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Abstract

The computation of relations from a number of potential
matches is a major task in computer vision. Often RANSAC
is employed for the robust computation of the relations
such as the fundamental matrix. For (quasi-)degenerate
data however it often fails to compute the correct rela-
tion. The computed relation is always consistent with
the data but RANSAC does not verify that it is unique.
The paper proposes a framework that estimates the cor-
rect relation with the same robustness as RANSAC even for
(quasi-)degenerate data. The approach is based on a hier-
archical RANSAC over the number of constraints provided
by the data. In contrast to all previously presented algo-
rithms for (quasi-)degenerate data our technique does not
require problem specific tests or models to deal with degen-
erate configurations. Accordingly it can be applied for the
estimation of any relation on any data and is not limited to
a special type of relation as previous approaches. The re-
sults are equivalent to the results achieved by state of the
art approaches that employ knowledge about degeneracies.

1. Introduction
The computation of a relation given sets of potential

matches is necessary for many computer vision applica-
tions. It is applied for example computing fundamental
matrices out of 2D-2D correspondences, projection matri-
ces from 2D-3D correspondences, and 3D homographies
from 3D-3D correspondences. The presented framework
is not limited to these applications and can also be applied
to the estimation of geometric entities like quadrics from
3D points and conics from 2D points. In such estimation
problems it is not possible to provide a set of perfect corre-
spondences due to noise in the image data and mismatches
caused by ambiguities in the feature descriptions. Accord-
ingly the computation of the relation always has to deal with
perturbed data and mismatches called outliers.

The most common technique to deal with outliers in
the matches is to employ the RANSAC algorithm [2, 7].

Figure 1. Two views of the tray scene where most matches are
on the plane (tray). Only a few matches are on the candlestick
(light gray lines). These have to be incorporated to get the correct
epipolar geometry.

It solves the two problems of computing a relation that
best fits the data and classifying the data as inliers (correct
matches) and outliers. The classification is done by employ-
ing a cost function together with a threshold. The relation
is selected as the one with the highest number of inliers or
the largest robust likelihood [2, 9].

If only degenerate data are given it is not possible to
compute the correct relation. Degeneracy means that the
data do not provide enough constraints to compute the re-
lation uniquely. Hence the relation is determined only up
to a family of relations that all explain the data. For exam-
ple, for the computation of a fundamental matrix, matches
that are on a world plane are degenerate data [3]. These
coplanar matches only provide constraints to compute a ho-
mography. Furthermore the data are often quasi-degenerate
which means most data do not provide sufficient constraints
to compute the relation uniquely (degenerate data) and only
a small fraction of the data provides the remaining con-
straints. In order to compute the correct relation this small
portion of the data has to be incorporated. Hence for quasi-
degenerate data the relation can always be uniquely defined,
but as explained in Section 3 the RANSAC algorithm has a
low probability to compute the correct relation for quasi-
degenerate data. Quasi-degenerate data for the fundamental
matrix computation can be seen in Figure 1.

The next section reviews the existing techniques for the
estimation of relations from (quasi-)degenerate data. Af-
terwards Section 3 introduces and reviews the properties
of RANSAC in more detail along with the notation used
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throughout the paper. In Section 4 we propose a framework
to robustly detect degenerate data or quasi-degenerate data
fully automatically. It selects the appropriate model for the
given data without requiring any knowledge about the de-
generacies. For quasi-degenerate data it computes the cor-
rect relation by using the small portion of the data that pro-
vide the remaining constraints in addition to the constraints
provided by the degenerate fraction of the data. Accord-
ingly it can be applied to a wide variety of estimation prob-
lems. We apply the framework to various estimation prob-
lems in computer vision namely fundamental matrix esti-
mation, projection matrix estimation, 3D homography esti-
mation, and quadric fitting in Section 5. Since the frame-
work is not limited to computer vision it can be employed
for all other linear estimation problems.

2. Previous work
The problem of estimating relations on data that con-

tain matches as well as mismatches is a problem in most
applications in computer vision. The most popular tech-
nique to deal with it is RANSAC introduced by Fishler and
Bolles [2]. The properties of RANSAC will be reviewed in
more detail in Section 3.

The problem of degenerate data for the fundamental ma-
trix computation was addressed by Kanatani [4]. Torr intro-
duced a robust extension in [8, 9]. He proposed to employ
model selection to overcome the limitations of RANSAC
with degenerate data. The goal of model selection is to
compute the model that explains the given data best by em-
ploying knowledge about the degeneracies in the presence
of outliers. Torr addressed the case of 2D-2D point corre-
spondences that are coplanar. From these coplanar matches
only a homography can be determined uniquely. The tech-
nique proposed by Torr computed a homography and a fun-
damental matrix for the data. For each of the relations a cost
function is applied that measures the robust likelihood of
the mapping for the correspondences. Additional penalties
are applied for a lower number of constraints provided by
a correspondence. For quasi-degenerate data the model se-
lection typically votes for the homography since the cost for
the homography is usually lower than the cost for the fun-
damental matrix as a result of the small number of off-plane
inliers. These non-degenerate inliers are outliers to the ho-
mography but their small ratio in the data only slightly in-
creases the cost for the homography. Hence due to the bet-
ter cost of the homography and the fact that each element
determines two degrees of freedom it is still cheaper for
quasi-degenerate data than the correct fundamental matrix
that has higher penalty for the lower number of constraints
determined by each match. Additionally the RANSAC for
the fundamental matrix has a low probability to compute
the correct epipolar geometry [1] as explained in the next
section. The model selection requires two RANSAC’s and

two nonlinear optimizations of the robust likelihood one for
each relation (fundamental matrix, homography).

The first RANSAC approach for computing the epipolar
geometry that can deal with quasi-planar data was recently
introduced by Chum et al. [1]. It employs the knowledge
that coplanar points are a degenerate configuration for the
computation of the epipolar geometry. The technique of
Chum et al. employs a criterion to detect degenerate sam-
ples during the RANSAC for the fundamental matrix com-
putation. It was done by examining samples that lead to an
epipolar geometry with a higher number of inliers than all
previous samples. Such a relation is expected to be a better
relation than all previous ones. Then the sample is tested for
degeneracy. If it contains too many degenerate inliers, it is
extended to contain a sufficient number of non-degenerate
inliers if those are available. For non-degenerate data the
approach [1] computes the correct epipolar geometry and
for degenerate data it chooses the appropriate model. For
the fundamental matrix computation this approach repre-
sents the state of the art. Note that it requires an explicit
test for dealing with the planar degeneracy. Later we will
show that our technique provides equivalent results without
requiring a specific test for the degeneracy which makes our
approach generally applicable to linear model fitting prob-
lems with unknown degeneracies.

Tang and Medioni [6] proposed a tensor voting based
approach that poses the problem of estimating the funda-
mental matrix as one of finding the most salient hyperplane
in an eight-dimensional space. It detects (quasi-)degenerate
data without prior knowledge but does not produce a funda-
mental matrix for these cases.

To summarize, the difference between the existing tech-
niques and the proposed algorithm is that existing tech-
niques require explicit models for the degenerate cases to
avoid the computation of ambiguous relations. In contrast
to those approaches, our technique does not require any
specific knowledge of the degenerate and quasi-degenerate
data. It detects cases of degenerate data automatically and
chooses the appropriate model. All previous techniques can
only be applied to explicitly modeled (quasi-)degeneracies
whereas the proposed technique is generally applicable.
The proposed technique will be explained in detail in the
next section.

3. RANSAC
In the following we briefly summarize RANSAC and ex-

plain its behavior for (quasi-)degenerate data as this is im-
portant to show the properties of our proposed technique.

RANSAC is employed to estimate an n-parametric rela-
tion T on the data {p}. Simultaneously it classifies the data
{p} into inliers {in} and outliers {out}. It selects m ran-
dom elements from the data {p} and computes a candidate
relation Tc from this random sample. The minimal num-
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ber m =
⌈

n
r

⌉
of elements required to compute the relation

depends on the number of constraints r provided by each
element and the number n of parameters of the relation.

To achieve a better performance RANSAC often em-
ploys linear estimation of the relation T . For a linear es-
timation we have an linear inlier function fin given by

fin(t, w) = ‖Awt‖ with w ∈ {p} (1)

where the vector t of unit length represents the relation T
and Aw is the matrix containing the data from the match
w. The matrix Aw has r linearly independent rows be-
cause each match w provides r linearly independent con-
straints. An inlier to relation T is a data point w for which
fin(t, w) < ct. In general a linear equation system is de-
fined from the inlier function fin and noise free data {p} by

Aw︸︷︷︸
A

t = 0 with w ∈ {p}, (2)

where the data matrix A ∈ IRr|{p}|×(n+1) consists of all
sub matrices Aw ∈ IRr×(n+1) induced by the matches w ∈
{p}. Hence the rows of the data matrix A contain the linear
inlier test given by the inlier function fin. The relation t is
determined as the nullspace N of the data matrix A. Hence
the data matrix should have a rank rA of at most n to obtain
a non trivial solution of (2). Accordingly the dimension rn

of the nullspace (codimension) is at least one. For noise free
degenerate data the rank rA is reduced to rd < rA as a smaller
number of independent constraints is provided by the data
and the computed candidate tc becomes ambiguous. Then
the candidate relation Tc is a member of a rn dimensional
subspace N which can be represented by the matrix N ∈
IR(n+1)×rn containing the righthand singular vectors which
are a base of the nullspace N .

After the computation of the candidate relation Tc

RANSAC applies it to all given data {p} and classifies
by thresholding (1) the data in inliers {inc} and outliers
{outc}. The random sampling is repeated until a sufficient
number of samples has been evaluated. The number of re-
quired samples S is adaptively determined by exploiting the
fraction ε = |{inc}|

|{p}| of inliers in the data of the best cur-
rently known relation and the desired probability η that a
good candidate relation has already been computed. The
standard approach consists of stopping the RANSAC when
the number of samples S is at least

S =
log(1− η)
log(1− εm)

, (3)

where m is the number of elements in the sample. After-
wards the best candidate relation, the one with the most in-
liers is delivered as relation TRANSAC which best fits the
given data. Furthermore it gives the classification of the po-
tential matches {p} as inliers {in} and outliers {out}.

In the following for (quasi-)degenerate data we will dis-
tinguish between two disjunct sets of inliers. Degenerate
inliers are those inliers that are in degenerate configuration.
These degenerate inliers do not determine all degrees of
freedom of the relation uniquely. Hence the rank of the
provided data matrix Adeg is always less than n. The set
of inliers that are not in degenerate configuration is denoted
as non-degenerate inliers. By adding the non-degenerate in-
liers the relation is uniquely determined. For the fundamen-
tal matrix degenerate inliers are all matches that are copla-
nar and non-degenerate inliers are the off-plane inliers.

Samples containing only degenerate inliers give a high
number of inliers for (quasi-)degenerate data without pro-
viding a sufficient number of constraints to compute all
degrees of freedom of the candidate relation Tc. The re-
maining constraints are determined by the outliers in the
sample or the noise in the degenerate inliers. So the ro-
bust nullspace1N has dimension rn > 1. Accordingly all
these samples contain all degenerate inliers and up to

⌊
rn
r

⌋
outliers, where

⌊
rn
r

⌋
is the number of elements that can be

arbitrarily chosen to fix the remaining rn constraints, e.g.
two for the fundamental matrix. The probability Pd,s of a
sample not providing a sufficient number of constraints is

Pd,s = 1− Pnd(
⌊rd

r

⌋
), (4)

where Pnd(
⌊

rd
r

⌋
) is the probability to choose b rd

r c non-
degenerate inliers. It is given by:

Pnd(
⌊rd

r

⌋
) =

b rd
r c∑

j=0

(
m

j

)
εj
d(ε− εd)m−j , (5)

where ε is the inlier fraction in {p} and εd is the fraction
of degenerate inliers in {p}. Accordingly the probability of
RANSAC to succeed is Ps = 1 − (1 − Pnd)S with S from
(3). Examples of the probabilities Pnd and Ps are shown in
Table 1 for common estimation problems.

Table 1 illustrates the need for an estimation that is ro-
bust with respect to (quasi-)degenerate data, since for quasi-
degenerate data the probability Ps of RANSAC to compute
a correct solution is small.

The relation Tc computed from these samples is an arbi-
trary element of a family of possible solutions for the degen-
erate data and fits the degenerate inliers perfectly. Accord-
ingly they deliver a high number of inliers without provid-
ing the correct relation Tc. Hence the adaptive termination
from (3) stops the sampling too early to have a probabil-
ity η for the computation of a correct candidate relation Tc.
It follows that the probability of RANSAC to compute the
correct relation T is significantly smaller than η.

1For a sample the data matrix Ain is the data matrix induced by only
the inliers in the sample. Then the robust nullspace is the space that has
the nullvectors belonging to singular values σi < ε with i = 1, . . . , rd of
the data matrix Ain as base.

3
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ε = 0.9 ε = 0.8

εd = 0.85 εd = 0.88 εd = 0.75 εd = 0.78

Pnd Ps Pnd Ps Pnd Ps Pnd Ps

F 3% 36% 0.5% 5% 1.4% 47% 0.3% 8%

P 2.1% 19% 0.4% 3% 1.3% 26% 0.2% 4%

H 1.6% 54% 0.7% 9% 1.4% 66% 0.3% 13%

Q 3.6% 12% 0.3% 2% 1.13% 18% 0.2% 3%
Table 1. Probability for a non-degenerate sample Pnd and a suc-
cessful estimation Ps for a RANSAC for quasi-degenerate data for
different relations (F = fundamental matrix (8-point), P = projec-
tion matrix, H=3D homography, Q = quadric).

4. RANSAC for (quasi-)degenerate data
(QDEGSAC)

The previous section showed that for (quasi-)degenerate
data the standard RANSAC approach is highly unlikely to
compute the correct relation. The model selection tech-
nique proposed by Torr [8, 9] exploited explicit knowledge
about the degeneracies of the fundamental matrix compu-
tation without overcoming the problem caused by quasi-
degenerate data. The degeneracy test proposed by Chum et
al. [1] relies on the availability of a special test for degener-
acy to handle quasi-degenerate data correctly. As discussed
in Section 2 the rank of the data matrix A can be used to
detect degenerate data if they are noise free. The computa-
tion of the rank will be disturbed by noise in the data as it
is sensitive to noise. The disturbance results in small sin-
gular values. Hence it is still possible to estimate the rank
by using an appropriate threshold on the singular values. If
a sample contains degenerate inliers and outliers the latter
increase the rank of the data matrix. That means the rank of
the data matrix appears to be equal to the expected rank for
the non-degenerate case. So the ambiguity can not be de-
tected by analyzing the singular values of the data matrix.

In this section we will propose a new framework
QDEGSAC that employs RANSAC to compute the correct
solution including model selection for the given data. The
advantage of the novel framework is that it does not require
any specific knowledge about the degeneracy, in particular
no test is required to detect degenerate samples. Accord-
ingly it can be applied to a wide variety of estimation prob-
lems not only to those where the degeneracies are known.

Our proposed framework can be interpreted as a robust
measurement of the rank rA of the data matrix A provided
by the inliers. It detects automatically and robustly the
higher codimension for (quasi-)degenerate data. For degen-
erate data it selects the right model to represent the data. If
the data are quasi-degenerate the novel technique efficiently
searches for additional inliers among the initial set of out-
liers to provide the highest possible rank rA of the data ma-
trix A.

The proposed framework consists of three phases as

Figure 2. Overview of the robust algorithm for model selection and
robust nullspace detection.

shown in Figure 2. The first RANSAC estimates the full
model assuming that the data are not degenerate. The clas-
sification of the data into inliers {inn} and outliers {outn}
of this process is used for the next two phases. On the inliers
a test for the number of constraints provided by the inliers
{inn} is performed. This step is denoted as model selection
in Figure 2. The model selection is the robust rank detec-
tion in the framework. Afterwards the model completion
tests the outliers of the previous phases for non-degenerate
inliers to compute the correct relation. In the following we
will discuss the details of each phase.

RANSAC A general RANSAC(n) is performed to com-
pute the desired relation T with n-degrees of freedom. De-
pending on the number n of degrees of freedom of the re-
lation T it will take at least m =

⌈
n
r

⌉
elements to com-

pute the n degrees of freedom. The required number of
elements m depends on the number r of constraints that are
provided by each element. From those samples the data
matrix As is constructed and used to compute the relation.
The RANSAC(n) delivers a relation TRANSAC,n employ-
ing n constraints and a classification of the set of potential
matches {p} in inlier {inn} and outlier {outn}. These sets
are tested in the following two phases.

For only degenerate data in the sample the codimen-
sion rd is greater than one. This is a result of the insuffi-
cient number of constraints provided by the data. In case
of quasi-degenerate data in the sample the codimension rd

is one. For degenerate data and outliers in the sample the
codimension is also one as the outliers provide the remain-
ing constraints. All samples that contain only degenerate
data or degenerate data and outliers commit a high num-
ber of inliers as explained earlier. Accordingly the relation
TRANSAC,n delivered by the RANSAC(n) does not have
probability η to be the correct relation. So often not all
degrees of freedom of the relation TRANSAC,n are fixed

4
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through constraints provided by inliers, since those con-
straints result from noise in the degenerate inliers or from
outliers. Please note for non-degenerate data RANSAC(n)
will deliver the correct relation T as the codimension rd is
one with a probability depending on the confidence thresh-
old η. The idea of the proposed framework is to detect ro-
bustly the case where the codimension rd is larger than one.

Model selection To determine the codimension a se-
ries of RANSACs is performed to estimate relations
TRANSAC,dim with a smaller number of constraints dim <
n. It starts with a RANSAC(n− 1) that lowers the number
of constraints n employed for computation of the relation
TRANSAC,n by one. That means it determines the relation
TRANSAC,n−1 by employing the closest rank n−1 approx-
imation for the data matrix As of each sample. Accordingly
RANSAC(n − 1) also uses a smaller number of elements
m̃ =

⌈
n−1

r

⌉
≤ m in each sample than RANSAC(n) does.

The set of potential matches for RANSAC(n− 1) is the set
of inliers {inn} of the first RANSAC(n). It determines for
those inliers {inn} if they can be represented by all rela-
tions in the nullspace of the resulting equations.

The evaluation for each potential match in {inn} em-
ploys the inlier criterion of RANSAC(n) to check if it is an
inlier to all relations in the nullspace. The following theo-
rem gives a necessary and sufficient condition to test this.

Theorem 1 (Inlier to all relations in nullspace) Given a
data matrix A its rd-dimensional robust nullspace defines
a set of relations N . If an inlier w is an inlier to all rela-
tions Nj with j = 1, . . . , rd in an orthogonalbase of N with
cost ‖AwNi‖ = ci then its cost is bound by

√∑rd
i=1 c2

i for
all relations t ∈ N .

proof: Each relation t in the robust nullspace of A can be
written as a linear combination of the base vectors Nj with
j = 1, . . . , rd. The transformation t is defined by t = Nn
where N is the matrix containing the base vectors Nj and
n is the unit vector that contains the weights for the base
vectors. Then the maximal possible cost ‖Awt‖ is the max-
imum eigenvalue of Aw because ‖t‖ is one. The cost cw of
the inlier w to a relation t ∈ N is

c2
w = nT NT AT

wAwNn ≤
rd∑

i=1

c2
i ,

because NT AT
wAwN is positive semi-definite its maximal

eigenvalue is positive and bound by its trace. The trace is
given by

∑rd
i=1 NT

i AT
wAwNi =

∑rd
i=1 c2

i .�
Theorem 1 shows that the squared algebraic error is

bound by the sum of squared algebraic errors observed for
the relations in the base of the nullspace N . This means we
can decide for each match w if it is an inlier to all relations
t ∈ N by only computing rn errors. In practice the ci are of-
ten similar, i.e. c2

w is practically bound by maxi c2
i and not

by
∑rd

i=1 c2
i . The geometric error behaves similar to the al-

gebraic error for normalized data. So it can also be used for
the decision. For the experiments from Section 5 the results
of the geometric and the algebraic error were equivalent.

RANSAC(n − 1) tests for all inliers {inn} of the re-
lation TRANSAC,n if they are also inliers to all relations
in the robust nullspace of the data matrix A. So if a re-
lation TRANSAC,n−1 with fewer parameters receives suffi-
cient support, indicated by the number of inliers {inn−1}
divided by the number of inliers {inn} of the originally
computed relation TRANSAC,n, then it follows that the data
did not provide a sufficient number of constraints to deter-
mine the n degrees of freedom of TRANSAC,n. If the rela-
tion does not have sufficient support in the inliers {inn},
the data {inn} provided n constraints. The process of
reducing the number of constraints exploited to compute
the relation TRANSAC,n−1 is continued until the relation
TRANSAC,n−i does not have a sufficient support in the in-
liers {inn}. Sufficient is determined by tred as ratio of the
inliers {inn−i} of RANSAC(n − i) to the inliers {inn} of
the first RANSAC(n). As we will see later, the technique is
not sensitive to the ratio tred and it can be safely chosen in
a range of 50%− 80% without significant impact.

If a relation that cannot represent the inliers {inn} is
found the appropriate model for the inliers {inn} has been
computed in the previous step i−1. It has n− i+1 degrees
of freedom and respectively a codimension of i − 1. The
successive reduction of the number of constraints used to
compute the relation determines how many constraints are
delivered by the inliers {inn}. At this point the model se-
lection is finished and the model is the relation family that is
orthogonal to the constraints provided by the inliers {inn}.

The computational cost of each of the RANSACs ex-
cept from the last is smaller than the cost of the first
RANSAC(n). It results from the fact that the set of potential
matches is the set of inliers {inn} of the first RANSAC and
the inlier fraction is comparably high for degenerate data. It
follows from (3) that the number of steps as well as the num-
ber of evaluations needed to decide between outliers and in-
liers is lower than for the first RANSAC(n). So the compu-
tation is less than i-times the cost of the first RANSAC(n).

The computationally most expensive RANSAC is the
RANSAC(n− i) that can not find a relation that represents
the inliers of RANSAC(n). It requires Sn−i iterations ac-
cording to (3), with

Sn−i =
log(1− η)

log(1− tqred)
with q =

⌈
n− i

r

⌉
. (6)

The threshold tred influences the runtime of RANSAC(n−
i) as it is the minimum required inlier ratio. According to
(6) the RANSAC(n − i) needs a significant number of tri-
als to prove that the inliers are not supported by a relation
computed by employing n− i constraints.
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Model completion After finishing the model selection
for quasi-degenerate data it is still possible to find the cor-
rect n-parametric relation employing data that is not cov-
ered by the selected model. This data is usually only a small
fraction of the data {p}. Accordingly the low probability
to select those non-degenerate inliers often leads to an am-
biguous relation TRANSAC,n during the RANSAC(n). The
model selection provides a restrictive model which classi-
fies the data {p} into degenerate inliers {ins} and outliers
{outs}. The degenerate inliers {ins} provide a data matrix
Adeg . The model completion uses the closest rank n− i+1
approximation of Adeg and extends that with the Aw ma-
trices coming from a RANSAC with samples of size d i−1

r e
from the outliers {outs}.

To summarize, the novel framework first performs a
RANSAC to find a transformation that explains the data.
Afterwards the codimension of the data matrix from the
inliers is estimated robustly. It determines a larger codi-
mension for degenerate data even if outliers determine free
constraints. Finally the framework inspects the data for in-
liers that provide the remaining constraints to compute the
n-degrees of freedom of the relation T .

5. Experimental results
In this section we apply our novel framework to

various estimation problems in computer vision. First
the estimation of the epipolar geometry is shown for
(quasi-)degenerate data. Afterwards the estimation of
the camera projection matrix, the estimation of 3D ho-
mographies as well as the estimation of quadrics for
(quasi-)degenerate data are discussed.

The QDEGSAC technique was tested on three images of
the tray scene, two of which are shown in Figure 1. The
365 potential point triplets were established with the wide
baseline SIFT-feature matching technique of [5]. It contains
337 matches on the dominant plane (tray). Only 11 matches
are off-plane on the candlestick. The latter matches have to
be employed to compute the correct relations.

Fundamental matrix estimation The estimation of the
epipolar geometry with QDEGSAC is discussed in the fol-
lowing. QDEGSAC uses a linear eight point algorithm for
the estimation of the fundamental matrix [3]. For all exper-
iments we assume an algebraic error comparable to an aver-
age distance of 1.5 pixel to the epipolar line in the image for
inliers. The threshold tred for sufficient inlier support was
set to 70% and probability η for a good RANSAC solution
was set to 99%.

First we tested QDEGSAC on the tray scene shown in
Figure 1. For the tray scene the predicted probability of
computing the correct epipolar geometry with RANSAC
is Pnd = 1.7% and the probability Ps of a successful
RANSAC is Ps = 12%. For the eight point algorithm the
codimension is three for coplanar matches [3, page 281]. in-

stead of one. Hence the computed relation has six linearly
independent constraints. Figure 3(b) shows one example of
a wrong epipolar geometry computed by RANSAC(8) due
to degenerate data. The epipolar geometry computed by
QDEGSAC is shown in Figure 3(a).

(a) (b)
Figure 3. (a) Correct epipolar geometry computed by QDEGSAC
valid for all points on the plane and on the candlestick. (b) Epipo-
lar geometry computed by RANSAC only valid for points on the
candlestick (plane).

The QDEGSAC algorithm was executed one hundred
times on the potential matches to compute the epipolar ge-
ometry. For the 11 not coplanar matches the number of de-
tections as inlier was counted and are shown in Figure 4(b)
as well as the number of inliers for the models with different
number of employed constraints. The evaluation shows that
the QDEGSAC always found the correct solution in con-
trast to the traditional RANSAC that had success in 17%
of the runs. Furthermore it always detected the six linear
constraints provided by the degenerate inliers. Figure 4(a)
shows that the framework is not sensitive to tred which was
overruled for the chart. The range of tred could be between
20% and 80% without influencing the result.

QDEGSAC needs for this scene about 4-7 trials in the
first RANSAC(8). The RANSAC(7) and RANSAC(6) need
together 4 trials according to the high inlier probability in
{in8}. The unsuccessful RANSAC(5) needs 26 samples
according to (3) and tred = 70%. The RANSAC for model
completion needs up to 28 samples. For non-degenerate
data the required overhead would have been 54 RANSAC
samples for an unsuccessful RANSAC(7).

The problem of the estimation of the fundamental matrix
from (quasi-)degenerate data has been addressed in the past.
Two well known approaches were introduced by Torr [8, 9]
and recently by Chum et al. [1]. The technique proposed by
Chum et al. was tested on the data shown in Figure 5(b).

In [1] Chum et al. determined the rate of detection for
the off-plane inliers in one hundred runs. The detection
rate of their algorithm is shown in Figure 6(b). The pro-
posed QDEGSAC algorithm was tested on the same set of
matches and the detection rate is also shown in Figure 6(b).
The comparison shows that QDEGSAC achieves the same
results as the technique from Chum et al. [1] without incor-
porating any knowledge about the degeneracy. The com-
puted epipolar geometry for the box scene is shown in Fig-
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(a) (b)
Figure 4. (a) Number of inliers (y-axis) for models with differ-
ent number of employed constraints (x-axis), here Tred was zero.
Number of inliers for six used constraints shows stacked the addi-
tional inliers found by QDEGSAC. (b) Number of classifications
as inlier for off plane inliers for 100 QDEGSAC executions.

(a) (b)
Figure 5. Example from [1] of a scene that mostly contains fea-
tures on one plane (ground plane). (a) Off plane inliers used by
QDEGSAC to compute the correct epipolar geometry. (b) correct
epipolar geometry computed by QDEGSAC.

ure 5(a)-(b).

(a) (b)
Figure 6. (a) Number of inliers (y-axis) for models with differ-
ent number of employed constraints (x-axis). Number of inliers
for six used constraints shows stacked the additional inliers found
by QDEGSAC. (b) Comparison for detection of the off plane in-
liers on the can (RANSAC dotted line, DEGENSAC dashed line,
QDEGSAC solid line).

The model selection of Torr tests for coplanar matches
for which a homography is computed. Otherwise the fun-
damental matrix is computed. For the decision the GRIC
criterion [8] is employed. We computed the GRIC for both
transformations on the tray scene. The GRIC GRICF for
the fundamental matrix was computed for the fundamen-
tal matrix computed by the first RANSAC(8) in the frame-

work and was GRICF = 250.27 for the potential matches
{p}. The GRICF is only slightly decreased for the correct
epipolar geometry as expected. The GRIC for the homog-
raphy was GRICH = 45.12. Hence the model selection
would always decide on a homography for the tray scene
whereas our framework is able to compute the epipolar ge-
ometry without knowledge about the potential degenera-
cies. Therefore, while [8] works well for degenerate data, it
can not deal with quasi-degenerate data.

Projection matrix estimation The linear estimation of
the projection matrix also suffers under 3D points lying on
a 3D world plane. The techniques proposed in [1, 9] can
be extended to detect coplanar points which is one of the
known degenerate cases. Dealing with 3D points on a world
plane for the linear estimation of the projection matrix is
important as linear estimation is often employed to initialize
non-linear techniques. In this section we apply the novel
framework for the linear estimation of the projection matrix.
The experiments used the tray scene from Figure 1.

The 3D points are triangulated from the first two images
of the scene. The projection matrices of the first two cam-
eras where deduced from the fundamental matrix estimated
employing our novel frame work. Afterwards the 3D points
are triangulated for all matches. These 3D points where
used to estimate the projection matrix of the third view.

To evaluate the performance of the novel technique we
perform 100 estimations on the 2D-3D matches and count
the number of detections for the off plane inliers (on the
candlestick). The detection rates are shown in Figure 7.

(a) (b)
Figure 7. (a) Number of inlier (y-axis) as a function of the num-
ber of employed constraints (x-axis) for the computation of P.
(b) Comparison of detection rates (y-axis) for QDEGSAC and
RANSAC for the off plane inliers on the tray scene

It can be seen that the estimation employing the
new framework overcomes the problem of the traditional
RANSAC. The off-plane inliers are always detected as in-
liers and the estimated projection matrix is always cor-
rect. The reprojection errors for QDEGSAC and traditional
RANSAC are shown in Figure 8.

The new proposed framework always detects the greater
codimension of the data matrix of four instead of one. The
detection is robustly performed regardless of the projection
matrix extracted in the first RANSAC. The tests with the
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(a) (b)
Figure 8. (a) reprojection error for the projection matrix estimated
with QDEGSAC (b) reprojection error of a RANSAC solution for
the projection matrix.

projection matrix show that our proposed framework detects
the case of degenerate data robustly and always computes
the correct projection matrix in contrast to the traditional
RANSAC which only computes it in 27% of the runs.

3D homography estimation The proposed framework
is also applied to the linear estimation of a 3D homogra-
phy that maps 3D points to 3D points. We apply it again
to the tray scene from Figure 1 to establish two projectively
skewed scenes. The first scene is triangulated from view
one and view two, and the second scene was established
from the second view and the third view. The coplanar
points are also a degenerate configuration for the compu-
tation of the 3D homography. The proposed framework
showed a similar behavior for detection of off-plane in-
liers as for the estimation of the fundamental matrix and
the projection matrix for one hundred runs of QDEGSAC.
The graph for the measurements is not included due to
the lack of space. The framework detects the eleven de-
grees of freedom provided by the degenerate inliers on the
plane. Afterwards the four missing constraints provided
by the non-degenerate inliers are used to compute the cor-
rect 3D homography. In one hundred runs the traditional
RANSAC was successful in about 13% of the runs whereas
QDEGSAC always computed the correct 3D homography.

Quadric estimation The previous paragraphs evalu-
ated the novel framework on the estimation of relations
frequently employed in computer vision applications. The
linear estimation of quadrics from 3D points is also done
with the framework. It is done for a quadric defined by
two planes. Most potential matches are on one plane and
only 2% of the potential matches {p} are on the second
plane. The latter have to be employed to determine the
quadric uniquely. The given 1000 potential matches con-
tain 88% degenerate inliers and 10% outliers. The degener-
ate and non-degenerate inliers are disturbed with Gaussian
noise with a standard deviation 2% of the bounding box.
We observe a similar behavior for the detection of non-
degenerate inliers in one hundred QDEGSAC runs as for
all previous experiments. The traditional RANSAC only
computed the correct quadric once in one hundred runs
whereas QDEGSAC always computed the correct quadric.

QDEGSAC always detected the reduced rank of six instead
of nine of the data matrix.

6. Conclusion
We have introduced a new framework for the robust com-

putation of a relation from (quasi-)degenerate data. The
framework simultaneously classifies the data into inliers
and outliers with regard to the relation. The novel tech-
nique evaluates the computed model in contrast to tradi-
tional RANSAC. For degenerate data an appropriate model
is chosen. For quasi-degenerate data the small fraction of
the data that provides the necessary additional constraints
is identified. Accordingly the computation does not suffer
from ambiguities. We also show the wide field of appli-
cations of the framework. Finally we compare our tech-
nique with the existing techniques for the special case of the
fundamental matrix computation. This comparison showed
that our approach performed as well as the state of the art
while being more generally applicable.
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