truth ellipsoid at the frame. (a) translational motion
along and orthogonal to the major principle axis direction with var-
ious speed; (b) rotational motion of three shapes with various an-
gular speed; (c) rotational motion on image with 4 different noise
level Gaussian noises. Best viewed in color.

For translational motion (Fig. 4(a)), two directions are
tested with different velocity speeds. The motion field an-
gular error is very close to zero. The average magnitude
difference indicates that the algorithm performs best for
ranges within the coarse control grid spacing. Small mo-
tions appear to be biased toward zero by smoothness con-
straints. Motions substantially bigger than the control grid
maximum searching length are also not well retrieved.

For rotational motion (Fig. 4(b)), we plot the absolute 3D
angular error (AAE). The ellipsoid on the top has twice as
much polar radius as the middle. The bottom one has twice

as much equatorial radii as the middle. The figure suggests
that the angular motion should not to be too small. An in-
teresting fact is that when the shape is close to a sphere,
the motion ambiguity increases, and the algorithm is likely
to fail, similar to the case of the optical flow of a texture-
less self-rotating sphere. Also in future, a combination of
silhouette and stereo inputs can be tested.

We evaluate response of the algorithm to Gaussian noise
in images (Fig. 4(c)) in the case of rotation of the middle
ellipsoid of Fig. 4(b) with different variances (0, 0.01, 0.1
and 1). Smaller noise levels yield smaller result errors as
expected, but the method shows overall robustness, estimat-
ing reasonable motion solutions even in very noisy frames.
A last synthetic dataset with multiple objects moving in the
scene is also tested as shown in Fig. 3(a) and supplementary
video, illustrating the capability of the algorithm to handle
multiple object motions.

5.2. Real Datasets

Indoor BABY & SPIDER [4] and DANCER [24] are ac-
quired with 8 camcorders running at 30fps. Both BABY
and SPIDER provide manually segmented silhouettes, but
are otherwise inherently challenging. This illustrates the
ability of the method to retrieve shape and motions for ar-
bitrary shapes and rapid, self-occluded motions such as the
spider legs (Fig. 3). Indoor ROND [11] includes walking
and hand waving motion patterns. It is captured using 8
camcorders at 15fps. Due to this relatively low frame rate,
motions between frames are relatively large (some larger
than 5 voxels), but the iterative multi-scale solution we pro-
pose recovers large motions correctly. Fig. 1 and Fig. 3(2)
show the analysis of waving and walking motions in the se-
quence respectively. The motion tracks are computed by
following the computed pairwise motion fields to track the
history of some final voxels. The piece-wise linear effect
of the motion track is not an artifact of our computation,
but shows actual steps between frames, resulting from the
combination of strong arm motion and relatively low video
capture frame rate. Fig. 5 shows two slices of the occupancy
grid at two time instants in the waving sub-sequence. The
motion fields are overlaid on the probability slices, showing
the dense nature of the result.

Outdoor SCULPTURE [13, 14] is acquired with 6 cam-
corders running at 30fps. The camcorders are not color
calibrated. There are sun light changes, shadows, reflec-
tions on the metallic sculpture. Given the noisy data and
static background color models used, the computed occu-
pancy grid shown includes high voxel probabilities for un-
wanted shapes, such as a shadow volume on the ground or
sculpture, as visible in Fig. 3(3). Nevertheless, our frame-
work is able to recover a coherent shape and dense flow es-
timate in spite of these underlying geometric incoherences.
Such perturbations are likely to lead to failure of boundary-



Figure 3. 3D occupancy flow result (Best viewed in color). Six datasets are illustrated column-wise. (a) The overlaid consecutive frames
to indicate the motion; (b) the motion field on top of the respective image in (a); (c) the motion field and the occupancy probability grid
from a novel view. Fig. 1 is part of the ROND dataset. Please check the supplementary video for the complete sequence results.

Figure 5. Best viewed in color. Occupancy slices at the same
position in the volume at two time instants t0 and t2. The field is
computed on the entire volume. The hands are waving up during
the interval. 3D views are shown in Fig. 1.

based methods such as mesh tracking approaches. Fig. 6
shows the potential benefits of jointly estimating shape and
motion to improve shape estimates. If we assume perfect
silhouettes are available at time t258 (manually segmented
for the purpose of the experiment), we can help the occu-
pancy estimation at t259 and further. We apply our estma-
tion to frames t258 and t259. Occupancy probabilities at t258
act as a per-voxel prior, and clean the shadow region and re-
flection for t259 and later frames without using additional
appearance models, e.g. for shadows. This suggests the
potential for shape refinement across time of the proposed

method, and the possibility of tracking and refining a proba-
bilistic shape template while estimating dense 3D motions.

5.3. Applications

Besides shadow removal in noisy outdoor scenes, since
the method can be applied to raw data without further as-
sumptions, it can be used to retrieve motion segmentations
and kinematic characteristics of the observed objects. We
illustrate this with ROND and BABY sequences, by apply-
ing a simple EM clustering algorithm to simultaneously re-
trieve the number and parameters of sections in rigid mo-
tion and their corresponding voxels, using the displacement
fields computed by our method, as shown in Fig. 7. This
shows the potential for future that such characteristics can
be extracted from the representation, which could in turn be
reused to improve the shape estimation and motion tracking.

6. Discussion
We have explored a new direction in dense geometric and

temporal 3D analysis, and propose a low-level approach to
the problem of temporal updates of 3D occupancy probabil-
ity grids. Initial applications have been explored in the case
of silhouette inputs, but other input types (stereo, depth) can
easily be included in the measurement term Φ(GX). Exper-
iments show the viability and robustness of the approach



Figure 6. Occupancy refinement application. Column 1: the clean
t258 grid computed from manually segmented silhouettes. Column
2: automatically estimated occupancy at t259. Shadows and reflec-
tions are erroneously included due to naive automatically trained
appearance models. Column 3: refined occupancy at t259 using
the clean grid at t258 and the computed motion field between t258
and t259 of Column 4. All the occupancy and motion vectors are
only plotted for points above probability 0.98. Column 2, 3 and 4
are overlaid with images at t259. Best viewed in color.

Figure 7. Rigid motion segmentation results (best viewed in
color). Only voxels above probability 0.98 are used for this com-
putation. (a) ROND result using motion from t0 - t2; (b) BABY

result using motion from t0 - t6. Each rigid part is shown with a
specific color. The rigid motion (translation and rotation) of each
part is shown in red vectors, which explains the real motion at the
time instant properly.

with various real datasets, and outdoor conditions challeng-
ing for stereo and surface-based methods. The method is
promising and opens new possibilities and applications for
motion segmentation with no geometric model or prior, or
3D tracking, kinematic structure inference, shape estima-
tion, as our results show. Existing shape modeling and
tracking methods could use our resulting fields as a cue to
replace current 2D optical flow or sparse match inputs with-
out having to explicitly deal with occlusion-related prob-
lems associated to an explicit boundary model. New tem-
poral shape refinement schemes could be explored by using
soft shape priors or using more past observations.
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