
This is a preprint for the paper accepted for publication in ICCV 2015. c©2015 IEEE

Non-Parametric Structure-Based Calibration of Radially Symmetric Cameras

Federico Camposeco, Torsten Sattler, Marc Pollefeys
Department of Computer Science, ETH Zürich, Switzerland
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Abstract

We propose a novel two-step method for estimating the
intrinsic and extrinsic calibration of any radially symmetric
camera, including non-central systems. The first step con-
sists of estimating the camera pose, given a Structure from
Motion (SfM) model, up to the translation along the optical
axis. As a second step, we obtain the calibration by find-
ing the translation of the camera center using an ordering
constraint. The method makes use of the 1D radial cam-
era model, which allows us to effectively handle any radi-
ally symmetric camera, including non-central ones. Using
this ordering constraint, we show that the we are able to
calibrate several different (central and non-central) Wide
Field of View (WFOV) cameras, including fisheye, hyper-
catadioptric and spherical catadioptric cameras, as well as
pinhole cameras, using a single image or jointly solving for
several views.

1. Introduction

Recently, cameras with a wide field of view (WFOV)
such as fisheye and omnidirectional cameras are starting to
become more and more popular. Due to their ability to ob-
serve a large portion of the scene, using WFOV cameras
is advantageous for 3D computer vision tasks such as the
precise camera tracking that is done as part of visual nav-
igation for robots and autonomous vehicles. At the same
time, action cameras with WFOV such as the GoPro Hero
are widely used. Similarly, camera mounts for mobile de-
vices that enable them to take panoramic images, e.g., using
a catadioptric lens, are becoming more frequent. As a re-
sult, more and more WFOV images are becoming available
on photo sharing websites such as Flickr and Picasa. In the
case of Structure-from-Motion (SfM) from photo commu-
nity collections, these photos could be particularly helpful
to strengthen the overall reconstruction as they provide con-
straints to many other cameras. However, they are typically
discarded in practice due to the challenge of automatically
calibrating these cameras.

In this paper, we present a novel method to automatically
calibrate WFOV cameras from 2D-3D matches established

between features extracted in their images and 3D points in
a SfM reconstruction using image-based localization meth-
ods. Given a partial reconstruction obtained from regular
images, our method can thus be used to calibrate and then
insert WFOV into a SfM model to strongly link together dif-
ferent parts of the scene which are all visible in these photos
and thus improve the quality of the reconstruction.

Our method is based on the 1D radial camera model [15–
17], which can be used to describe any type of camera with
radial distortion, including pinhole, fisheye, and non-central
cameras such as catadioptric lenses, as long as the center of
distortion is known. We combine this model with a non-
parametric intrinsic calibration to obtain an extremely pow-
erful calibration method that is capable of calibrating a wide
range of camera types. Our method consists of two steps.
In the first step, the extrinsic calibration is computed from
the 2D-3D matches up to the position of the camera center
(or camera centers in the case of non-central cameras) along
the optical axis. This can be done efficiently using a linear
7-point solver inside a RANSAC loop [5]. Given the partial
extrinsic calibration, we employ a novel ordering constraint
on the opening angle of the viewing rays corresponding to
the 2D features to estimate the remaining extrinsic param-
eter in the case of a central camera. Since we are consid-
ering radially symmetric cameras, fixing the camera center
directly provides the intrinsic calibration as it provides a
mapping from image positions to viewing rays. A slightly
generalized version of this constraint enables us to obtain a
more accurate calibration from multiple photos taken with
the same camera. The constraint can be further generalized
to also handle non-central cameras, both when only a single
or multiple photos are available. In addition to its general-
ity, our novel ordering constraint enables us to formulate the
second part of the calibration process as a convex optimiza-
tion program. We experimentally demonstrate the accuracy
of our calibration pipeline for a wide range of cameras. Ad-
ditionally, we make the source code of our method avail-
able [1].

The remainder of the paper is structured as follows.
Sec. 2 discusses related work. Sec. 3 reviews the 1D ra-
dial camera model. Sec. 4 introduces our novel ordering
constraint and derives our calibration method for the case
of central cameras. The extension to non-central cameras



is then provided in Sec. 5. Finally, Sec. 6 experimentally
evaluates our approach on both synthetic and real data.

2. Related Work
Recently, there has been some interest in non-parametric

calibration of radially symmetric cameras. For instance,
in [8, 11] a non-iterative, non-parametric method for cali-
bration of fisheye cameras is proposed. While they claim
that they can do without, the method is only tested using a
calibration pattern since their auto-calibration needs several
correspondences and is very sensitive to noise.

Similar to this, and much more related to our work,
in [15–17] Thirthala and Pollefeys developed the 1D Ra-
dial Camera model. They propose a multi-focal tensor able
to auto-calibrate any radially symmetric set of cameras (in-
cluding non-central), and also produce a non-parametric
calibration. In this work we use this same model, however,
in contrast to their approach, we develop a more general and
robust geometric ordering constraint to calibrate with.

Several other methods make use of either a specific scene
structure (enough straight lines) or use calibration objects
to compute their calibration, e.g. [7, 13]. In [14] an ap-
proach for self-calibration of radially symmetric cameras is
presented. They develop a plumb-line (using the fact that
straight lines in space must project into straight lines in the
image) and plane-based methods. In [6], they rely on the
observation of at least three lines to compute the parame-
ters of a para-catadioptric system. In contrast to these, we
remain flexible by enforcing no requirements on the scene
or a calibration object.

For our method we first estimate the (partial) extrinsics
(i.e. the pose) w.r.t. a SfM model. There have been nu-
merous advances geared toward pose estimation in the ab-
sence of calibration. For example, Kukelova et al. propose
a 5-point pose estimator with unknown radial distortion and
focal length [10]. They employ an idea similar to the 1D
Radial Camera Model in order to efficiently obtain a pose
and 3-parameter calibration. Also, minimal 4-point solvers
for this same case are presented in [3, 9] in which they too
make use of a parametric model to obtain a solution. In con-
trast to these methods, we do not restrict the camera to be
able to be represented by a specific mode. Furthermore, we
extend our method to seamlessly aggregate data from sev-
eral views of the same camera to increase the accuracy of
the calibration and to better handle non-central systems.

3. The 1D Radial Camera Model
In order to calibrate any type of radially symmetric cam-

era, this paper builds on the 1D radial camera model. For a
more in-depth analysis the reader is referred do [17], how-
ever we briefly review it in this section for completeness.

Let Cd be the center of distortion for a camera exhibiting
radial distortion. Let xu denote the undistorted projection
of a 3D point X onto the camera’s image. As illustrated

Figure 1: Radial 1D Camera. Image plane (left) and top
view (right) of the projection of point X.

in Fig. 1, applying radial distortion maps xu to a point on
the radial line l = xu×Cd through the center of distortion
and the undistorted image coordinates. Similarly, xu lies on
the line l = xd ×Cd defined by the distorted measurement
xd. Instead of explicitly modeling the radial distortion, the
1D radial camera model defines a projection up to radial
distortion. This is expressed as a mapping P3 → P1 that
associates each 3D point to a line λl = PrX. The projection
matrix Pr ∈ R2×4 relates to the first two rows of the camera
pose (R|t) by

Pr =

[
0 −1
1 0

] [
R1 tx
R2 ty

]
, (1)

where Ri is the i-th row of the rotation matrix R. Notice
that the 1D radial camera model, other than unit aspect ra-
tio, makes no assumption on the internal calibration of the
camera. In fact, it describes both central and non-central
cameras as long as there is a single center of distortion, in-
cluding pinhole, fisheye, and catadioptric cameras.

As in [17], we assume that Cd is known, enabling us to
center the image around Cd. For most cameras, the center
of the image is a reasonable approximation for Cd. Alterna-
tively, it can be estimated using the visible rim of the cata-
dioptric mirror or the edge of the fisheye lens (c.f . Fig. 8).

4. Calibrating Central Radially Symmetric
Cameras

Given a 3D model of the scene, our goal is to estimate
both the extrinsic and intrinsic calibration from 2D-3D cor-
respondences (xi,Xi) between positions in an image taken
with a radially symmetric camera and the model. Since the
projection matrix Pr does not depend on the intrinsic cali-
bration, we use a two-stage approach. In the first stage, we
use RANSAC [5] to estimate the extrinsic calibration up to
an unknown translation along the optical axis. The inliers
to the pose are then used to non-parametrically estimate the
intrinsic calibration. Sec. 4.1 details the computation of the
partial extrinsic calibration. In Sec. 4.2, we then derive a
novel ordering constraint that allows us to compute the in-
trinsic calibration by solving a convex optimization prob-
lem. Sec. 4.3 shows that the same constraint can be used to
calibrate a camera from multiple images. We show in Sec. 5



how to extend our approach to handle non-central radially
symmetric cameras.

4.1. Partial Extrinsic Calibration
Let xd = (xd, yd)> be the position of a distorted mea-

surement in a coordinate system centered at the center
of distortion. The radial line of the i-th correspondence
(xd

i,Xi) can then be expressed as

li =

[
−yid/xid

1

]
=

[
li

1

]
= Pr X

i . (2)

By multiplying li by its perpendicular vector (1,−li)>, we
obtain

Pr1 ·Xi − li
(
Pr2 ·Xi

)
= 0 , (3)

where Prn represents the n-th row of the matrix Pr. Thus,
each 2D-3D correspondence gives us one constraint. Since
Pr is only defined up to scale, it can be estimated linearly
from seven matches by rearranging (3). Once we have an
estimate for Pr, we can recover the full rotation matrix R

by exploiting the fact that rotation matrices are orthonormal
matrices with determinant one (c.f . (1)).

Given a set of 2D-3D correspondences, we estimate Pr

by using the 7-point solver inside a RANSAC loop. In or-
der to distinguish between inliers and outliers, we measure
the subtended angle between the predicted and the observed
radial lines l̂i = PrX

i and li. A match is considered to be
an inlier if the angle is below a given threshold σ (set to 1◦

in our experiments).
Notice that Pr has only five degrees of freedom in total:

Three degrees of freedom for the rotation and two degrees
of freedom for the partial translation tx, ty . Thus, the lin-
ear 7-point solver is non-minimal. If a minimal solver is
required due to a high outlier ratio, the 5-point approach
from [10] can be used, which requires solving a fourth de-
gree polynomial in a single variable.

4.2. Non-Parametric Intrinsic Calibration
The intrinsic calibration of a camera defines a mapping

r(x) from image coordinates to viewing rays. In the case
of radial symmetry, the angle θ between the ray r(x) and
the optical axis for all positions x with the same distance to
the center of distortion, i.e., ‖x‖2 = r, is constant. Con-
sequently, the point X projecting to x has to lie on a cone
along the optical axis with opening angle θ (c.f . Fig. 1). For
two points xr1 , xr2 with radii r1 < r2, we have θr1 < θr2 .
In the following, we derive a geometric constraint from this
observation from which we explicitly compute the mapping
from radii to opening angles.

Given Pr (c.f . Sec. 4.1), the transformation of the 3D
points from the global into the local coordinate system of
the camera is defined up to a translation along the optical
axis. Using R, t′ = (tx, ty, 0)>, we obtain an intermediate

(a) Single image central case. (b) Multi-image central case.

(c) Single image non-central. (d) Multi-image non-central.

Figure 2: Ordering constraints for different systems. The
abscissa for each figure, labeled z, are aligned with the op-
tical axis of the camera. For Figures a, b and c, rid > rjd.

coordinate system in which the unknown translation corre-
sponds to the position of the camera center c on the optical
axis. We notice that fixing c defines the opening angle θi
for a given 3D point RX+ t′ in the intermediate coordinate
system. Thus, fixing c fully defines the intrinsic calibration
of the camera.

A geometric ordering constraint on the camera cen-
ter. We express each point (xi, yi, ẑi)

> = (xi, yi, zi− c)>

as (ϕi, ρi, ẑi)
> in a cylindrical coordinate system (c.f .

Fig. 2). Since we consider radially symmetric cameras, we
can drop the angle ϕ of the point around the optical axis
from the notation and only consider the distance of the 3D
point to the optical axis ρ and its depth z. Consider two
3D points pi = (ρi, ẑi), pj = (ρj , ẑj) in the intermediate
frame (c.f . Fig. 2a), corresponding to radii rid and rjd of the
distorted image measurements xd

i, xd
j . Without loss of

generality, let ρi 6= ρj and let

Iij = (ẑjρi − ẑiρj) / (ρi − ρj) (4)

be the intersection of the 2D line containing the point pair
with the optical axis z. In the case where rid = rjd, Iij cor-
responds to the camera center c. Unfortunately, it is rather
unlikely to find two features with exactly the same radius.
In [15], the authors propose to fit a line through 3D points
corresponding to similar radii to obtain a camera center per
radius. In contrast, we use an ordering constraint to directly
obtain a c as explained below.

Without loss of generality, assume that rid > rjd and thus
θi > θj . In the case that ρi > ρj , it follows that c < Iij (c.f .
Fig. 2a). Similarly, ρi < ρj yields the constraint c > Iij .



Thus, for each point pair we get a one-sided constraint that
restricts the value of c to lie either to the left or to the right of
Iij . For each constraint we then build a cost function which
penalizes a given c that violates a one-sided constraint by
using a piecewise cost function. For rid > rjd and ρi > ρj

El
ij (c; pi, pj) =

{
0 c < Iij
f (Iij − c) otherwise

, (5)

which penalizes c if it is to the right of Iij (c.f . Fig 2a).
Here, f is a function depending on the distance between
the intersection point and the center c. For the opposite
configuration, either rid < rjd or ρi < ρj , we may build a
similar cost function which penalizes c to be to the left of
Iij .

Calibration through convex optimization. Using (5) we
can then take the sum over all the cost functions

E (c) =
∑
{i,j}∈L

El
ij +

∑
{i,j}∈R

Er
ij , (6)

where L = {{i, j} | ρi > ρj and rid > rjd} and R =

{{i, j} | ρi > ρj and rid < rjd}. If f is chosen to be a
convex function, E (c) will be convex. We can then obtain
the camera center, and thus the intrinsic calibration, by op-
timizing (6) using, e.g., Gradient-Descent.

We choose f to be an L1 norm to be robust to outliers,
while allowing E to remain convex. Furthermore, we pro-
pose a very simple algorithm for computing (6) when f is a
linear function. Since the slope of E(c) changes only wher-
ever there is an intersection, we may efficiently compute it
in two passes. We start by sorting the intersections, such
that Ik < Ik+1. On the first pass, from left to right, we deal
only with the intersections that constrain c to be to their
left (shown in green in Fig. 3a) and iteratively compute the
cost for each intersection. Starting with E (I0)

l
= 0 we can

express the cost of the kth intersection as the cost of the pre-
vious intersection plus the cost increase of the k violating
constraints from Ik−1 to Ik. Since f is a linear function, the
latter costs only depend on the distance between the current
intersection and the last, i.e.

E (Ik)
l

= E (Ik−1)
l
+ kf (Ik − Ik−1) . (7)

On the second pass we sweep in the opposite direction tak-
ing into account the intersections that constrain c to be to
their right. The cost of a given ck is obtained by check-
ing its nearest left- and right-constraining intersections and
summing their costs E(ck) = Er (Ik) + El (Ik).

Selecting point pairs. GivenN points in an image, it is im-
practical to exhaustively take all point pairs since the num-
ber of pairs is N(N − 1)/2. Instead, for a given image we
want to only operate on a fixed number of pairs. To do so,
we to sort the point pairs by their quality, i.e. pairs which
yield stable intersections close to c. For each pair pij we

(a) (b)

Figure 3: In a we show the single image linear cost function
proposed. In the multi-image case, each point pair defines a
2D constraint, depicted in b.

get ∆rij = ‖rid − r
j
d‖ and ∆ρij = ‖ρi − ρj‖. First, we

discard pairs with ∆ρij less than a given threshold, which
takes care of unstable intersections. Then we sort the pairs
using ∆rij in ascending order and take only the firstNs (set
to 120 in our experiments) pairs of the sorted list.

4.3. Joint Calibration from Multiple Images
The approach presented in Sec. 4.2 essentially deter-

mines an interval in which the camera center can lie in.
Using more points adds more constraints on this inter-
val, which should lead to more accurate estimates. Syn-
thetic experiments have shown that approximately 250 im-
aged points are enough to obtain a calibration that achieves
less than 1 pixels of RMSE on the reprojected points (c.f .
Fig. 5), while using less than 100 points leaves c very un-
derconstrained and the resulting calibration will be unreli-
able1. Naturally, additional points can be obtained by using
multiple images for the calibration. Thus, in this section we
show that our geometric ordering constraint can easily be
extended to allow calibrating a camera from M > 1 im-
ages.

By expressing 3D points in the ρz-plane we can trans-
form all cameras to a common frame of reference by finding
a one-dimensional relative translation between them (c.f .
Fig. 2b). This allows us to employ our one-sided constraint
to find this relative translation and a joint calibration.

Joint constraint for central cameras. Given two cameras
s(i) and s(j) we can express the intersection of any point
pair pij between them as

Is(i),s(j) =
(
zj − cs(j)

)
ρi −

(
zi − cs(i)

)
ρj , (8)

where s(i) indicates to which camera the point i corre-
sponds. Notice that this is almost the same as (4), however
(8) provides a constraint that now depends on two variables
(c.f . Fig. 3b), making the position of one camera depen-
dent on the other. The cost function E : RM 7→ R can be
also designed as a piecewise function. For the configuration

1Notice, that toolboxes as the one described in [13] suggest using 6 to
10 images. Assuming a calibration pattern with 48 corners, such methods
use up to 480 points.



rid > rjd and ρi > ρj we define

El
ij

(
cs(i), cs(j)

)
=

{
0 Is(i),s(j) < 0

g
(
cs(i), cs(j)

)
otherwise,

(9)

where g is a cost function on the distance from the given
center pair to the intersection (c.f . Fig. 2b). As with (5),
we decide to use the L1 norm as a cost function to remain
robust to outliers.

Calibration through convex optimization . Similarly to
(6), we take the sum of all relevant point pairs and to get
E, which can be minimized using a convex optimization
method. Notice that the selection criteria for point pairs
described in Sec. 4.1 applies here as well, since we may ag-
gregate image radii from all cameras into one single sorted
list to choose Ns relevant pairs. Finally, we get a cali-
bration by translating the Z coordinate of the points by
the camera center that obtained the observation θi

(
rid
)

=

arctan
(
ρi/(zi − cs(i))

)
.

5. Calibrating Non-Central Cameras
Since we are only dealing with radially symmetric cam-

eras, the centers of the camera can be expressed as a func-
tion of the distorted image radius c = c(rd). So, any point
pi = (ρi, ẑi) has ẑi = zi − ci, where ci = c(rid).

Non-central constraint. Any point pair pij will constrain
both centers ci and cj (see Fig. 2c). Given N image points,
we have N − 1 constraints for each center we need to es-
timate. We treat each of the N camera centers as a differ-
ent view of the scene (i.e. s(i) = i) and apply the method
described in Sec. 4.3. However, in practice the N − 1
constraints might not limit the location of a given center
enough, yielding inaccurate results for centers with weak or
too few constraints (e.g. for centers that correspond to radii
near the edge or center of the image, since these are mostly
same-side constraints).

To solve this we propose to impose an ordering con-
straint to the centers. We first sort all the points pi by their
radii such that ri−1d < rid < ri+1

d , which restricts their cor-
responding centers

c
(
ri−1d

)
< c

(
rid
)
< c

(
ri+1
d

)
. (10)

This is sensible given that all radially symmetric non-central
systems known to the authors follow this ordering (e.g.
spherical catadioptric, para-catadioptric). This constraint
can seamlessly be translated into the one-sided constraints
(c.f . Fig. 4). We define

Er
k(c) =

N∑
k=0

(
Er

ik (c) + El
ik (c)

)
, (11)

i.e. the cost of the k-th point against the rest. Then for a

Figure 4: Illustration of the ordering constraint from simu-
lated data. In red, each center is constrained to lie above a
certain value, and vice versa for blue. Notice that we may
use any of the blue constraints lying to the left of any given
pixel radius and vice versa.

center ci the cost becomes

E (ci) =

i∑
k=0

Er
k (c) +

N∑
k=i

El
k (c) , (12)

in other words, we use the one-sided left constraints of the
centers that should be larger than ci and the one-sided right
constraints of those centers that should be smaller than ci
(see Fig. 2c). Minimizing (12) we get a set of centers which
can be used to get the final calibration mapping θi

(
rid
)

=
arctan (ρi/(zi − ci)).

Joint solution for non-central cameras. To get a joint
non-central calibration we use a two step procedure. First,
we treat each camera as a central system and solve for their
joint calibration, which provides us with an estimate of their
displacements dk (see Fig. 2d). We use this to translate
all the data points across different views to be on the same
frame of reference, i.e. to have a mutually consistent depth.
Second, we solve for a single non-central system by treating
all the translated points as if they came from a single view.
This allows us to keep the number of points needed for a
successful calibration relatively low (around 350 points per
image, c.f . Fig. 5).

5.1. Refinement and Final Calibration

One of the primary benefits of our method is that we pro-
vide a calibration that does not rely on a given parametriza-
tion, thus we can accommodate a very wide range of cam-
eras; from planar to catadioptric, central and non-central.
However, we wish to refine our obtained solution by remov-
ing views and points based on their reprojection errors, and
to do so we must find a way to use the obtained mapping.
For this we opt to use a sliding median [8] of the calibration



Figure 5: RMSE error when varying the number of matches
used to obtain the calibration (pixel σ set to 1.2). The red
asterisk indicates that prior to that number of matches, the
calibration failed.

data obtained2. For all views we compute corresponding
reprojection errors and remove those points whose errors
rise beyond a certain threshold (set to 5 pixels in our experi-
ments). After this, we get a final set of inliers and recompute
the calibration by repeating the corresponding procedure.

6. Experimental Evaluation
To evaluate the proposed method we perform exper-

iments with real and synthetic data. Since one of the
strengths of the method is that it can handle a very wide
array of cameras, we make a point of trying as many cam-
eras as possible (c.f . Fig. 8).

6.1. Synthetic Data

We first carried out experiments on synthetic data to eval-
uate the performance of our methods. We populate the
scene with 320 data points distributed randomly. To sim-
ulate the central case, we project the data points into the
camera using a pinhole model as well as two well-known
fisheye models, the Field of View (FOV) model [4] and the
equiangular model. For the non-central case, we chose a
spherical catadioptric camera. To compute the reflections
we use [2]. Fig. 7 shows the calibration output of the cen-
tral as well as the non-central simulations, Fig. 6 compares
the accuracy of the generated calibrations against those ob-
tained using the toolbox in [13], and Fig. 5 shows the error
w.r.t the number of matches used.

As it can be seen from Fig. 7, the results for the cen-
tral systems perfectly match the ground truth. In Fig. 7c
we show the benefit of relaxing the method to handle non-
central systems. At the beginning of the curve both or-
ange (central assumption) and blue (non-central) scatter
plots match. However, as the non-centrality of the spher-
ical model becomes more significant at higher radii of the
simulated image, the deviation is more apparent. In Fig. 7d
we show how the accuracy of c(rd) is affected when we do
not enforce the ordering constraint (10). We show the re-

2However, having a calibration that is agnostic to the particular optics
of the setup, one is free to use a more sophisticated method to approximate
the distortion function.

(a) Equiangular. (b) FOV.

(c) Spherical Catadioptric.

Figure 6: Comparison of the reprojection error and its stan-
dard deviation against [13]. To obtain the calibrations,
our method used 320 points while the method we compare
against used 21 images of a 48-point synthetic calibration
pattern. Notice that for Fig. 6c the error is always lower us-
ing our calibration since we explicitly support non-central
systems.

sulting calibration mappings compared against the ground
truth of the simulated data. This is of particular importance
for the simulated spherical catadioptric system since with
real data we don’t have reliable ground truth for c(rd).

6.2. Real Data

In order to test the flexibility of the method, we tried
several different cameras and lenses (c.f . Fig. 8): A Nikon
D300 coupled with a fisheye lens, a 360One VR catadiop-
tric lens and a spherical catadioptric lens (using a 3-inch
steel ball). To assess the performance for the mentioned mo-
bile phone attachments, we run tests using an iPhone 4 with
a GoPano catadioptric attachment. Results from other cam-
eras and lenses are provided as supplemental material [1].

Due to the high distortion observed with most of the
lenses, we don’t obtain a very high number of matches and
thus we must use the multi-camera methods. To get more
complete calibrations in the catadioptric cases we need to
increase the number of matches near the edges of the re-
flection. To do so, we first use an equiangular calibration:
θ = k rd where we find k by having θ = π/2 map to the
largest radii in the image. We use this to warp the image
into a cylindrical map which we use to get matches against
the SfM model3. Note that this places no restrictions on the

3The toolbox used for comparison had to be manually assisted to get
the corners of the calibration pattern for this particularly difficult data.



(a) Nikon D300 with fisheye lens. (b) iPhone 4 with GoPano catadioptric lens.

(c) Spherical reflection with Nikon D300. (d) 360One VR catadioptric lens with Nikon D300.

Figure 9: Real calibrations for central and non-central cases. All results shown are compared against the calibration obtained
using [13], shown in gray. As it can be seen from all four cameras, our solution accurately match the one from this state-
of-the-art calibration toolbox. Calibration points are colored according to the image index used to emphasize the number of
images used per camera. To highlight the comparison with the reference calibration, we also plot the distortion function F
(the plot on the right for each case) as detailed in [13].

images we are able to handle, since the only assumption, as
before, is that the images are radially symmetric.

The SfM model used consists of a large-scale reconstruc-
tion, obtained in an outdoor location, c.f . Fig. 10. We took
several images with each camera type at the same location
and obtained putative 3D-2D matches (around 120 for each
image). In order to maximize the number of matches ob-
tained, we employed the method proposed in [12], modified
to return as many matches as possible. Because of the dras-
tically large distortion, we observed inlier ratios as low as
20%, and thus several images were needed for each cam-
era type (between 20 and 25) from which we were left with
approximately 500 points.

In Fig. 9 we show the calibration obtained for a selec-
tion of the tested systems. For each case, we obtained cal-
ibrations that closely match the calibration computed with
the toolbox in [13]. To emphasize the correctness of the
obtained calibration, we compare the previously discussed
mapping (θ(rd)) and the function F . This function is de-
scribed in [13] as the focal length as a function of the image
radius, where a point with image coordinates (u, v) can be
expressed in the camera frame as (u, v, F (rd))

>. For the
fisheye images (c.f . Fig. 9a), we got a very high number of
matches, since the query images resembled the most to the

images used to construct the SfM model. For this particu-
lar model, we have enough data to see that the calibration
near the center of the image suffers more than the rest due to
weak constraints. However, for the case of the non-central
system (c.f . Fig. 9c) there is a larger mismatch throughout
between our obtained calibration and that of [13] since our
method fully supports non-central systems. For the GoPano
attachment, as shown in Fig. 9b, we have very few matches
near the border and this is reflected in the scattered data
points at the end of the curve. Nevertheless, we are overall
able to calibrate even such a low-quality lens system.

The reference calibration method additionally computes
the refined centers of distortion. However, the fact that our
calibration closely matches the reference calibration shows
that using the center of the image as the center of distortion
is a valid assumption in practice.

7. Conclusion

In this work we presented a novel, flexible, structure-
based calibration method for radially symmetric cameras.
Indeed, such subset of cameras encompasses most of the
systems used nowadays, such as planar, fisheye, catadiop-
tric, WFOV, and so on. We are thus able to handle the cali-



(a) Equiangular θ(rd). (b) FOV θ(rd).

(c) Spherical θ(rd). (d) Spherical c(rd).

Figure 7: Synthetic calibration θ(rd) for the central (a and
b) and the non-central cameras c, where in orange we show
how a central assumption would not be as accurate. Fig. d
shows the estimate of c(rd) for the non-central case, notice
here the effect of employing the ordering constraint (10).

bration of several systems under a single framework which
would usually require several different calibration methods.

Furthermore, WFOV imagery is becoming more ubiqui-
tous by products such as the GoPro and WFOV lens attach-
ments for mobile phones. With our method, we can make
use of this increasingly popular image modality to augment
and strengthen SfM models produced from online photocol-
lections. Online WFOV images can be thus calibrated and
inserted as part of an existing SfM model. This would be
greatly beneficial for the quality of the model since these
type of images can strongly link several parts of the model
which were never visible before from the same view.

The described calibration method makes use of the 1D
Radial Camera [15] to decouple the estimation of the ex-
trinsic (up to translation along the optical axis) and intrinsic
calibration of any radially symmetric camera into two sep-
arate steps. In particular, the partial extrinsics are obtained
via a linear 7-point solver in conjunction with RANSAC,
while the computation of the intrinsics is carried out min-
imizing an outlier-robust convex cost function for both the
single and the multi-image case.

We compute the calibration as a mapping from distorted
image radii into the angle of its corresponding 3D ray
w.r.t. the optical axis of the camera. By opting for a non-
parametric calibration we are able to maintain a very broad
compatibility with any camera that fits the 1D Radial model.

Figure 8: Sample of the data used for the experiments for
the same outdoor location. From top to bottom, left to
right; the 360One catadioptric lens, the spherical catadiop-
tric setup, the GoPano iPhone attachment and the D300 with
a fisheye lens. Notice the wide range of distortions as well
as the low quality in the case of the GoPano.

Figure 10: The SfM point cloud used for the experimental
evaluation.

The approach is validated experimentally and using real
data and its accuracy and robustness is assessed by com-
paring the obtained calibration mappings against the cali-
bration from a state-of-the-art toolbox [13]. We make our
source code available at [1].
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