© Markus Piischel ETH
Computer Science «

How to Write Fast Numerical Code
Spring 2014
Lecture: Performance Counters and applying the Roofline Model

Instructor: Markus Pischel
TA: Daniele Spampinato & Alen Stojanov

ETH

Ische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential

Roofline Measurements Warm cache

Performance [Flops/Cycle]
[[]

Peak Tt (8.0 Flops/Cycle)

.g; gl dgemm *I;;;i
&
n,
0 m What quantities are needed?
“a.f-ggi)ffjj_), 10000 = Work (W)
o] /-; = Runtime (T)
o 1 e = Memory Traffic (Q)
0.1 | 10 100

Operational Intensity [Flops/Byte]

How can we measure them?

How to write fast numerical code

Spring 2014

© Markus Piischel ETH
Computer Science

Performance Counters

ReadCounter(start);

/* Sum two arrays */
for(i = ©; i < num_runs; i++) #counted Events = end - start
z[i] = x[i] + y[i];

ReadCounter(end);

m All modern processors include performance counters
" |ntel Pentium Pro — Intel i3/5/7
= AMD K7 and AMD AMD64
= |BM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)
= MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K,
= ARM Cortex

Performance Monitor Unit (PMU)

m CPU unit capable of collecting microarchitectural events:
= Cycles, issued/retired instructions, cache misses, ...

m CPU-specific implementation, e.g.:

" Intel reference: Intel 64 and IA-32 Architectures Software Developer
Manuals, Vol. 3B, Ch. 18-19

= ARMvV7 reference: ARM Architecture Reference Manual - ARMv7-A and
ARMV7-R edition, Ch. C12

= Normally composed of set of registers for counting and control
m Encoded events can be architectural or non-architectural

Table 19-2. Non-Architectural Performance Events In the Processor Core of
4th Ceneration Intel® Core™ Processors

Event |Umask
Num. |(Value |Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD | loads blocked by overlapping with store buffer that
cannot be forwarded.

NI nAad 1N RIOCKSNA SR The niimher nf timac that cnlit Inad nnaratinne are

How to write fast numerical code
Spring 2014

Intel: PMUs evolution

Wilamette — Tejas
L. cedami
NetBurst Prescott2M —Cedar Mil
Smithfield_—Presier

Released - Canceled - Fulure - Microarchitecture name

Coppermine —» Tualatin —Banias ——» Dothan ——Yonah L Nehalem 1 [‘Sandy Bridge Haswell] [Skylake
i [Kentsfiekd — Yorkfield [|+Sandy Bridg yBridge |—+|Haswell I} Skylake —

| 180nm 1306m 1 90 nm 1 850m | A5em 1 2nm 1 2om 1 140m | 10nm |

‘Atom
Silverthome —eLincroft
Diamondville —ePineview — Cedarview

Performance Performance
Monitoring version 1 Monitoring version 3

2 programmable Counters per Core
3 fixed Counters per Core
40 bit width

8 programmable Counters per Core

3 fixed Counters per Core

2 programmable Counters for LLC Communication per Core
2 programmable Counters Uncore

1 fixed Counter Uncore

48 bit width

System Wide Counting

per HW Thread Counting
Precise Event Based Sampling

Intel: Accessing the Counters

m Performance Monitoring v1-v3 defines how to program the counters
m Counters differ between microarchitectures

m To access directly
= Acquire root somehow
= Disable counter in control Machine Specific Register (MSR)
" Program events and behaviour you like in configuartion MSR
" Enable counters in control and configuartion MSR
= Check overflow MSR / read value from counter MSR

© Markus Piischel ETH How to write fast numerical code

Computer SCience swisredaiinstite of echnology zunch Spring 2014

© Markus Piischel ETH

Intel: Accessing the Counters

|] L

63 3534333231

FIXED_CTR1 enable
FIXED_CTRO enable
PMC7_EN (il PMCT present)

PMC6_EN (if PMCB present)
PMC5_EN (if PMC5 present)
PMCA4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN
PMCO_EN

]:l Reserved

Figure 18-26. IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge
Counter Mask

‘ (CMASK)

INV—Invert counter maskJ

EN—Enable counters
ANY—Any Thread
INT—APIC interrupt enable
PC—Pin control

E—Edge detect
OS—Operating system mode
USR—User Mode

[valid if CPUID.OAH:EAX[15:8] = 8, else reserved.

63 31 24232221201918171615 87 0

A
N
M

1 1 P u
NIEIN| NP 1E|Q|S | Unit Mask (UMASK)| Event Select
v T R

[] Reserved

Figure 18-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Intel: Types of Counters

m Fixed function counters
= Predefined events that are commonly used
® TSC, instructions retired, core clock cycles, ...

m General purpose performance counters
® can be programmed to follow a specific event

Core

Level 3 Cache

ﬁ] m % Uncore

Intel "Wy
QPI DRAM 1Y,

Eidgensssische Technlsche Hochschule Zurich

Computer SCience swisredaiinstite of echnology zunch

How to write fast numerical code
Spring 2014

Intel: Types of Counters

m Fixed function counters
= Predefined events that are commonly used
= TSC, instructions retired, core clock cycles, ...

m General purpose performance counters
® can be programmed to follow a specific event

m Precise Event-Based Sampling (PEBS)
= Can keep track of architectural state right after instruction causes event
= Can trigger interrupt (PMI) coupled to counter

ARMv7: PMUs

= ARM defines two performance monitors extensions: PMUv1 and
PMUv2

m Basic form must provide a coprocessor interface (CP15) with:
= A 32 bit cycle counter (CCNT)
" Up to 31 programmable counters
= Control registers

m ARM doesn’t define a degree of inaccuracy for the counters
" Mainly to keep implementation and validation cost low
m Example reading from CCNT

inline INT32 read_ccnt() {
INT32 cycles;

ASM VOLATILE ("MRC p15, 0, %0, c9, c13, o\n\t" : "=r"
(cycles));
return cycles;
}
10
© Markus Piischel ETH How to write fast numerical code

Computer Science s Spring 2014

© Markus Piischel ETH
Computer Science s

Software Interfaces and Tools

m Kernel interfaces, e.g., on Linux
= Perfmon2 (<= 2.6.30)
= Perf_events (>=2.6.32)

m Machine independent APIs
= PAPI (relys on kernel interfaces of targeted Oss)

m Vendor specific, e.g., Intel
= Vtune (Sampling based, uses its own drivers)
= |ntel PCM (Cross OS, direct access to MSRs)

11

Software Interfaces and Tools

Example of software stack on Intel platform

Reg dev
(/dev/cpu/*/msr)

Perf_events

Sep driver

CPU

12

How to write fast numerical code
Spring 2014

© Markus Piischel ETH
Computer Science

Perfplot

m Tool to ease the effort of creating performance / roofline plots

m Modified Intel PCM to allow start / stop measurements

measurement_init(counters); //Array with Mask/Eventnr

for(r = ©; r < nr_repeats; r++){

}

measurement_start();

/* Code to be measured */

for(i = 0; i < n; i++)
z[i] = x[i] + y[i];

measurement_stop();

measurement_end(); //Dump results to files

Instrument your code as depicted and link with the modified PCM

13

Perfplot

Collaboration between

Georg Ofenbeck

Ruedi Steinman

Victoria Caparros Cabezas
Daniele Spampinato

Available at https://github.com/GeorgOfenbeck/perfplot

Scala scripts to automate

= Compilation and execution in temporary directories

Retrieving the results and collecting them for plots

Python plot scripts for
Performance plots
Roofline plots

14

How to write fast numerical code
Spring 2014

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

© Markus Piischel ETH
Computer Science

Timing on Intel: Time Step Counter

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = ©; i < num_runs; i++)
z[1] = x[1] + y[i];

#cycles = end - start

RDTSC(end);
CPUID();

= “Read Time Step Counter” instruction to read Invariant TSC
= Monotonically increasing counter, wrap around > 10y

m Stored in 64-bit IA32_TIME_STAMP_COUNTER MSR

m Easily accessable counter (dedicated instruction, user mode)

m Starting from Nehalem RDTSCP

15

Timing on ARM: Cycle Counter

m Stored in 32-bit CCNT register on CP15
m Can count every cycle or every 64 cycle
m Could be used thru interfaces (e.g., perf_events)

= On some implementation high-overhead of interfaces requires direct
access

m Direct access normally requires:

reset_ccnt();
reset_overflow_flags();
enable _ccnt();

/* Computation */

disable_ccnt();

cycles = read_ccnt();

/* check for overflow */

if (counting every 64) cycles = cycles << 6;

16

How to write fast numerical code
Spring 2014

© Markus Piischel ETH
Computer Science «

Caveats

General
= Compiler optimizations
= Asynchronous calls

Runtime

= Frequency scaling

= TSC (or similar counters) is system-wide, everything is measured

= Parallel scenario, reference cycles difficult to relate to wallclock time
Work

= Distinguishing single / double precision not necessary possible

Memory Traffic
= WB cache, prefetcher, ...

17

How to write fast numerical code
Spring 2014

