## ETH login ID:

(Please print in capital letters)


## Full name:

## 263-2300: How to Write Fast Numerical Code

ETH Computer Science, Spring 2014
Midterm Exam
Monday, April 14, 2014

## Instructions

- Make sure that your exam is not missing any sheets, then write your full name and login ID on the front.
- No extra sheets are allowed.
- The exam has a maximum score of 100 points.
- No books, notes, calculators, laptops, cell phones, or other electronic devices are allowed.

Problem 1 (12)
Problem $2(15=3+12)$
Problem $3(17=6+5+6)$
Problem $4(15=3+3+3+3+3)$
Problem $5(17=14+3)$
Problem $6(24=3+3+3+3+12)$


Total (100) $\square$

## Problem 1 (12 points)

The function vecsum implements $z=x+y$, where $z, x$, and $y$ are vectors of length $N$.

```
void vecsum(double * z, const double * x, const double * y, size_t N) {
    int i;
    for (i = 0; i < N; i++)
        z[i] = x[i] + y[i];
}
```

We make the following assumptions:

- The peak performance of the CPU is $\pi=1 \mathrm{add} /$ cycle.
- The system has two levels of cache.
- All caches are write-back/write-allocate.
- L1 cache size: 64 kB ; L1 read bandwidth: 1 double/cycle.
- L2 cache size: 2 MB; L2 read bandwidth: 0.5 double/cycle.
- RAM read bandwidth: 0.25 double/cycle.
- The variables $i$ and $N$ are stored in registers.
- A double is 8 bytes.

The performance of vecsum is measured as average over many executions. Sketch the expected performance plot for $N$ up to $200^{\prime} 000 . N$ is on the x-axis and the y-axis shows the percentage of peak performance (between $0 \%$ and $100 \%$ ) achieved. Provide enough details and also short explanations so we can verify your reasoning.

## Solution:



## Problem 2 ( $15=3+12$ points)

Consider the following code, which processes an $M \times N$ matrix $A$. (Note that for this question it does not matter what the function does.)

```
void func(float A[M][N], float th) {
    int i,j,k,l;
    float r,c,t;
    srand(time(NULL));
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++) {
            r = c = 0.f;
            for (k = j+1; k < N; k++) {
            t = (float)(rand())/RAND_MAX;
            c += t*a[i][k];
            }
            for (l = i+1; l < M; l++) {
                t = (float)(rand())/RAND_MAX;
                if (t > th)
                    r += a[l][j];
            else
                    r -= a[l][j];
            }
            a[i][j] += c*r;
        }
}
```

1. Define a detailed floating point cost measure $C(M, N)$ for the function func. Ignore integer operations, function calls, and comparisons.
2. Compute the $\operatorname{cost} C(M, N)$.

Note: Lower-order terms (and only those) may be expressed using big-O notation (this means: as the final result something like $3 n+O(\log (n))$ would be ok but $O(n)$ is not).

The following formula may be helpful: $\sum_{i=0}^{n-1}(n-i)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=\frac{n^{2}}{2}+O(n)$.

## Solution:

1. $C(M, N)=(\operatorname{adds}(M, N), \operatorname{mults}(M, N), \operatorname{divs}(M, N))$.
2. 

$$
\begin{aligned}
\operatorname{divs}(M, N) & =\sum_{i=0}^{M-1} \sum_{j=0}^{N-1}\left(\sum_{k=j+1}^{N-1} 1+\sum_{l=i+1}^{M-1} 1\right) \\
& =\sum_{i=0}^{M-1} \sum_{j=0}^{N-1}(N-j-1+M-i-1) \\
& =\sum_{i=0}^{M-1}\left[N(M-i-2)+\frac{N^{2}}{2}+O(N)\right]=\frac{M^{2} N}{2}+\frac{M N^{2}}{2}+O(M N)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adds}(M, N) & =\operatorname{divs}(M, N) \\
\operatorname{mults}(M, N) & =\sum_{i=0}^{M-1} \sum_{j=0}^{N-1}\left(1+\sum_{k=j+1}^{N-1} 1\right) \\
& =\frac{M N^{2}}{2}+O(M N)
\end{aligned}
$$

## Problem 3 (17 = $6+5+6$ points)

Assume you are using a system with the following features:

- A CPU that can issue 3 double precision multiplications and 1 double precision addition per cycle.
- The interconnection between CPU and main memory has a maximal bandwidth of 4 bytes/cycle.

Answer the following two questions:

1. Draw the roofline plot for this system. The units for x -axis and y -axis are performance in flops/cycle and operational intensity in flops/byte, both in log scale. The plot will contain two lines determining upper bounds on the achievable performance.

2. Consider the following code:
```
void filter(double m[64][64], double r[62][62]) {
    for(i = 1; i < 63; i++)
    for(j = 1; j < 63; j++)
        r[i-1][j-1] = r[i-1][j-1]
        + m[i-1][j-1] - m[i-1][j] + m[i-1][j+1]
        - 2*m[i][j-1] + 2*m[i][j+1]
        + m[i+1][j];
```

\}

Assuming a cold write-back/write-allocate cache with block size $B>8$ bytes and that the cache can hold the whole matrices $m$ and $r$, compute the following. You can approximate 62 with 64 where convenient:
(a) The operational intensity of this code (ignore write-backs).
(b) An upper bound (as tight as possible) on performance.

Show your work.

## Solution:


2. (a) $I \leq \frac{8.62^{2}}{8 \cdot\left(64^{2}+62^{2}\right)} \approx 0.5$ flop/byte (memory bound on system under consideration).
(b) The presence of 6 additions in the loop body ( 8 flops) doesn't reflect the instruction balance required to take maximum advantage from the CPU in the assumptions. Taking this additional limitation into account, we can estimate a bound on performance as:

$$
p \leq \min \left(I \beta, \frac{8}{6}\right) \text { flops } / \text { byte }=1.33 \text { flops } / \text { byte. }
$$

## Problem 4 (15 $=3+3+3+3+3$ points)

Mark the following statements as true (T) or false (F). Explanations are not needed. We denote with $I(n)$ the operational intensity of a function executed on some input of size $n$. Wrong answers give negative points but you cannot get less than 0 points for this problem. You can leave questions unanswered.

Doubling the cache size doubles $I$.Doubling the cache size can increase $I$.
$\square$ Assume that we can compute the cost (flop count) of an algorithm for a certain input of size $n$. Then, assuming a cold-cache scenario, we can compute a valid (possibly loose) upper bound for $I(n)$ for all possible C functions that implement this algorithm executed on that input.

A function with a cost in $O\left(n^{2}\right)$ is certainly compute bound.
A function with $I(n) \in O(1)$ is certainly memory bound.

## Solution:

1. False. Assume the execution of a function which input/output fits completely in cache. Doubling the cache would not affect its operational intensity.
2. True. Assume the execution of a function which input/output produces many capacity misses. Doubling the cache could reduce data traffic leading to an increase of the operational intensity.
3. True. Every C function implementing a given algorithm would have the same flop count of the algorithm itself and at least the same amount of data accesses.
4. False. A possible counterexample would be the case where $W(n), Q(n) \in \Theta\left(n^{2}\right)$ on a system with peak $\pi$ and maximal bandwidth $\beta$ such that $I(n) \leq \frac{W(n)}{Q(n)} \in O(1)<\frac{\pi}{\beta}$.
5. False. As in 4 the answer also depends on the system. In this case just assume to have $\pi$ and $\beta$ such that $I(n)>\frac{\pi}{\beta}$.

## Problem 5 ( $17=14+3$ points)

Consider the following code for a matrix-matrix multiplication $(c=a b+c)$ :

```
// a, b, c are n x n matrices (data type double)
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
            c[i][j] = c[i][j] + a[i][k]*b[k][j];
```

Assume the code is run on a system with a last-level cache of size $C$ bytes and with a cache block size of $B=32$ bytes. Further, we assume that $40 n<C<8 n^{2}$.

1. Estimate the number of cache misses as a function of $n$. Ignore accesses to the matrix $c$ and possible conflict misses.
2. Compute the operational intensity $I(n)$ based on the previous result.

## Solution:

1. The cache can contain at least one row of a and four columns of b but is not able to contain a complete $n \times n$ matrix. For a single i-iteration we have the following compulsory and capacity misses:

$$
\mathrm{CM}_{i}(n)=\underbrace{\frac{n}{4}}_{\text {row of a }}+\underbrace{\frac{n^{2}}{4}}_{\text {entire b }}
$$

The total amount of misses is therefore

$$
\mathrm{CM}(n)=n \cdot \mathrm{CM}_{i}(n)=\frac{n^{3}+n^{2}}{4}
$$

2. 

$$
I(n) \leq \frac{2 n^{3}}{32 \mathrm{CM}(\mathrm{n})} \simeq 0.25 \text { flop } / \text { byte }
$$

## Problem $6(24=3+3+3+3+12$ points $)$

We define an image as follow (of course you know that sizeof(char) ==1):

```
typedef struct {
    unsigned char red;
    unsigned char green;
    unsigned char blue;
    unsigned char alpha;
} pixel_t;
pixel_t image[N][16];
```

And we consider a system based on the following assumptions:

- The system has a write-back/write-allocate cache of size $C$ bytes.
- The cache is 4 -way set-associative.
- The cache block size is $B=64$ bytes.
- The cache uses an LRU replacement policy.

Answer the following questions (note: the image is read pixel by pixel):

1. What is the miss rate if we read the whole image row-wise and $C=64 \mathrm{~N}$ bytes?
2. What is the miss rate if we read the whole image row-wise and $C=4 N$ bytes?
3. What is the miss rate if we read the whole image column-wise and $C=64 N$ bytes?
4. What is the miss rate if we read the whole image column-wise and $C=4 N$ bytes?
5. We now assume an image of size 4 -by- 4 pixels and a small cache with block size $B=8$ bytes, one set, and a total size of 16 bytes. Provide the hit/miss sequence for the following code. All assignments are executed processing first the right-hand side from left to right. The entire sequence will have a length of $4 \times 6=24$.
```
int i,j;
for(i = 1; i < 3; i++)
        for(j = 1; j < 3; j++) {
        image[i][j].alpha = image[i-1][j].alpha * image[i][j-1].alpha;
        image[i][j].red = image[i-1][j].red * image[i][j-1].red;
    }
```

Note it helps to sketch the cache and image.

## Solution:

1. image fits completely in cache and a cache block can hold 16 pixels. The miss rate is $\mathrm{MR}=\frac{1}{16}$.
2. This cache provides the same support for spatial locality as the one in question 1. The miss rate is still $\mathrm{MR}=\frac{1}{16}$.
3. Although we access column-wise, image still fits completely in cache producing only compulsory misses. Also in this case $\mathrm{MR}=\frac{1}{16}$.
4. The cache can contain up to $\frac{1}{16}$ of image. By the time we access the last pixel of column $i$ the first pixel of column $i+1$ is no longer in cache. This leads to a miss rate $\mathrm{MR}=1$.
5. The cache in this case is fully associative with $E=2$. A cache block can contain two pixels. The code execution produces the following hit/miss sequence:
MMH HHH MHM MMM HMH HHH MHM MMM.
