Linear transforms
compute

$$
y=\tau_{x}
$$

where x is the input vector, y the output rector and T the transform mads x.
Example: DFT

1. form (standard in signal processing): given x_{0}, \ldots, x_{n-1} compute $y_{k}=\sum_{l=0}^{n=1} e^{-2 \bar{n} i k l / n} x_{l}$, for $k=0 \ldots n-1 \quad i=\sqrt{-1}$

$$
=\sum_{e=0}^{e=0} \omega_{n}^{k e} x_{e}, \text { for } k=0 \ldots n-1, \quad \omega_{n}=e^{-\frac{2 \pi_{i}}{n}}
$$

primitive nth mot of 1
2. form (we wall use): $x=\left(x_{0}, \ldots, x_{n-1}\right)^{\top}$ is given compute $y=D F T_{n} x, \quad \Delta F T_{n}=\left[o_{n}^{k \cdot e}\right]_{0 \leqslant 4, e<n}$

$$
\left[y=\left(y_{0}, \ldots, y_{n},\right)^{\top} \text { is the output }\right]
$$

Examples:

$$
\partial F T_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad D F T_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & \vdots \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]
$$

How many complex pps for $\partial F T_{4}$?
Transform alforithens
an algorithm for $y=T_{x}$ is given b_{y} a factorization

$$
T=T_{1} T_{2} \ldots T_{m}
$$

Namely, instead of $y=T_{x}$ you can compote

$$
\left.\begin{array}{rl}
t_{1} & =T_{m} x \\
\alpha_{2} & =T_{m-1} \alpha_{1} \\
\cdots & \cdots \\
y & =T_{1} \cdot \alpha_{m-1}
\end{array}\right\} m \text { steps }
$$

This reduces the or count only if

- the T_{i} are sparse
- m is not too large

Note: For generic $T, y=T_{x}$ is $\theta\left(u^{2}\right)$
Example: Cooky-Thkey FFT for $n=4$

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& 1 & 1 \\
& & \\
& & \\
& &
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & & \\
1 & -1 & & \\
& & 1 & 1 \\
& & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Compare (complex) cost,
by definition: 12 adds, 4 milts by i
using FFT: 8 adds, 1 molt by i
The sparse matrices are sotuetured:

$$
\partial F T_{4}=\left(\lambda F T_{2} \otimes I_{2}\right) \operatorname{diag}(1,1,1, i)\left(I_{2} \oplus \partial F T_{2}\right) L_{2}^{4}
$$

(explained next)
\rightarrow Sack to slides
Structured matrices

- $\Delta F T_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
- $I_{4}=\left(\begin{array}{lll}1 & & \\ & \ddots & 1\end{array}\right)$
- $\operatorname{drag}\left(a_{0}, \ldots, a_{n-1}\right)=\left(\begin{array}{lll}a_{n} & & \\ & \ddots & \\ & & a_{n-1}\end{array}\right)$
- $A \oplus B=\left(\begin{array}{ll}A & B\end{array}\right)$
data flow (right to ley

- $A \otimes B=\left[a_{4, e} \cdot B\right]_{4, l}$ where $A=\left[a_{n, e}\right]_{x, e}$
most important:
$I_{n} \otimes A=\left(\begin{array}{lll}A & & \\ & \ddots & A\end{array}\right) \quad$ contains $n A^{\prime}$ s

contains " A's e.g., all bullets together constitute one A
- L_{k}^{n} : stride permutation matrix whore later

General radix, recursive Cooley-lukey FFT
assume $u=K \mathrm{~km}$

$$
D F T_{k m}=\left(\lambda F T_{k} \otimes I_{m}\right) \underbrace{T_{m}^{n}}_{\substack{\hat{\text { radix }} \\ \text { diagonal } \\ \text { matrix }}}\left(I_{k} \otimes \lambda F T_{m}\right) L_{k}^{n}
$$

J Key structures: $I_{k} \otimes \mathrm{Am}_{m}, A_{k} \otimes I_{n}, L_{K}^{n}$
1.) $y=\left(I_{4} \otimes A_{n}\right) x$
$\|^{\prime \prime}=\left(\begin{array}{lll}A_{A} & & \\ & \ddots & A\end{array}\right)\left(\begin{array}{l}\prime \\ \\ \\ \\ \end{array}\right)$
for $i=0: u-1$

$$
\left.\begin{array}{rl}
\mathrm{y}[i m: 1: i m+m-1] \\
7 \cdot[i & 1
\end{array}\right]
$$

к. A's at stride 1

$$
=A \cdot \times \tau
$$

2) $y=\left(A_{k} \oplus I_{m}\right) x$
$\left(\begin{array}{c}a \\ \vdots \\ \vdots \\ \vdots\end{array}\right)=\left(\begin{array}{cccc}a & a & a & \cdots \\ a & a & a & \cdots \\ a & a & \cdots & \cdots \\ & \vdots & & \end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ \vdots \\ \vdots\end{array}\right)$
for $i=0: m-1$

$$
\begin{aligned}
& \text { or } i=0: m-1 \\
& y[i: m: i+(k-1) m] \\
& A \cdot x[\quad 4
\end{aligned}
$$

Permutes x to
$m A^{\prime}$'s at stride m
3.) $y=L_{k}^{n} x$: different ways of viewing it
a.) view x as $m \times k$ matrix:
for $j=0: m-1 / / m=n / k$
$y[i * m+j]=x[i+k * j]$

transposition.
b.) L^{4} "reads at stride! X^{\top} stride $1 \rightarrow m$ and cortes at strode m "is the same as
c.) L_{k}^{4} performs permutation $\quad i m+j \rightarrow j k+i \quad \begin{array}{ll}0 \leqslant i<k \\ 0 \leqslant j<m\end{array}$

FFT again:

$$
\Delta F T_{k m}=(\underbrace{\lambda F T_{k} \otimes I_{n}}_{\substack{\text { str de } \\ m \rightarrow m}}) T_{m}^{n}(\underbrace{I_{k} \otimes \lambda F T_{m}}_{\substack{\text { sd ride } \\ 1 \rightarrow 1}}) \underbrace{L_{k}^{4}}_{\substack{\text { strode } \\ 1 \rightarrow m \text { stride } \\ \text { stride same } k \rightarrow 1}}
$$

this is the "dectmation-in-time" version

Decimation in frequency: vranspose:
Use: $-\partial F T$ is symmetric

$$
\begin{aligned}
& -\binom{n}{k}^{\top}=L_{m}^{n} \\
& -(A \otimes B)^{\top}=A^{\top} \otimes B^{\top}
\end{aligned}
$$

Gives:

$$
\partial F T_{k n}=L_{m}^{n}\left(I_{k} \otimes \lambda F T_{m}\right) T_{m}^{n}\left(\lambda F T_{k} \otimes I_{m}\right)
$$

Cost analysis: (was in exam for radix 2), assume $u=\alpha$ Measure: (complex adds, complex melt)
Cost: independent of rall $\left(n \log _{2}(n), \frac{1}{2} n \log _{2}(n)\right)$ complex add $=2$ real adds $"$ molt $\leqslant 4$ real molts 2 real adds

$$
\Rightarrow \text { real } \cos \alpha \leq 2 n \log _{2}(n)+3 n \log _{2}(n)=5 n \log _{2}(n)
$$

Herative radix- 2 FFT

Most people consider this "the FFT"

