
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

How to Write Fast Numerical Code
Spring 2014
Lecture: Performance Counters and applying the Roofline Model

Instructor: Markus Püschel

TA: Daniele Spampinato & Alen Stojanov

Roofline Measurements

2

Core i7 Sandy Bridge, 6 cores
Code: Intel MKL, sequential
Warm cache

 What quantities are needed?

 Work (W)

 Runtime (T)

 Memory Traffic (Q)

How can we measure them?

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Performance Counters

 All modern processors include performance counters

 Intel Pentium Pro – Intel i3/5/7

 AMD K7 and AMD AMD64

 IBM PPC970, PPC970MP, POWER4+, IBM Cell processors (incl. Sony PS3)

 MIPS: 5K, 20K, 25KF, 34K, 5KC, 74K, …..

 ARM Cortex

 ….

3

ReadCounter(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

ReadCounter(end);

#counted Events = end - start

Performance Monitor Unit (PMU)

4

 CPU unit capable of collecting microarchitectural events:

 Cycles, issued/retired instructions, cache misses, …

 CPU-specific implementation, e.g.:

 Intel reference: Intel 64 and IA-32 Architectures Software Developer
Manuals, Vol. 3B, Ch. 18-19

 ARMv7 reference: ARM Architecture Reference Manual - ARMv7-A and
ARMv7-R edition, Ch. C12

 Normally composed of set of registers for counting and control

 Encoded events can be architectural or non-architectural

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Intel: PMUs evolution

5

• 2 programmable Counters per Core
• 3 fixed Counters per Core
• 40 bit width

• System Wide Counting

• 8 programmable Counters per Core
• 3 fixed Counters per Core
• 2 programmable Counters for LLC Communication per Core
• 2 programmable Counters Uncore
• 1 fixed Counter Uncore
• 48 bit width

• per HW Thread Counting
• Precise Event Based Sampling

Performance
Monitoring version 1

Performance
Monitoring version 3

Intel: Accessing the Counters

 Performance Monitoring v1-v3 defines how to program the counters

 Counters differ between microarchitectures

 To access directly

 Acquire root somehow

 Disable counter in control Machine Specific Register (MSR)

 Program events and behaviour you like in configuartion MSR

 Enable counters in control and configuartion MSR

 Check overflow MSR / read value from counter MSR

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

7

Intel: Accessing the Counters

Intel: Types of Counters

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Intel: Types of Counters

 Fixed function counters

 Predefined events that are commonly used

 TSC, instructions retired, core clock cycles, …

 General purpose performance counters

 can be programmed to follow a specific event

 Precise Event-Based Sampling (PEBS)

 Can keep track of architectural state right after instruction causes event

 Can trigger interrupt (PMI) coupled to counter

9

ARMv7: PMUs

 ARM defines two performance monitors extensions: PMUv1 and
PMUv2

 Basic form must provide a coprocessor interface (CP15) with:

 A 32 bit cycle counter (CCNT)

 Up to 31 programmable counters

 Control registers

 ARM doesn’t define a degree of inaccuracy for the counters

 Mainly to keep implementation and validation cost low

 Example reading from CCNT

10

inline INT32 read_ccnt() {
 INT32 cycles;
 ASM VOLATILE ("MRC p15, 0, %0, c9, c13, 0\n\t" : "=r"
(cycles));
 return cycles;
}

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Software Interfaces and Tools

 Kernel interfaces, e.g., on Linux

 Perfmon2 (<= 2.6.30)

 Perf_events (>= 2.6.32)

 Machine independent APIs

 PAPI (relys on kernel interfaces of targeted Oss)

 Vendor specific, e.g., Intel

 Vtune (Sampling based, uses its own drivers)

 Intel PCM (Cross OS, direct access to MSRs)

11

Software Interfaces and Tools

12

Example of software stack on Intel platform

PMU CPU

Kernel Perf_events Reg dev

(/dev/cpu/*/msr)

PAPI PCM libpfm4

Sep driver

Intel VTune

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Perfplot

 Tool to ease the effort of creating performance / roofline plots

 Modified Intel PCM to allow start / stop measurements

 Instrument your code as depicted and link with the modified PCM

13

measurement_init(counters); //Array with Mask/Eventnr

for(r = 0; r < nr_repeats; r++){
 measurement_start();
 /* Code to be measured */
 for(i = 0; i < n; i++)
 z[i] = x[i] + y[i];
 measurement_stop();
}

measurement_end(); //Dump results to files

Perfplot

 Collaboration between

 Georg Ofenbeck

 Ruedi Steinman

 Victoria Caparros Cabezas

 Daniele Spampinato

 Available at https://github.com/GeorgOfenbeck/perfplot

 Scala scripts to automate

 Compilation and execution in temporary directories

 Retrieving the results and collecting them for plots

 Python plot scripts for

 Performance plots

 Roofline plots

14

https://github.com/GeorgOfenbeck/perfplot
https://github.com/GeorgOfenbeck/perfplot

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

#define RDTSC(cpu_c) \
ASM VOLATILE ("rdtsc" : "=a" ((cpu_c).int32.lo),"=d"((cpu_c).int32.hi))

Timing on Intel: Time Step Counter

 “Read Time Step Counter” instruction to read Invariant TSC

 Monotonically increasing counter, wrap around > 10y

 Stored in 64-bit IA32_TIME_STAMP_COUNTER MSR

 Easily accessable counter (dedicated instruction, user mode)

 Starting from Nehalem RDTSCP

15

CPUID();
RDTSC(start);

/* Sum two arrays */
for(i = 0; i < num_runs; i++)
 z[i] = x[i] + y[i];

RDTSC(end);
CPUID();

#cycles = end - start

Timing on ARM: Cycle Counter

 Stored in 32-bit CCNT register on CP15

 Can count every cycle or every 64th cycle

 Could be used thru interfaces (e.g., perf_events)

 On some implementation high-overhead of interfaces requires direct
access

 Direct access normally requires:

16

reset_ccnt();
reset_overflow_flags();
enable_ccnt();

/* Computation */

disable_ccnt();
cycles = read_ccnt();
/* check for overflow */
if (counting_every_64) cycles = cycles << 6;

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Caveats

 General

 Compiler optimizations

 Asynchronous calls

 Runtime

 Frequency scaling

 TSC (or similar counters) is system-wide, everything is measured

 Parallel scenario, reference cycles difficult to relate to wallclock time

 Work

 Distinguishing single / double precision not necessary possible

 Memory Traffic

 WB cache, prefetcher, …

17

