
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

How to Write Fast Numerical Code
Spring 2014
Lecture: Cost analysis and performance

Instructor: Markus Püschel

TA: Daniele Spampinato & Alen Stojanov

Technicalities

 Research project: Let us know (fastcode@lists.inf.ethz.ch)

 if you know with whom you will work

 if you have already a project idea

 current status: on the web

 Deadline: March 7th

 If you need partner: fastcode-forum@lists.inf.ethz.ch

 If you need partner and project: fastcode-forum@lists.inf.ethz.ch

mailto:fastcode@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch
mailto:fastcode-forum@lists.inf.ethz.ch

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

 Compiler doesn’t do the job

 Doing by hand: nightmare
3

MMM kernel function

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

4

ATL_dmm4x2x4_avx.c

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Today

 Problem and Algorithm

 Asymptotic analysis

 Cost analysis

 Standard book: Introduction to Algorithms (2nd edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

5

Problem

 Problem: Specification of the relationship between a given input and
a desired output

 Numerical problem (this course): In- and output are numbers
(or lists, vectors, arrays, … of numbers)

 Examples
 Compute the discrete Fourier transform of a given vector x of length n

 Matrix-matrix multiplication (MMM)

 Compress an n x n image with a ratio …

 Sort a given list of integers

 Multiply by 5, y = 5x, using only additions and shifts

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Algorithm

 Algorithm: A precise description of a sequence of steps to solve a
given problem

 Numerical algorithm: Dominated by arithmetic (adds, mults, …)

 Examples:
 Cooley-Tukey fast Fourier transform (FFT)

 A description of MMM by definition

 JPEG encoding

 Mergesort

 y = x << 2 + x

7

Reminder: Do You Know The O?

 O(f(n)) is a … ?

 How are these related?

 O(f(n))

 Θ(f(n))

 Ω((f(n))

 O(2n) = O(3n)?

 O(log2(n)) = O(log3(n))

 O(n2 + m) = O(n2)?

Θ(f(n) = Ω(f(n)) ∩ O(f(n))

set

no

yes

no

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Always Use Canonical Expressions

 Example:

 not O(2n + log(n)), but

 Canonical? If not replace:

 O(100)

 O(log2(n))

 Θ(n1.1 + n log(n))

 2n + O(log(n))

 O(2n) + log(n)

 Ω(n log(m) + m log(n))

O(n)

O(1)

O(log(n))

Θ(n1.1)

O(n)

yes

yes

9

Asymptotic Analysis of Algorithms & Problems

 Analysis of algorithms for

 Runtime

 Space = memory requirement = memory footprint

 Asymptotic runtime of an algorithm:

 Count “elementary” steps
numerical algorithms: usually floating point operations

 State result in O-notation

 Example MMM (square and rectangular): C = A*B + C

 Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms

 Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Valid?

 Is asymptotic analysis still valid given this?

 Memory: yes, if the algorithm is O(f(n)), all memory effects are O(f(n))

 Vectorization, parallelization may introduce additional parameters

 Vector length ν

 Number of processors p

11

Asymptotic Analysis: Limitations

 Θ(f(n)) describes only the eventual trend of the runtime

 Constants matter

 Not clear when “eventual” starts

 n2 is likely better than 1000n2

 10000000000n is likely worse than n2

12

size n

runtime

?

?

?

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Cost Analysis for Numerical Problems

 Goal: determine exact “cost” of an algorithm

 Cost = number of relevant operations

 Numerical code (this course):
 Number of floating point adds

 Number of floating point mults

 Possibly: Number of sin, cos, div, sqrt, …

13

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n + k]*b[k*n + j];
}

Asymptotic runtime: O(n3)

Cost: (fl. adds, fl. mults) =

Cost: flops = 2n3

(n3, n3)

Cost Analysis: How To Do

 Count in algorithm or code

 Recursive function: solve recurrence

 Instrument code

 Use performance counters (maybe in a later lecture)

 Intel PCM

 Intel Vtune

 Perfmon (open source)

14

http://software.intel.com/en-us/node/326559?page=1
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Remember: Even Exact Cost ≠ Runtime

15

2n3 flops

Why Cost Analysis?

 Enables performance analysis:

 Upper bound through machine’s peak performance

16

Peak performance
of this computer

performance =
cost

runtime
[flops/cycle] or [flops/sec]

90 % of peak performance

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2014

Example

 Flops? For n = 10?

 2n2 , 200

 Performance for n = 10 if runs in 400 cycles

 0.5 flops/cycle

 Assume peak performance: 2 flops/cycle
percentage peak?

 25%

17

/* Matrix-vector multiplication y = Ax + y */
void mmm(double *A, double *x, double *y, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 y[i] += A[i*n + j]*x[j];
}

Summary

 Asymptotic runtime gives only an idea of the runtime trend

 Exact number of operations (cost):

 Also no good indicator of runtime

 But enables performance analysis

 Always measure performance (if possible)

 Gives idea of efficiency

 Gives percentage of peak

18

