
263-2300-00: How To Write Fast Numerical Code
Assignment 3: 100 points

Due Date: Thu March 20 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html

Questions: fastcode@lists.inf.ethz.ch

Submission instructions (read carefully):

• (Submission)
We set up a SVN Directory for everybody in the course. The Url of your SVN Directory is
https://svn.inf.ethz.ch/svn/pueschel/students/trunk/s14-fastcode/YOUR.NETZH.LOGIN/ You should see sub-
directory for each homework.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework. Late submissions have to be emailed to
fastcode@lists.inf.ethz.ch.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert them to PDF and submit
to svn in the top level of the respective homework directory. Call it homework.pdf.

• (Plots)
For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (lecture 5).

• (Neatness)
5% of the points in a homework are given for neatness.

Exercises:

1. Cache mechanics (30 pts) We consider a direct-mapped cache with parameters (S,E,B) = (2s, 1, 8b)
and the code bellow, having constant parameter t < s:

double x[b*s + t], y[b*s + t];

double sum = 0; int i;

for (i = 1; i < 2(b*s + t); i++)

sum += y[i%(b*s+t)] * x[b*i%(b*s+t)];

We assume that x[0] goes into the first slot of the first block, y[0] goes into the first slot of the
(s + 1)th block, and that sum and i are held in registers (meaning you do not need to consider them
in the cache analysis) and b, s and t are predefined constants.

(a) Determine the miss rate for array y, and express it as a function of the parameters s, b and t.

(b) Determine the miss/hit sequences for x and y (something like x: MHHMHHM..) for (s, b, t) = (6, 2, 1).

(c) What is the operational intensity of the entire code assuming (s, b, t) = (6, 2, 1)?

263-2300-00 SS14 / Assignment 3
Instructor: Markus Püschel

Pg 1 of 5 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/course.html
https://svn.inf.ethz.ch/svn/pueschel/students/trunk/s14-fastcode/YOUR.NETZH.LOGIN/


Solution.

(a) While general assumption in a direct-mapped cache is that memory mappings of arrays can over-
lap in the cache, the analysis of conflicts can lead to severe complications in this problem. To
analyze the miss rates of the arrays, we start with a non-overlapping version of the cache, assum-
ing that x resides in the first s blocks and y resides in the second set of s blocks. We then extend
the solution to the general overlapping case, where the last t values of x are mapped into the first
dt/be set of blocks of y and the last t values of y are mapped into the first dt/be set of blocks of x.

Non-overlapping cache. To solve this problem we use an auxiliary function:

f(x) =

{
1, if x > 0

0, otherwise

To analyze the miss rates of the array y, we only need to consider cache misses. Lets assume that
p = floor(t/b) and q = p mod b. We can now illustrate the array accesses as defined in the loop,
into 5 meaningful regions:

Region Array Access y-Range Cache Line Range
1 y[1%(b*s+t)] until y[b*s%(b*s+t)] [1, b · s) s + [floor(1/b), s)
2 y[b*s%(b*s+t)] until y[(b*s+t)%(b*s+t)] [b · s, b · s + t) s + [0, p + f(q))
3 y[(b*s+t)%(b*s+t)] until y[(b*s+2*t)%(b*s+t)] [0, t) s + [0, p + f(q))
4 y[(b*s+2*t)%(b*s+t)] until y[(2*b*s+t)%(b*s+t)] [t, b · s) s + [p + f(q), s)
5 y[(2*b*s+t)%(b*s+t)] until y[(2*b*s+2*t)%(b*s+t)] [b · s, b · s + t) s + [0, p + f(q))

Now we can calculate the cache misses per region:

i. Region 1. has s− floor(1/b) mandatory misses (since we start with i=1 in the loop).

ii. Region 2. has p + f(q) misses (we load the remaining t values)

iii. Region 3. has p + f(q) misses. Except when t = 0 and b = 1. In this case y[0] gets loaded
for the first time and creates cache miss. So there are additional (1−f(t)) ·floor(1/b) misses.

iv. Region 4. has no misses. All elements have already been loaded into the cache in Region 1.

v. Region 5. has p + f(q) misses.

Therefore total misses s + 3(p + f(q))− f(t) · floor(1/b). Finally the miss-rate is:

M(s, b, t) =
s + 3 [floor(t/b) + f(t mod b)]− f(t) · floor(1/b)

2(b · s + t)− 1
(1)

General overlapping case. Now, we need to take conflicts with array x into considerations.
We illustrate the cache in the figure bellow, and explain the accesses as they occur. Note that x

occupies regions A, B and C, and y occupies regions C, D, E and A. Therefore, conflicts can only
occur while accessing regions A, C and D. Array access goes as follows:

i. We traverse the y array going through regions C, D, E, and A, twice.

ii. While at region C, there are no conflicts with x since t < s, and we
traverse x in the A and B regions.

iii. While at region D, there might be conflicts with x

iv. There are no conflicts with x in region E, since x occupies A, B, and C.

v. While at region A, there are no conflicts with x, since t < s

263-2300-00 SS14 / Assignment 3
Instructor: Markus Püschel

Pg 2 of 5 Computer Science
ETH Zurich



When accessing array x, we jump through cache lines. Therefore in b · s + t iterations, we will
jump in every line that has been occupied by x. Therefore, once we re-start iterating through y

array, regions A, C and D will be overwritten with values of x. Region E will not be modified,
so we will experience no misses when going through it again. Therefore, the minimum number of
misses that occur in this case, ignoring the conflicts, is equivalent to the non-overlapping cache
version, defined in 1. However, conflucts that occur in region D, introduce additional misses, and
we need to include them in the final result.

Region D is accessed when q > 0 for values of i ∈ {t, . . . , t + b − q − 1}. In order for a conflict
to happen, we must access value of x that lands in the p-th block of C region in the cache,
before we access one of y[i] values. Since y gets accessed before x, we only need to look into
i ∈ {t, . . . , t + b− q − 2}. In order to have conflict, we must have at least one i and j such that:

bi mod (bs + t) = bs + bp + j for j ∈ {0, . . . , q − 1} and i ∈ {t, . . . , t + b− q − 2} (2)

or using the congruence relation and its properties:

bi ≡ bs + bp + j (mod bs + t)

bi ≡ bp + j − t (mod bs + t)

bi ≡ j − q (mod bs + t)

(3)

Therefore, the number of conflicts is the number of m values that satisfy the following equation:

bi = m(bs + t) + j − q for j ∈ {0, . . . , q − 1} and i ∈ {t, . . . , t + b− q − 2} (4)

Getting the exact number of m values that satisfies 4 is a task which is harder then anticipated.
An upper bound of m can easily be estimated using the ranges of f and i:

m ≤
⌊
b ∗ imax + g − jmin

bs + t

⌋
=

⌊
b ∗ (t + b− q − 2) + q

bs + t

⌋
(5)

Since we traverse region D two times, we will experience the same conflicts twice. We also have to
note that conflicts in D will not occur at all if q = 0. Each of the conflicts will introduce exactly
one miss in the y array. Finally:

M(s, b, t) ≤Mrate(s, b, t) ≤M(s, b, t) + 2 · f(q)

⌊
b∗(t+b−q−2)+q

bs+t

⌋
2(bs + t)− 1

(6)

We also provide a Scala validation code for our bound calculations.

(b) x: MMMM MMMH HHHHM HHHH HMHH HHHH

y: MMHM HMHM HMHMM HHHH HHHH HHHM

(c) Misses for both x and y: 9. We load 16 bytes on each miss. Therefore Q = 2∗2∗(6∗2+1)−2
(9+9)∗16 = 50

288

2. Cache mechanics (35 pts) Consider the following double loop computation:

void mvm(double A[3][4] , double x[4], double y[3]) {

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

y[i] += A[i][j]*x[j];

}

(a) Determine the upper bound I for the operational intensity considering only read traffic.

The execution is performed using a write-back/write-allocate cache with (S,E,B) = (2, 2, 8), where S
is the number of sets, E is the associativity, and B the block size in bytes. Assume there is no aliasing
between the three arguments, that matrix A is stored row-wise, and that the cache is cold and uses
LRU replacement. Also, assume that A[0][0], x[0], and y[0] map to the first set of the cache, and that
variables i and j are held in registers.

263-2300-00 SS14 / Assignment 3
Instructor: Markus Püschel

Pg 3 of 5 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring14/homeworks/hw03files/TestCache.scala


(b) Compute the miss rate ML1.

(c) Compute the operational intensity IL1 (together with reads include also writes due to eviction).

Now assume the presence of a write-back/write-allocate L2 cache with parameters (S,E,B) = (8, 2, 16).
Assume that A[0][0] maps to the first set of L2, while x[0] and y[0] to the second-last and the last set
respectively. The two caches are cold and use LRU replacement.

(d) Compute the miss rate ML2.

(e) Compute the operational intensity IL2 (together with reads include also writes due to eviction).

Provide enough details about your reasoning.

Solution:
See handwritten notes.

3. Associativity (30 pts) We consider a direct mapped cache given by (S,E,B) = (S, 1, B), where S is
the number of sets and B the block size in bytes. To reduce the number of cache misses we design a
second cache given by (S′, E′, B′) with E′ = 2, B′ = B, and S′ = S/2. In words, this cache has the
same size and block size but higher associativity. We assume LRU replacement.

We claim that for any code the number of cache misses on the second cache is equal or smaller than
the number of misses on the first cache. Do you agree with this statement? If yes, provide a proof. If
no, provide a counterexample (i.e., sketch a function operating on some array where it does not hold).

Solution:

The statement is false. Below we provide a simple counterexample where the direct mapped cache
produces less misses than the 2-way associative cache:

char x[2*B*S];

char t = x[0];

t += x[B*S/2];

t += x[3*B*S/2];

t += x[0];

Assume that x maps to the first set of both caches and excluding variable t from the analysis, we
obtain the following hit/miss sequences for the two cases:

Direct mapped: M M M H

2-way associative: M M M M

263-2300-00 SS14 / Assignment 3
Instructor: Markus Püschel

Pg 4 of 5 Computer Science
ETH Zurich



2ii:~;; C,XDJ
flo3 tYL’3,Xcz]

MR
LI

(I2~ -i-~)~

0.14 E
B

~,ALoIo1, xt~ ‘~•

Lil,jJ~scz

1. a02u4

ci:

c)

A) Li:
(I.

a)

—?

AMMMM
— — —

j~O x fri M®r4

YMfjMi4

AMMMM

t:i ~

7 MM~1M

A MMMM
~z x M®®M

7

A MKMH
X NI j~{ N H

A MHM~

Y

A

M H

A~L~3A~11yt~ z_i

_________

At3Et3~Mi)~5fl

— vrii4c sack fo~

‘Ll~ _&~!_—.. ~ o. o~ 5—
r

R

MR ‘10-3ZZ
U. —

H -1- jj.__-_.caisf
Lz

LAL3J I
~yt

ei~~i


