The Secular Equation

My First Encounter with Prof. Gene H. Golub (1932 – 2007)

Walter Gander, ETH and HKBU

International Workshop on Matrix Computations Gene Golub Memorial Day 2018

Hangzhou

April 20 – 24, 2018

Least Squares with Rank Deficient Matrix

- Consider the least squares problem $||A\mathbf{x} \mathbf{b}||^2 = \min \text{ with } A \in \mathbb{R}^{m \times n}, \ m > n, \ \mathrm{rank}(A) = r < n.$
- ullet Many solutions, want minimal norm solution ${f x}_{min}$
- ullet Today \mathbf{x}_{min} is computed most conveniently by the SVD
 - decompose $A = U\Sigma V^{\top}$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$
 - determine rank r, $\sigma_r \neq 0$, $\sigma_k = 0$, $k = r + 1, \ldots, n$
 - form $U_r := U(:, 1:r)$, $V_r := V(:, 1:r)$, $\Sigma_r := \Sigma(1:r, 1:r)$
- $\bullet \implies \mathbf{x}_{\min} = V_r \Sigma_r^{-1} U_r^{\top} \mathbf{b}$

Solution without using SVD ?

- Use extrapolation! Don't need to know the rank.
 I presented this idea 1974 in a talk in the Numerical Analysis
 Colloquium at ETH.
- Choose $\varepsilon > 0$ and consider

$$\begin{pmatrix} A \\ \mathbf{\varepsilon} \mathbf{I} \end{pmatrix} \mathbf{x}(\varepsilon) \approx \begin{pmatrix} \mathbf{b} \\ \mathbf{0} \end{pmatrix}$$

Matrix has now full rank, can show

$$\mathbf{x}(\varepsilon) = (A^{\mathsf{T}}A + \varepsilon^2 I)^{-1}A^{\mathsf{T}}\mathbf{b} = \mathbf{x}_{\mathsf{min}} + \mathbf{c}_1\varepsilon^2 + \mathbf{c}_2\varepsilon^4 + \cdots$$

Using $\varepsilon_{k+1} = \varepsilon_k/2$ and Romberg-extrapolation we get $\lim_{\varepsilon \to 0} \mathbf{x}(\varepsilon) = \mathbf{x}_{\min}$.

• Can speed up computing of $\mathbf{x}(\varepsilon_k)$ by first computing A=QR or by bidiagonalization.

Example: $A \in \mathbb{R}^{40 \times 8}$, rank(A) = 3

SolByExtra

m=40; A=magic(m); n=m/5; A=A(:,1:n); b=A*rand(n,1);

Solutions:

Matlab $Aackslash \mathbf{b}$	Using SVD	Extrapolation			
Warning: Rank deficient	with rank $r=3$	4 iterations			
1.846673326583244	0.457727535991772	0.457727535991773			
2.459131966980111	0.747175086297768	0.747175086297764			
0	0.694218248476673	0.694218248476673			
0	0.616598049455061	0.616598049455064			
0	0.669554887276158	0.669554887276158			
0	0.535347735013380	0.535347735013383			
0	0.482390897192287	0.482390897192288			
0.725632546879197	0.828425400739452	0.828425400739448			
Norm of solutions: 3.159758693196030	1.812127976894189	1.812127976894188			
Norm of residuals: 1.0e-10 *					
0.055694948577711	0.136651389778460	0.064150008164078			

My Way to Stanford

• In the audience of my 1974-talk were

Peter Henrici 1923 – 1987

Rudolf Kalman 1930 – 2016

- Kalman gave me one of his papers containing a proof (using only the Penrose Equations) that the pseudo-inverse is unique.
- Henrici encouraged me to apply for a NSF grant to continue the research with the "master of least squares algorithms": Gene Golub.

The Golden Year 1977-1978

- Research proposal accepted by the Swiss NSF, got a grant.
- We spent a year at Stanford University. I worked as postdoc in Serra House in the numerical analysis group of Prof. Gene H. Golub.

NUMERICAL ANALYSIS	GROUP
ACULTY & VISITORS	ROOM
G. DAHLQUIST	2
W. GANDER	T
G. GOLUB	12
S. LEON	T
J. OLIGER	18
R. SWEET	7
J. WILKINSON	2
STUDENTS	
M. BERGER	3
P. BJORSTAD	3
D. BOLEY	4
K, BUBE	3
T. CHAN	6
B. COUGHRAN	5
E. GROSSE	6
M. HEATH R. LEVEQUE	6
F. LUK	3 4
S. NASH	1
M. OVERTON	
L. TREFETHEN	5
SECRETARY	
J. WRIGHT	
TECH, TYPIST	
J. RUDNICK	

Gene gave me one of his papers:

J. Soc. Indust. Appl. Math. Vol. 13, No. 4, December, 1965 Printed in U.S.A.

ON THE STATIONARY VALUES OF A SECOND-DEGREE POLYNOMIAL ON THE UNIT SPHERE*

GEORGE E. FORSYTHE AND GENE H. GOLUB†

1. The problem. Let A be a Hermitian square matrix of complex elements and order n. Let b be a known n-vector of complex numbers. For each complex n-vector x, the nonhomogeneous quadratic expression

(1.1)
$$\Phi(x) = (x - b)^{H} A(x - b)$$

(*H* denotes complex conjugate transpose) is a real number. C. R. Rao of the Indian Statistical Institute, Calcutta, suggested to us the problem of maximizing (or minimizing) $\Phi(x)$ for complex x on the unit sphere $S = \{x : x^H x = 1\}$. Since Φ is a continuous function on the compact set S, such maxima and minima always exist. We here extend the problem to include finding all stationary values of Φ .

In summary, our problem is:

(1.2) find all x which make $\Phi(x)$ stationary for $x^{H}x = 1$.

Quotes from Paper

- No consideration to a practical computer algorithm is given here.
- As an abstraction from optimal control theory, Balakrishnan [1] studies the minimization of $\|C\mathbf{y} \mathbf{f}\|^2$, subject to the quadratic inequality constraint $\mathbf{y}^{\mathsf{T}}\mathbf{y} \leq 1 \dots$
- THEOREM. If \mathbf{x} is any vector in S at which $\Phi(\mathbf{x})$ is stationary with respect to S, then there exists a real number $\lambda = \lambda(\mathbf{x})$ such that

$$(1.5) A(\mathbf{x} - \mathbf{b}) = \lambda \mathbf{x}$$

$$(1.6) \mathbf{x}^H \mathbf{x} = 1$$

Conversely, if any real λ and vector \mathbf{x} satisfy (1.5)–(1.6), then \mathbf{x} renders $\Phi(\mathbf{x})$ stationary with respect to S.

ullet Then the requirement that ${f x}^H{f x}=\sum_{i=1}^n|x_i|^2=1$ is equivalent to the condition

(2.3)
$$g(\lambda) = \sum_{i=1}^{n} \frac{\lambda_i |b_i|^2}{|\lambda_i - \lambda|^2} = 1$$

(2.3) is now called a secular equation!

Secular Equation – One of the Favorite Topics of Gene

- Conference on Computational Methods with Applications, August 19 25, 2007, Harrachov, Czech Republic ^a.
- Gene's talk is available on-line:

Matrix Computations and the Secular Equation

Gene H. Golub

Stanford University

ahttp://www.cs.cas.cz/~harrachov

One of the Many Examples in Gene's Talk

Constrained Eigenvalue Problem

$$A = A^{T}$$

$$\max_{\mathbf{x} \neq \mathbf{0}} \mathbf{x}^{T} A \mathbf{x}$$

$$\mathrm{s.t.} \quad \mathbf{x}^{T} \mathbf{x} = 1$$

$$\mathbf{c}^{T} \mathbf{x} = 0$$

$$\phi(\mathbf{x}; \lambda, \mu) = \mathbf{x}^{T} A \mathbf{x} - \lambda (\mathbf{x}^{T} \mathbf{x} - 1) + 2\mu \mathbf{x}^{T} \mathbf{c}$$

$$\mathrm{grad} \ \phi = 0 \implies A \mathbf{x} - \lambda \mathbf{x} + \mu \mathbf{c} = \mathbf{0}$$

$$\mathbf{x} = -\mu (A - \lambda I)^{-1} \mathbf{c}$$

$$\mathbf{c}^{T} \mathbf{x} = 0 \implies \mathbf{c}^{T} (A - \lambda I)^{-1} \mathbf{c} = 0$$

Constrained Eigenvalue Secular Equation

$$A = Q\Lambda Q^{T}, \mathbf{d} = Q^{T}\mathbf{c}$$
$$\sum_{i=1}^{n} \frac{d_{i}^{2}}{(\lambda_{i} - \lambda)} = 0$$

Applications

Least Squares with Quadratic Constraint

• 1977 Gene Golub suggested to me to work on this problem ^a

$$||A\mathbf{x} - \mathbf{b}||^2 = \min \text{ s.t. } ||C\mathbf{x} - \mathbf{d}||^2 = \delta^2.$$

- Lagrange function: $L(\mathbf{x}, \lambda) = ||A\mathbf{x} \mathbf{b}||^2 + \lambda \left(||C\mathbf{x} \mathbf{d}||^2 \delta^2\right)$
- The solution is a stationary points of $L \iff$ a solution of $\partial L/\partial \mathbf{x} = 0$ and $\partial L/\partial \lambda = 0$

(1)
$$(A^{\mathsf{T}}A + \lambda C^{\mathsf{T}}C)\mathbf{x} = A^{\mathsf{T}}\mathbf{b} + \lambda C^{\mathsf{T}}\mathbf{d}$$

(2) $\|C\mathbf{x} - \mathbf{d}\|^2 = \delta^2$ "Normal Equations".

• Solving (1) for $\mathbf{x}(\lambda)$, inserting in (2) we get $f(\lambda) = ||C\mathbf{x}(\lambda) - \mathbf{d}||^2$ and the secular equation

$$f(\lambda) = \delta^2$$

^aHe also encouraged Lars Eldén to work on the same as I found out later!

Secular Equation Represented by BSVD

• BSVD (generalized SVD, also GSVD) for pair of matrices $A^{m \times n}$, $C^{p \times n}$:

$$U^{\top}AX = D_A = \operatorname{diag}(\alpha_1, \dots, \alpha_n), \ \alpha_i \ge 0$$
$$V^{\top}CX = D_C = \operatorname{diag}(\gamma_1, \dots, \gamma_q), \ \gamma_i \ge 0, \ q = \min(n, p)$$

where $U^{m \times m}$ and $V^{p \times p}$ orthogonal and $X^{n \times n}$ nonsingular.

• If $\gamma_1 \ge \ldots \ge \gamma_r > \gamma_{r+1} = \ldots = \gamma_q = 0$ then $\mu_i = \frac{\alpha_i^2}{\gamma_i^2}$, $i = 1, \ldots, r$ are the eigenvalues of generalised EV-Problem

$$A^{\top} A \mathbf{x} = \mu C^{\top} C \mathbf{x}.$$

ullet With $\mathbf{c} := U^{\top}\mathbf{b}$ and $\mathbf{e} := V^{\top}\mathbf{d}$ the secular equation becomes

$$f(\lambda) = \sum_{i=1}^{r} \alpha_i^2 \left(\frac{\gamma_i c_i - \alpha_i e_i}{\alpha_i^2 + \lambda \gamma_i^2} \right)^2 + \sum_{i=r+1}^{p} e_i^2 = \delta^2$$

f has at most r poles for $\lambda = -\mu_i$ and $f(\lambda) = \delta^2$ at most 2r solutions

Characterization of the Solution

If $(\mathbf{x}_1, \lambda_1)$ and $(\mathbf{x}_2, \lambda_2)$ are solutions of the normal equations, then

Thm 1

$$||A\mathbf{x}_2 - \mathbf{b}||^2 - ||A\mathbf{x}_1 - \mathbf{b}||^2 = \frac{\lambda_1 - \lambda_2}{2} ||C(\mathbf{x}_1 - \mathbf{x}_2)||^2.$$

If
$$\lambda_1 > \lambda_2 \implies ||A\mathbf{x}_1 - \mathbf{b}|| < ||A\mathbf{x}_2 - \mathbf{b}||$$

 \implies the largest solution λ determines solution

Thm 2

$$-\frac{\lambda_1 + \lambda_2}{2} \|C(\mathbf{x}_1 - \mathbf{x}_2)\|^2 = \|A(\mathbf{x}_1 - \mathbf{x}_2)\|^2.$$

$$\implies \lambda_1 + \lambda_2 < 0 \implies \mathsf{At} \; \mathsf{most} \; \mathsf{one} \; \lambda > 0$$

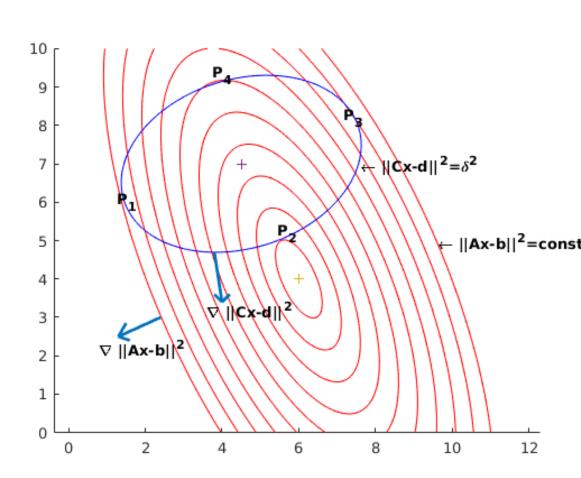
Geometric Interpretation for n=2

$$||A\mathbf{x} - \mathbf{b}||^2 = \min \text{ subject to } ||C\mathbf{x} - \mathbf{d}||^2 = \delta^2$$

$$L(\mathbf{x}, \lambda) = ||A\mathbf{x} - \mathbf{b}||^2 + \lambda \left(||C\mathbf{x} - \mathbf{d}||^2 - \delta^2 \right)$$
$$\partial L/\partial \mathbf{x} = 0 \iff$$
$$\nabla ||A\mathbf{x} - \mathbf{b}||^2 = -\lambda \nabla ||C\mathbf{x} - \mathbf{d}||^2$$

Stationary points: gradients are parallel

- P_1, P_3, P_4 : gradients have same directions: $\implies \lambda < 0$
- P_2 : gradients have opposite directions: $\implies \lambda > 0$
- Solutions of the secular equation: 3 with $\lambda < 0$ and one (the minimum, the solution of the problem) with $\lambda > 0$.



Inequality Constraint

 $||A\mathbf{x} - \mathbf{b}||^2 = \min \text{ subject to } ||C\mathbf{x} - \mathbf{d}||^2 \le \delta^2$

- 1. $M = \{ \mathbf{x} \mid ||A\mathbf{x} \mathbf{b}|| = \min \}$
- 2. If $||C\mathbf{x}^* \mathbf{d}|| \le \delta$ for some $\mathbf{x}^* \in M$ then \mathbf{x}^* is a solution. Constraint is not active.
- 3. If $\{\mathbf{x} \mid \|C\mathbf{x} \mathbf{d}\| \le \delta\} \cap M = \emptyset$ then constraint is active, solution on boundary: $\|C\mathbf{x} \mathbf{d}\|^2 = \delta^2$
 - (a) solve secular equation $f(\lambda) = \delta^2$ for the only $\lambda^* > 0$
 - (b) $\mathbf{x}(\lambda^*)$ is the solution.

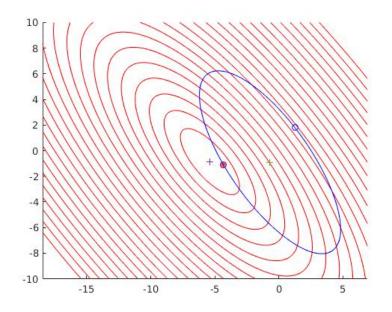
One of the typical applications is from Christian Reinsch, "Smoothing by Spline Functions", 1967.

Example 1 $||Ax - b|| = \min \text{ s.t. } ||Cx - d|| \le 10$

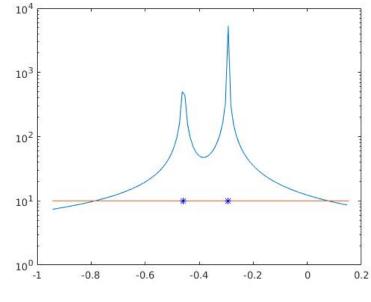
Bsp1

A		b
0.7398	0.5244	-4.4414
0.8930	0.7545	-5.9504
0.0259	0.1698	-0.7691
0.1376	0.6727	-2.1635
0.4241	0.6187	-1.1464
0.7646	0.0068	-4.2864

C		d
-1.6443	-1.9204	2.2650
-0.0263	-0.3913	3.0165
-1.9660	-0.2804	2.0781



$$||A\mathbf{x} - \mathbf{b}|| = \text{const}, ||C\mathbf{x} - \mathbf{d}|| = 10$$



$$f(\lambda) = ||C\mathbf{x}(\lambda) - \mathbf{d}||$$

active constraint, $\lambda_i = [-0.7857, 0.0772]$, poles= $-\mu_i = [-0.4582, -0.2935]$

Equality Constraint

 $||A\mathbf{x} - \mathbf{b}||^2 = \min \text{ subject to } ||C\mathbf{x} - \mathbf{d}||^2 = \delta^2$

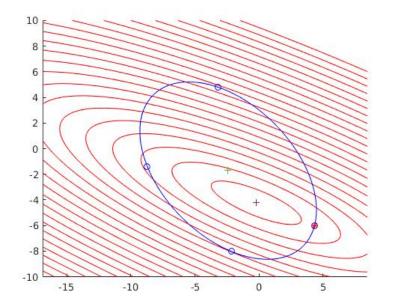
- 1. Constraint is always active.
- 2. Compute the largest solution of the secular equation: λ_{max}
- 3. $\lambda_{\rm max}$ may be positive or negative.
- 4. The solution is $\mathbf{x}(\lambda_{\max})$

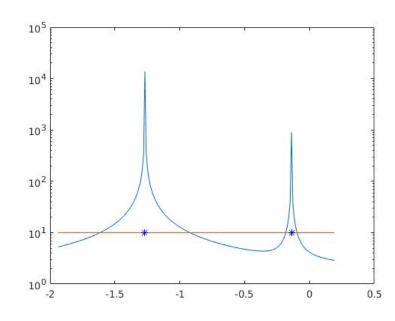
Example 2
$$||Ax - b|| = \min \text{ s.t. } ||Cx - d|| = 10$$

Bsp2

A		b
0.5859	0.6309	-3.9636
0.1907	0.8920	-3.1196
0.5034	0.6734	-1.9904
0.0509	0.6853	-5.6050
0.0561	0.6957	-1.4789
0.3352	0.7998	-3.0672

C		d
-0.5194	-0.9237	3.7413
-1.4917	-0.1797	3.7109
-0.3088	-1.2986	2.3508





$$||A\mathbf{x} - \mathbf{b}|| = \text{const}, ||C\mathbf{x} - \mathbf{d}|| = 10$$

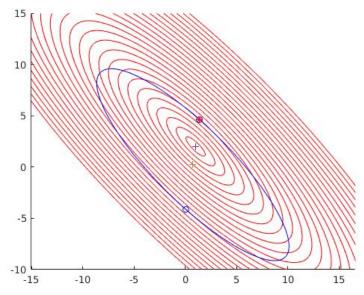
$$f(\lambda) = ||C\mathbf{x}(\lambda) - \mathbf{d}||$$

$$\lambda_i = [-1.6157, -0.9211, -0.1827, -0.0962], \text{ poles} = -\mu_i = [-1.2686, -0.1393]$$

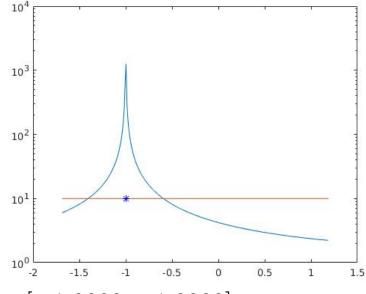
Example 3 secular equation with one (double) pole

Bsp3

A		b		\mathbf{d}
0.9200 0.9800 0.0400 0.8500 0.8600 0.1700 0.2300 0.7900 0.1100	0.9900 0.8000 0.8100 0.8700 0.9300 0.2400 0.0500 0.0600 0.1200 0.1800	2.9000 2.5800 1.6600 2.5900 2.7200 0.6500 0.3300 0.9100 0.3400 0.4700	C = A	0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649



$$\lambda_i = [-1.4057, -0.5943],$$

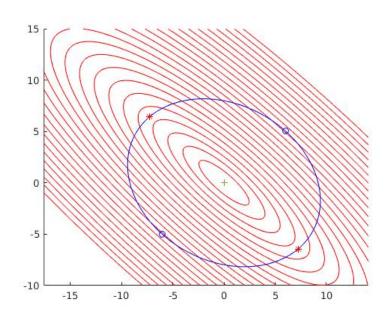


$$-\mu_i = [-1.0000, -1.0000]$$

Example 4 Special Case: Constant secular function

В	S	p 4	

A		b	C		d
0.9200 0.9800 0.0400 0.1100	0.9900 0.8000 0.8100 0.1800	-0.7048 0.6638 0.2285 -0.1024	-0.0925 -0.2666 0.0353 -0.3109	-0.0088 0.1165 -0.3772 -0.2802	-0.2748 0.6711 0.5353 -0.4330



• In this example

$$A^{\top} \mathbf{b} = 0 \text{ and } C^{\top} \mathbf{d} = 0$$
$$\implies \left(A^{\top} A + \lambda C^{\top} C \right) \mathbf{x} = 0$$

- $\mathbf{x} = 0$, $f(\lambda) = ||\mathbf{d}||^2 = \text{const}$.
- Nontrivial solution of normal equations are eigenvectors for $\lambda = -\mu_i$
- $\lambda_i = [-15.3424, -1.8882]$
- Solution is eigenvector for eigenvalue 1.8882, scaled so that $\|\rho C\mathbf{x} \mathbf{d}\| = \delta = 4.$

$$\rho = \pm 3.8730.$$

Solving the Secular Equation

- Assume active constraint $||C\mathbf{x} \mathbf{d}|| \le \delta$
- Want compute $\lambda^* > 0$
- Consider Newton's iteration for the equations

$$g_1(\lambda) := f(\lambda) - \delta^2 = 0$$

$$g_2(\lambda) := \sqrt{f(\lambda)} - \delta = 0$$

$$g_3(\lambda) := \frac{1}{\sqrt{f(\lambda)}} - \frac{1}{\delta} = 0.$$

• Reinsch first used g_2 , starting with $\lambda_0 = 0$. He observed better global convergence using g_3 . Proved also monotonic convergence.

Why Better Global Convergence for g_3 ?

Compare the Newton iteration functions

$$\lambda - \frac{f - \delta^2}{f'} \qquad \qquad \text{for } g_1$$

$$\lambda - \frac{f - \delta^2}{f'} \frac{2}{1 + \frac{\delta}{\sqrt{f}}} \qquad \text{for } g_2$$

$$\lambda - \frac{f - \delta^2}{f'} \frac{2\frac{\sqrt{f}}{\delta}}{1 + \frac{\delta}{\sqrt{f}}} \qquad \text{for } g_3$$

For $\sqrt{f} >> \delta$ the Newton step for g_2 is twice the step for g_1 ! And for g_3 even larger, proportional to $\frac{\sqrt{f}}{\delta}$.

Geometric Argument for Reinsch's Proposal

- Geometric derivation to construct a zero finder for $f(x) = \delta^2$: Approximate f for $x = x_k$ by simpler function h(x) such that $h^{(i)}(x_k) = f^{(i)}(x_k), i = 0, 1$.
- Solving $h(x) = \delta^2$ gives the new iterate x_{k+1} .
- Newton's method: $h(x) = ax + b \implies x_{k+1} = x_k \frac{f(x_k) \delta^2}{f'(x_k)}$
- Reinsch's proposal: $h(x) = \frac{a}{(x-b)^2}$ gives

$$x_{k+1} = x_k - \frac{f(x_k) - \delta^2}{f'(x_k)}G(x_k) \qquad \text{with} \quad G(x) = \frac{2\frac{\sqrt{f}}{\delta}}{1 + \frac{\delta}{\sqrt{f}}}$$

 The secular function is much better approximated by h than by a linear function!

Computing Derivatives of the Secular Function

Derivatives can be obtained by differentiating the normal equations:

- $(A^{\top}A + \lambda C^{\top}C) \mathbf{x} = A^{\top}\mathbf{b} + \lambda C^{\top}\mathbf{d}$ $f(\lambda) = \|C\mathbf{x} - \mathbf{d}\|^2$
- $(A^{\top}A + \lambda C^{\top}C) \mathbf{x}^{(k)} = -k C^{\top}C\mathbf{x}^{(k-1)}$ $C\mathbf{x}^{(0)} := C\mathbf{x} \mathbf{d}, \quad k = 1, 2, \dots$
- $f^{(2k-1)}(\lambda) = k \gamma_{2k-1} \mathbf{x}^{(k)\top} C^{\top} C \mathbf{x}^{(k-1)}$ $f^{(2k)}(\lambda) = \gamma_{2k} \|C \mathbf{x}^{(k)}\|^2$ $\gamma_{2k} = (2k+1)\gamma_{2k-1}, \quad \gamma_{2k-1} = \frac{2}{k} \gamma_{2k-2}, \quad \gamma_1 = 2$

Effective Computation for A, C dense and $\lambda^* > 0$

 Avoid using normal equations! Rather solve the least squares problem

$$\begin{pmatrix} A \\ \sqrt{\lambda} C \end{pmatrix} \mathbf{x} \approx \begin{pmatrix} \mathbf{b} \\ \sqrt{\lambda} \mathbf{d} \end{pmatrix}$$

Use Eldén's Transformation to simplify

$$\begin{pmatrix} A \\ \sqrt{\lambda} C \end{pmatrix} \mathbf{x} \approx \begin{pmatrix} \mathbf{b} \\ \sqrt{\lambda} \mathbf{d} \end{pmatrix} \longrightarrow \begin{pmatrix} A' \\ \sqrt{\lambda} I \end{pmatrix} \mathbf{x}' \approx \begin{pmatrix} \mathbf{b}' \\ \sqrt{\lambda} \mathbf{d}' \end{pmatrix}$$

• For P, Q orthogonal with $\mathbf{y} = Q^{\mathsf{T}}\mathbf{x}$

$$\begin{pmatrix} P^{\top} & 0 \\ 0 & Q^{\top} \end{pmatrix} \begin{pmatrix} A \\ \sqrt{\lambda} I \end{pmatrix} Q Q^{\top} \mathbf{x} \approx \begin{pmatrix} P^{\top} \mathbf{b} \\ Q^{\top} \sqrt{\lambda} \mathbf{d} \end{pmatrix} \iff \begin{pmatrix} P^{\top} A Q \\ \sqrt{\lambda} I \end{pmatrix} \mathbf{y} \approx \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix}$$

Choose P and Q

1. SVD:
$$\Sigma = P^{T}AQ \implies \begin{pmatrix} \Sigma \\ \sqrt{\lambda} I \end{pmatrix} \mathbf{y} \approx \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix}$$

- + Efficient iteration (n Givens rotations per step)
- Preparation: need SVD

2. Bidiagonalization:
$$B = P^{\top}AQ \implies \begin{pmatrix} B \\ \sqrt{\lambda}I \end{pmatrix} \mathbf{y} \approx \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix}$$

- + cheaper preparation
- \pm still efficient iteration using 2n Givens rotations per step followed by backsolve with bidiagonal matrix

$\int x$	\boldsymbol{x}		-		0	\boldsymbol{x}		_	0	0]
	x	x				\boldsymbol{x}	x			x	x	
		x	x				x	x			x	x
			x					x				x
x				\rightarrow	x	\boldsymbol{x}			\boldsymbol{x}	\boldsymbol{x}		
	x					x				\boldsymbol{x}		
		x					x				x	
			x					x				$x \int$

One-point Iteration Methods

• Every fixed point iteration $x_{n+1} = F(x_n)$ can be seen as a Newton iteration to some g(x) = 0

$$x - \frac{g(x)}{g'(x)} = F(x) \iff g(x) = c \cdot \left(\int \frac{dx}{x - F(x)} \right).$$

• Example Halley's iteration $F(x) = x - \frac{2f(x)f'(x)}{2f'(x)^2 - f''(x)f(x)}$

$$g(x) = \exp\left(\int \left(\frac{f(x)}{f'(x)} - \frac{f''(x)}{2f'(x)}\right) dx\right) = \frac{f(x)}{\sqrt{f'(x)}}$$

Thus Halley for f(x) = 0 is Newton for $g(x) = \frac{f(x)}{\sqrt{f'(x)}} = 0$.

• Motivated by the secular equation I became interested in studiying fixed point iterations $x_{n+1} = F(x_n)$, where

$$F(x) = x - \frac{f(x)}{f'(x)}G(x)$$

Third Order Iterative Methods

Assume s is a simple zero of f. Consider

- $x_{n+1} = F(x_n) = x_n \frac{f(x_n)}{f'(x_n)}G(x_n)$
- Let $u(x) := \frac{f(x)}{f'(x)}$ then F(x) = x u(x)G(x)
- We wish to have F'(s) = F''(s) = 0 for cubic convergence

$$F' = 1 - u'G - uG', \quad F'' = -u''G - 2u'G' - uG''$$

$$u = f/f', \quad u' = 1 - \frac{ff''}{f'^2}$$

$$u'' = -\frac{f''}{f'} + 2\frac{ff''}{f'^3} - \frac{ff'''}{f'^2}.$$

• Since u(s) = 0, u'(s) = 1, $u''(s) = -\frac{f''(s)}{f'(s)}$ $\implies F'(s) = 0$ if G(s) = 1 and F''(s) = 0 if $G'(s) = \frac{1}{2} \frac{f''(s)}{f'(s)}$

Third Order Iterative Methods (cont.)

- G(s) = 1, $G'(s) = \frac{1}{2} \frac{f''(s)}{f'(s)}$ not helpful since we do not know s.
- $t(x) := \frac{f(x)f''(x)}{f(x)^2} = 1 u'(x) \implies t(s) = 0, \quad t'(s) = -u''(s) = \frac{f''(s)}{f'(s)}$
- Consider $G(x) = H(t(x)), \quad G(s) = H(0)$

$$G'(x) = H'(t(x))t'(x) \implies G'(s) = H'(0)\frac{f''(s)}{f'(s)}$$

Theorem Let s be a simple zero of f and H any function with H(0)=1, H'(0)=1/2 and $|H''(0)|<\infty$. The iteration $x_{n+1}=F(x_n)$, with

$$F(x) = x - \frac{f(x)}{f'(x)}H(t(x)) \quad \text{where} \quad t(x) = \frac{f(x)f''(x)}{f'(x)^2}$$

is of third order.

Many iterative methods are special cases of theorem

- 1. Euler's formula $H(t) = \frac{2}{1+\sqrt{1-2t}} = 1 + \frac{1}{2}t + \frac{1}{2}t^2 + \frac{5}{8}t^3 + \dots$
- 2. Halley's formula $H(t) = \frac{1}{1 \frac{1}{2}t} = 1 + \frac{1}{2}t + \frac{1}{4}t^2 + \frac{1}{8}t^3 + \dots$
- 3. Quadratic inverse interpolation $H(t) = 1 + \frac{1}{2}t$
- 4. Ostrowski's square root iteration

$$H(t) = \frac{1}{\sqrt{1-t}} = 1 + \frac{1}{2}t + \frac{3}{8}t^2 + \frac{5}{16}t^3 + \dots$$

5. Hansen-Patrick family $H(t) = \frac{\alpha+1}{\alpha+\sqrt{1-(\alpha+1)t}} = 1 + \frac{1}{2}t + \frac{\alpha+3}{8}t^2 + \dots$

Result by Schröder: all third order iteration formula have the form

$$G(x) = H(t(x)) + f(x)^2b(x)$$

with b arbitrary bounded for $x \to s$

Summary

- My first encounter with Prof.
 Gene H. Golub was very fruitful
- it was the start in a new world for me
- it was the start of my academic career
- it was the start of deep friendship with Gene and with international colleagues

Thank you Gene!

References

- 1. Eldén, L., "Algorithms for the Regularization of Ill-conditioned Least Squares Problems", BIT, Vol. 17, 1977,pp 134–145.
- 2. Forsythe, G. E. and Golub, G. H., "On the Stat. Values of a Second Degree Polynomial on the Unit Sphere", J. Soc. Indust. Appl. Math. 13 (1965).
- 3. Gander, W., "Least Squares with a Quadratic Constraint", Numer. Math. 36, 291-307 (1981).
 - —, "Least Squares with a Quadratic Constraint", Stanford Report CS-TR-78-697, November 1978.
- 4. Gander, W., "On Halley's Iteration Method", The American Mathematical Monthly, Vol. 92, No.2 (Feb. 1985), pp. 131-134.
- 5. Reinsch, Chr. H., "Smoothing by Spline Functions", Numer. Math. 10 (1967), 177-183.
 - —, "Smoothing by Spline Functions II", Numer. Math. 16 (1971), 451-454.