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Least Squares with Rank Deficient Matrix

• Consider the least squares problem

‖Ax− b‖2 = min with A ∈ Rm×n, m > n, rank(A) = r < n.

• Many solutions, want minimal norm solution xmin

• Today xmin is computed most conveniently by the SVD

– decompose A = UΣV> with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

– determine rank r, σr 6= 0, σk = 0, k = r + 1, . . . , n

– form Ur := U(:, 1 : r), Vr := V (:, 1 : r), Σr := Σ(1 : r, 1 : r)

• =⇒ xmin = VrΣ
−1
r U>r b
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Solution without using SVD ?

• Use extrapolation! Don’t need to know the rank.

I presented this idea 1974 in a talk in the Numerical Analysis

Colloquium at ETH.

• Choose ε > 0 and consider A

εI

x(ε) ≈

 b

0


• Matrix has now full rank, can show

x(ε) = (A>A+ ε2I)−1A>b = xmin + c1ε
2 + c2ε

4 + · · ·

Using εk+1 = εk/2 and Romberg-extrapolation we get lim
ε→0

x(ε) = xmin.

• Can speed up computing of x(εk) by first computing A = QR or by

bidiagonalization.
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Example: A ∈ R40×8, rank(A) = 3 SolByExtra

m=40; A=magic(m); n=m/5; A=A(:,1:n); b=A*rand(n,1);

Solutions :
Matlab A\b Using SVD Extrapolation

Warning: Rank deficient with rank r = 3 4 iterations

1.846673326583244 0.457727535991772 0.457727535991773

2.459131966980111 0.747175086297768 0.747175086297764

0 0.694218248476673 0.694218248476673

0 0.616598049455061 0.616598049455064

0 0.669554887276158 0.669554887276158

0 0.535347735013380 0.535347735013383

0 0.482390897192287 0.482390897192288

0.725632546879197 0.828425400739452 0.828425400739448

Norm of solutions:
3.159758693196030 1.812127976894189 1.812127976894188

Norm of residuals:
1.0e-10 *
0.055694948577711 0.136651389778460 0.064150008164078
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My Way to Stanford

• In the audience of my 1974-talk were

Peter Henrici Rudolf Kalman
1923 – 1987 1930 – 2016

• Kalman gave me one of his papers containing a proof (using only

the Penrose Equations) that the pseudo-inverse is unique.

• Henrici encouraged me to apply for a NSF grant to continue the

research with the “master of least squares algorithms”: Gene Golub.



6/33

The Golden Year 1977-1978

• Research proposal accepted by the Swiss NSF, got a grant.

• We spent a year at Stanford University. I worked as postdoc in Serra

House in the numerical analysis group of Prof. Gene H. Golub.
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Gene gave me one of his papers:
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Quotes from Paper
• No consideration to a practical computer algorithm is given here.

• As an abstraction from optimal control theory, Balakrishnan [1] studies the

minimization of ‖Cy − f‖2, subject to the quadratic inequality constraint

y>y ≤ 1 . . .

• THEOREM. If x is any vector in S at which Φ(x) is stationary with respect to S,

then there exists a real number λ = λ(x) such that

(1.5) A(x− b) = λx

(1.6) xHx = 1

Conversely, if any real λ and vector x satisfy (1.5)–(1.6), then x renders Φ(x)

stationary with respect to S.

• Then the requirement that xHx =
∑n

i=1 |xi|2 = 1 is equivalent to the condition

(2.3) g(λ) =

n∑
i=1

λi|bi|2

|λi − λ|2
= 1

(2.3) is now called a secular equation!
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Secular Equation – One of the Favorite Topics of Gene

• Conference on Computational Methods with Applications,

August 19 - 25, 2007, Harrachov, Czech Republic a.

• Gene’s talk is available on-line:

ahttp://www.cs.cas.cz/~harrachov

http://www.cs.cas.cz/~harrachov
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One of the Many Examples in Gene’s Talk
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Least Squares with Quadratic Constraint

• 1977 Gene Golub suggested to me to work on this problem a

‖Ax− b‖2 = min s.t. ‖Cx− d‖2 = δ2.

• Lagrange function: L(x, λ) = ‖Ax− b‖2 + λ
(
‖Cx− d‖2 − δ2

)
• The solution is a stationary points of L ⇐⇒ a solution of

∂L/∂x = 0 and ∂L/∂λ = 0

(1)
(
A>A+ λC>C

)
x = A>b + λC>d

(2) ‖Cx− d‖2 = δ2

 “Normal Equations”.

• Solving (1) for x(λ), inserting in (2) we get f(λ) = ‖Cx(λ)− d‖2

and the secular equation

f(λ) = δ2

aHe also encouraged Lars Eldén to work on the same as I found out later!
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Secular Equation Represented by BSVD

• BSVD (generalized SVD, also GSVD) for pair of matrices Am×n, Cp×n:

U>AX = DA = diag(α1, . . . , αn), αi ≥ 0

V>CX = DC = diag(γ1, . . . , γq), γi ≥ 0, q = min(n, p)

where Um×m and V p×p orthogonal and Xn×n nonsingular.

• If γ1 ≥ . . . ≥ γr>γr+1 = . . . = γq = 0 then µi =
α2
i

γ2
i

, i = 1, . . . , r are the

eigenvalues of generalised EV-Problem

A>Ax = µC>Cx.

• With c := U>b and e := V>d the secular equation becomes

f(λ) =

r∑
1=1

α2
i

(
γici − αiei
α2
i + λγ2

i

)2

+

p∑
i=r+1

e2i = δ2

f has at most r poles for λ = −µi and f(λ) = δ2 at most 2r solutions
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Characterization of the Solution
If (x1, λ1) and (x2, λ2) are solutions of the normal equations, then

Thm 1

‖Ax2 − b‖2 − ‖Ax1 − b‖2 =
λ1 − λ2

2
‖C(x1 − x2)‖2.

If λ1 > λ2 =⇒ ‖Ax1 − b‖ < ‖Ax2 − b‖
=⇒ the largest solution λ determines solution

Thm 2

−λ1 + λ2

2
‖C(x1 − x2)‖2 = ‖A(x1 − x2)‖2.

=⇒ λ1 + λ2 < 0 =⇒ At most one λ > 0
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Geometric Interpretation for n = 2

‖Ax− b‖2 = min subject to ‖Cx− d‖2 = δ2

L(x, λ) = ‖Ax−b‖2+λ
(
‖Cx− d‖2 − δ2

)
∂L/∂x = 0 ⇐⇒

∇||Ax− b||2 = −λ∇||Cx− d||2

Stationary points: gradients are parallel

• P1, P3, P4: gradients have same direc-

tions: =⇒ λ < 0

• P2: gradients have opposite directions:

=⇒ λ > 0

• Solutions of the secular equation:

3 with λ < 0 and one (the minimum, the

solution of the problem) with λ > 0.
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Inequality Constraint

‖Ax− b‖2 = min subject to ‖Cx− d‖2≤ δ2

1. M = {x | ‖Ax− b‖ = min}

2. If ‖Cx∗ − d‖ ≤ δ for some x∗ ∈M then x∗ is a solution.

Constraint is not active.

3. If {x | ‖Cx− d‖ ≤ δ} ∩M = ∅ then

constraint is active, solution on boundary: ‖Cx− d‖2 = δ2

(a) solve secular equation f(λ) = δ2 for the only λ∗ > 0

(b) x(λ∗) is the solution.

One of the typical applications is from Christian Reinsch,

“Smoothing by Spline Functions”, 1967.
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Example 1 ‖Ax− b‖ = min s.t. ‖Cx− d‖ ≤ 10 Bsp1

A b

0.7398 0.5244 -4.4414
0.8930 0.7545 -5.9504
0.0259 0.1698 -0.7691
0.1376 0.6727 -2.1635
0.4241 0.6187 -1.1464
0.7646 0.0068 -4.2864

C d

-1.6443 -1.9204 2.2650
-0.0263 -0.3913 3.0165
-1.9660 -0.2804 2.0781

‖Ax− b‖ = const, ‖Cx− d‖ = 10 f(λ) = ‖Cx(λ)− d‖

active constraint, λi = [−0.7857, 0.0772], poles= −µi = [−0.4582,−0.2935]
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Equality Constraint

‖Ax− b‖2 = min subject to ‖Cx− d‖2 = δ2

1. Constraint is always active.

2. Compute the largest solution of the secular equation: λmax

3. λmax may be positive or negative.

4. The solution is x(λmax)
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Example 2 ‖Ax− b‖ = min s.t. ‖Cx− d‖ = 10 Bsp2

A b

0.5859 0.6309 -3.9636
0.1907 0.8920 -3.1196
0.5034 0.6734 -1.9904
0.0509 0.6853 -5.6050
0.0561 0.6957 -1.4789
0.3352 0.7998 -3.0672

C d

-0.5194 -0.9237 3.7413
-1.4917 -0.1797 3.7109
-0.3088 -1.2986 2.3508

‖Ax− b‖ = const, ‖Cx− d‖ = 10 f(λ) = ‖Cx(λ)− d‖
λi = [−1.6157,−0.9211,−0.1827,−0.0962], poles = −µi = [−1.2686,−0.1393]
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Example 3 secular equation with one (double) pole Bsp3

A b

0.9200 0.9900 2.9000
0.9800 0.8000 2.5800
0.0400 0.8100 1.6600
0.8500 0.8700 2.5900
0.8600 0.9300 2.7200
0.1700 0.2400 0.6500
0.2300 0.0500 0.3300
0.7900 0.0600 0.9100
0.1000 0.1200 0.3400
0.1100 0.1800 0.4700

C = A

d

0.8147
0.9058
0.1270
0.9134
0.6324
0.0975
0.2785
0.5469
0.9575
0.9649

λi = [−1.4057,−0.5943], −µi = [−1.0000,−1.0000]
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Example 4 Special Case: Constant secular function Bsp4

A b

0.9200 0.9900 -0.7048
0.9800 0.8000 0.6638
0.0400 0.8100 0.2285
0.1100 0.1800 -0.1024

C d

-0.0925 -0.0088 -0.2748
-0.2666 0.1165 0.6711
0.0353 -0.3772 0.5353
-0.3109 -0.2802 -0.4330

• In this example

A>b = 0 and C>d = 0

=⇒
(
A>A+ λC>C

)
x = 0

• x = 0, f(λ) = ‖d‖2 = const .

• Nontrivial solution of normal equations

are eigenvectors for λ = −µi

• λi = [−15.3424, −1.8882]

• Solution is eigenvector for eigenvalue

1.8882, scaled so that

‖ρCx− d‖ = δ = 4.

ρ = ±3.8730.
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Solving the Secular Equation

• Assume active constraint ‖Cx− d‖ ≤ δ

• Want compute λ∗ > 0

• Consider Newton’s iteration for the equations

g1(λ) := f(λ)− δ2 = 0

g2(λ) :=
√
f(λ)− δ = 0

g3(λ) :=
1√
f(λ)

− 1

δ
= 0.

• Reinsch first used g2, starting with λ0 = 0.

He observed better global convergence using g3.

Proved also monotonic convergence.
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Why Better Global Convergence for g3 ?
Compare the Newton iteration functions

λ− f − δ2

f ′
for g1

λ− f − δ2

f ′
2

1 +
δ√
f

for g2

λ− f − δ2

f ′

2

√
f

δ

1 +
δ√
f

for g3

For
√
f >> δ the Newton step for g2 is twice the step for g1!

And for g3 even larger, proportional to

√
f
δ

.
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Geometric Argument for Reinsch’s Proposal

• Geometric derivation to construct a zero finder for f(x) = δ2:

Approximate f for x = xk by simpler function h(x) such that

h(i)(xk) = f (i)(xk), i = 0, 1.

• Solving h(x) = δ2 gives the new iterate xk+1.

• Newton’s method: h(x) = ax+ b =⇒ xk+1 = xk −
f(xk)− δ2

f ′(xk)

• Reinsch’s proposal: h(x) = a
(x− b)2 gives

xk+1 = xk −
f(xk)− δ2

f ′(xk)
G(xk) with G(x) =

2

√
f

δ

1 +
δ√
f

• The secular function is much better approximated by h than by a

linear function!
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Computing Derivatives of the Secular Function

Derivatives can be obtained by differentiating the normal equations:

•
(
A>A+ λC>C

)
x = A>b + λC>d

f(λ) = ‖Cx− d‖2

•
(
A>A+ λC>C

)
x(k) = −k C>Cx(k−1)

Cx(0) := Cx− d, k = 1, 2, . . .

• f (2k−1)(λ) = k γ2k−1 x(k)>C>Cx(k−1)

f (2k)(λ) = γ2k‖Cx(k)‖2

γ2k = (2k + 1)γ2k−1, γ2k−1 =
2

k
γ2k−2, γ1 = 2
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Effective Computation for A, C dense and λ∗ > 0

• Avoid using normal equations! Rather solve the least squares

problem  A
√
λC

x ≈

 b
√
λd


• Use Eldén’s Transformation to simplify A

√
λC

x ≈

 b
√
λd

 −→
 A′
√
λ I

x′ ≈

 b′
√
λd′


• For P , Q orthogonal with y = Q>xP> 0

0 Q>

 A
√
λ I

QQ>x ≈

 P>b

Q>
√
λd

 ⇐⇒
P>AQ√

λ I

y ≈

c1

c2


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Choose P and Q

1. SVD: Σ = P>AQ =⇒

 Σ
√
λ I

y ≈

c1

c2


+ Efficient iteration (n Givens rotations per step)

- Preparation: need SVD

2. Bidiagonalization: B = P>AQ =⇒

 B
√
λ I

y ≈

c1

c2


+ cheaper preparation

± still efficient iteration using 2n Givens rotations per step

followed by backsolve with bidiagonal matrix
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

x x

x x

x x

x

x

x

x

x


→



0 x

x x

x x

x

x x

x

x

x


→



0 0

x x

x x

x

x x

x

x

x


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One-point Iteration Methods

• Every fixed point iteration xn+1 = F (xn) can be seen as a Newton

iteration to some g(x) = 0

x− g(x)

g′(x)
= F (x) ⇐⇒ g(x) = c ·

(∫
dx

x− F (x)

)
.

• Example Halley’s iteration F (x) = x− 2f(x)f ′(x)
2f ′(x)2−f ′′(x)f(x)

g(x) = exp

(∫ (
f(x)

f ′(x)
− f ′′(x)

2f ′(x)

)
dx

)
=

f(x)√
f ′(x)

Thus Halley for f(x) = 0 is Newton for g(x) = f(x)√
f ′(x)

= 0.

• Motivated by the secular equation I became interested in studiying fixed

point iterations xn+1 = F (xn), where

F (x) = x− f(x)

f ′(x)
G(x)
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Third Order Iterative Methods
Assume s is a simple zero of f . Consider

• xn+1 = F (xn) = xn − f(xn)
f ′(xn)G(xn)

• Let u(x) := f(x)
f ′(x) then F (x) = x− u(x)G(x)

• We wish to have F ′(s) = F ′′(s) = 0 for cubic convergence

F ′ = 1− u′G− uG′, F ′′ = −u′′G− 2u′G′ − uG′′

u = f/f ′, u′ = 1− ff ′′

f ′2

u′′ = −f
′′

f ′
+ 2

ff ′′

f ′3
− ff ′′′

f ′2
.

• Since u(s) = 0, u′(s) = 1, u′′(s) = − f
′′(s)
f ′(s)

=⇒ F ′(s) = 0 if G(s) = 1 and F ′′(s) = 0 if G′(s) = 1
2
f ′′(s)
f ′(s)
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Third Order Iterative Methods (cont.)

• G(s) = 1, G′(s) = 1
2

f ′′(s)
f ′(s) not helpful since we do not know s.

• t(x) := f(x)f ′′(x)
f(x)2

= 1− u′(x) =⇒ t(s) = 0, t′(s) = −u′′(s) = f ′′(s)
f ′(s)

• Consider G(x) = H(t(x)), G(s) = H(0)

G′(x) = H ′(t(x))t′(x) =⇒ G′(s) = H ′(0)
f ′′(s)

f ′(s)

Theorem Let s be a simple zero of f and H any function with H(0) = 1,

H ′(0) = 1/2 and |H ′′(0)| <∞. The iteration xn+1 = F (xn), with

F (x) = x− f(x)

f ′(x)
H(t(x)) where t(x) =

f(x)f ′′(x)

f ′(x)2

is of third order.
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Many iterative methods are special cases of theorem

1. Euler’s formula H(t) = 2
1+
√

1−2t
= 1 + 1

2 t+ 1
2 t

2 + 5
8 t

3 + . . .

2. Halley’s formula H(t) = 1
1− 1

2 t
= 1 + 1

2 t+ 1
4 t

2 + 1
8 t

3 + . . .

3. Quadratic inverse interpolation H(t) = 1 + 1
2 t

4. Ostrowski’s square root iteration

H(t) = 1√
1−t = 1 + 1

2 t+ 3
8 t

2 + 5
16 t

3 + . . .

5. Hansen-Patrick family H(t) = α+1

α+
√

1−(α+1)t
= 1 + 1

2 t+ α+3
8 t2 + . . .

Result by Schröder: all third order iteration formula have the form

G(x) = H(t(x)) + f(x)2b(x)

with b arbitrary bounded for x→ s



33/33

Summary

• My first encounter with Prof.

Gene H. Golub was very fruitful

• it was the start in a new world

for me

• it was the start of my academic

career

• it was the start of deep friendship

with Gene and with international

colleagues Thank you Gene!
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