
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

How to Write Fast Numerical Code
Spring 2014
Lecture: Performance Counters and applying the Roofline Model

Instructor: Markus Püschel

TA: Daniele Spampinato & Alen Stojanov

Roofline Measurements

2

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache

 What quantities are needed?

 Work (W)

 Runtime (T)

 Memory Traffic (Q)

How can we measure them?

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

3

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Performance Monitor Unit (PMU)

4

 CPU unit capable of collecting microarchitectural events:

 Cycles, issued/retired instructions, cache misses, …

 CPU-specific implementation, e.g.:

 Intel reference: Intel 64 and IA-32 Architectures Software Developer
Manuals, Vol. 3B, Ch. 18-19

 ARMv7 reference: ARM Architecture Reference Manual - ARMv7-A and
ARMv7-R edition, Ch. C12

 Normally composed of set of registers for counting and control

 Encoded events can be architectural or non-architectural

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Intel: PMUs evolution

5

• 2 programmable Counters per Core
• 3 fixed Counters per Core
• 40 bit width

• System Wide Counting

• 8 programmable Counters per Core
• 3 fixed Counters per Core
• 2 programmable Counters for LLC Communication per Core
• 2 programmable Counters Uncore
• 1 fixed Counter Uncore
• 48 bit width

• per HW Thread Counting
• Precise Event Based Sampling

Performance
Monitoring version 1

Performance
Monitoring version 3

Intel: Accessing the Counters

 Performance Monitoring v1-v3 defines how to program the counters

 Counters differ between microarchitectures

 To access directly

 Acquire root somehow

 Disable counter in control Machine Specific Register (MSR)

 Program events and behaviour you like in configuartion MSR

 Enable counters in control and configuartion MSR

 Check overflow MSR / read value from counter MSR

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

7

Intel: Accessing the Counters

Intel: Types of Counters

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Intel: Types of Counters

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

 Precise Event-Based Sampling (PEBS)

 Can keep track of architectural state right after instruction causes event

 Can trigger interrupt (PMI) coupled to counter

9

ARMv7: PMUs

 ARM defines two performance monitors extensions: PMUv1 and
PMUv2

 Basic form must provide a coprocessor interface (CP15) with:

 A 32 bit cycle counter (CCNT)

 Up to 31 programmable counters

 Control registers

 ARM doesn’t define a degree of inaccuracy for the counters

 Mainly to keep implementation and validation cost low

 Example reading from CCNT

10

inline INT32 read_ccnt() {
 INT32 cycles;
 ASM VOLATILE ("MRC p15, 0, %0, c9, c13, 0\n\t" : "=r"
(cycles));
 return cycles;
}

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Software Interfaces and Tools

 Kernel interfaces, e.g., on Linux

 Perfmon2 (<= 2.6.30)

 Perf_events (>= 2.6.32)

 Machine independent APIs

 PAPI (relys on kernel interfaces of targeted Oss)

 Vendor specific, e.g., Intel

 Vtune (Sampling based, uses its own drivers)

 Intel PCM (Cross OS, direct access to MSRs)

11

Software Interfaces and Tools

12

Example of software stack on Intel platform

PMU CPU

Kernel Perf_events Reg dev

(/dev/cpu/*/msr)

PAPI PCM libpfm4

Sep driver

Intel VTune

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Perfplot

 Tool to ease the effort of creating performance / roofline plots

 Modified Intel PCM to allow start / stop measurements

 Instrument your code as depicted and link with the modified PCM

13

measurement_init(counters); //Array with Mask/Eventnr

for(r = 0; r < nr_repeats; r++){
 measurement_start();
 /* Code to be measured */
 for(i = 0; i < n; i++)
 z[i] = x[i] + y[i];
 measurement_stop();
}

measurement_end(); //Dump results to files

Perfplot

 Collaboration between

 Georg Ofenbeck

 Ruedi Steinman

 Victoria Caparros Cabezas

 Daniele Spampinato

 Available at https://github.com/GeorgOfenbeck/perfplot

 Scala scripts to automate

 Compilation and execution in temporary directories

 Retrieving the results and collecting them for plots

 Python plot scripts for

 Performance plots

 Roofline plots

14

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

#define RDTSC(cpu_c) \
ASM VOLATILE ("rdtsc" : "=a" ((cpu_c).int32.lo),"=d"((cpu_c).int32.hi))

Timing on Intel: Time Step Counter

 “Read Time Step Counter” instruction to read Invariant TSC

 Monotonically increasing counter, wrap around > 10y

 Stored in 64-bit IA32_TIME_STAMP_COUNTER MSR

 Easily accessable counter (dedicated instruction, user mode)

 Starting from Nehalem RDTSCP

15

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

#cycles = end - start

Timing on ARM: Cycle Counter

 Stored in 32-bit CCNT register on CP15

 Can count every cycle or every 64th cycle

 Could be used thru interfaces (e.g., perf_events)

 On some implementation high-overhead of interfaces requires direct
access

 Direct access normally requires:

16

reset_ccnt();
reset_overflow_flags();
enable_ccnt();

/* Computation */

disable_ccnt();
cycles = read_ccnt();
/* check for overflow */
if (counting_every_64) cycles = cycles << 6;

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Caveats

 General

 Compiler optimizations

 Asynchronous calls

 Runtime

 Frequency scaling

 TSC (or similar counters) is system-wide, everything is measured

 Parallel scenario, reference cycles difficult to relate to wallclock time

 Work

 Distinguishing single / double precision not necessary possible

 Memory Traffic

 WB cache, prefetcher, …

17

