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Least Squares with Rank Deficient Matrix

e Consider the least squares problem
|Ax — b||? = min with A € R™*" m > n, rank(A) = r < n.

e Many solutions, want minimal norm solution X,

e Today X, is computed most conveniently by the SVD
— decompose A = UXV! withoy >09>--->0, >0
— determine rank r, 0. #0, o0, =0, k=r+1,...,n

— form U, :=U(G,1:7), V., :=V(,1:r), 3. :=%1:r1:7)

o — Xmin=V,S 'UTb



Solution without using SVD 7

Use extrapolation! Don’'t need to know the rank.
| presented this idea 1974 in a talk in the Numerical Analysis
Colloquium at ETH.

Choose € > 0 and consider

A b
x(g) ~
el 0

Matrix has now full rank, can show

X(g) — (ATA + 82])_1ATb = Xmin + 0182 -+ C254 + .-

Using 111 = €1 /2 and Romberg-extrapolation we get lim x(g) = Xpin-

e—0
Can speed up computing of x(ej) by first computing A = QR or by
bidiagonalization.
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Example: A € R¥*8 rank(A) = 3

m=40; A=magic(m); n=m/5; A=A(:,1:n); b=A*rand(n,1);

Solutions :
Matlab A\b

Warning: Rank deficient
1.846673326583244
2.459131966980111

0

0

0

0

0
0.725632546879197

Norm of solutions:
3.159758693196030

Norm of residuals:

1.0e-10 *
0.055694948577711

Using SVD
with rank r = 3
0.457727535991772
0.747175086297768
0.694218248476673
0.616598049455061
0.669554887276158
0.535347735013380
0.482390897192287
0.828425400739452

1.812127976894189

0.136651389778460

Extrapolation
4 iterations
0.457727535991773
0.747175086297764
0.694218248476673
0.616598049455064
0.669554887276158
0.535347735013383
0.482390897192288
0.828425400739448

1.812127976894188

0.064150008164078

SolByExtra
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My Way to Stanford

e In the audience of my 1974-talk were

Peter Henrici Rudolf Kalman
1923 — 1987 1930 — 2016

e Kalman gave me one of his papers containing a proof (using only
the Penrose Equations) that the pseudo-inverse is unique.

e Henrici encouraged me to apply for a NSF grant to continue the
research with the “master of least squares algorithms”: Gene Golub.
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The Golden Year 1977-1978

e Research proposal accepted by the Swiss NSF, got a grant.

e We spent a year at Stanford University. | worked as postdoc in Serra
House in the numerical analysis group of Prof. Gene H. Golub.
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Gene gave me one of his papers:

J. Soc. Ispust. ArPL. MaTH.
Vol. 13, No. 4, December, 1965
Printed in U.8. A,

ON THE STATIONARY VALUES OF A SECOND-DEGREE
POLYNOMIAL ON THE UNIT SPHERE*

GEORGE E. FORSYTHE anp GENE H. GOLUBt

1. The problem. Let A be a Hermitian square matrix of complex elements
and order n. Let b be a known n-vector of complex numbers. For each
complex n-vector x, the nonhomogeneous quadratic expression

(1.1) &(z) = (z — b)"A(x — b)

(H denotes complex conjugate transpose) is a real number. C. R. Rao of
the Indian Statistical Institute, Calcutta, suggested to us the problem of
maximizing (or minimizing) ®(x) for complex x* on the unit sphere
S = [x:2"2z = 1]. Since ® is a continuous function on the compact set S,
such maxima and minima always exist. We here extend the problem to
include finding all stationary values of ®.

In summary, our problem is:

(1.2) find all x which make ®(z) stationary for 2"z = 1.
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Quotes from Paper

° No consideration to a practical computer algorithm is given here.

° As an abstraction from optimal control theory, Balakrishnan [1] studies the
minimization of ||C'y — f||?, subject to the quadratic inequality constraint
yTy <1...

° THEOREM. If x is any vector in S at which ®(x) is stationary with respect to S,

then there exists a real number A = A(x) such that

(1.5) A(x—b) = Xx
(1.6) xHx = 1

Conversely, if any real A and vector x satisfy (1.5)—(1.6), then x renders ®(x)
stationary with respect to S.

° Then the requirement that xx = " . |zi|?> = 1 is equivalent to the condition
2N |bil?
2.3 A) = — =
@3 s =3

(2.3) is now called a secular equation!
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Secular Equation — One of the Favorite Topics of Gene

e Conference on Computational Methods with Applications,
August 19 - 25, 2007, Harrachov, Czech Republic [}

e Gene's talk is available on-line:

Matrix Computations
and
the Secular Equation

Gene H. Golub

Stanford University

Ahttp://www.cs.cas.cz/~harrachov


http://www.cs.cas.cz/~harrachov

One of the Many Examples in Gene's Talk
Constrained Eigenvalue Problem

A=AT
max x! Ax
x#0
st. xIx=1

c'x=0
d(x; A p) = xT Ax — AxTx — 1) + 2ux’c
grad g =0 — Ax— Ax+ uc =0
x =—u(A-A)"1¢
clx=0 =c' (A—=A)"ec=0

Constrained Eigenvalue Secular Equation

Applications

4/ 35
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Least Squares with Quadratic Constraint

e 1977 Gene Golub suggested to me to work on this problem |
|Ax — b||? = min s.t. ||[Cx — d||? = §°.

e Lagrange function: L(x,A) = ||[Ax — b||* + A (]|Cx — d]||* — §?)

e The solution is a stationary points of L <= a solution of
OL/0x =0 and OL/ON =0

(1) (ATA+XCTC)x = ATb+AC"d
(2) ICx—d|* = ¢

“Normal Equations”.

e Solving (1) for x()\), inserting in (2) we get f(\) = ||Cx(\) —d||?
and the secular equation

f(A) = 6"

@He also encouraged Lars Eldén to work on the same as I found out later!
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Secular Equation Represented by BSVD
e BSVD (generalized SVD, also GSVD) for pair of matrices A™*", C?*™:
U' AX = Dy = diag(a,...,0m), o >0
VICX = Do = diag(y1,...,7¢), v > 0, ¢ = min(n, p)

where U™*™ and VP*P orthogonal and X" "™ nonsingular.

2

a;
21
i

o lfvi>...2%v>Vy1=... =79 =0then u; = 1 =1,...,r are the

eigenvalues of generalised EV-Problem
A Ax = uC' Cx.
e With ¢ :=U'"b and e := V'd the secular equation becomes

T 2 p
N=3a? %‘Ci‘“iei) LY 2o
0=t () + 2

1=r—+1

f has at most r poles for A = —pu; and f(\) = 6% at most 2r solutions



Characterization of the Solution
If (x1,A1) and (x2, \2) are solutions of the normal equations, then

Thm 1

A1 — A

|Ax2 — b|* — [|Ax1 — b||* = |C (1 — x2)|1*.

If A\{ > Ao — HAXl — bH < ||AX2 — b”
—> the largest solution \ determines solution

Thm 2
_)\1 + A2

2
— A + A3 <0 = At most one A >0

|C (1 = x2)|* = [JA(x1 — x2) 1%

14/33
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Geometric Interpretation for n = 2
|Ax — b||* = min subject to ||Cx — d||* = §*

L(x,\) = |[Ax —b|>+ A (|Cx — d|*> — 6%) o
OL/0x = 0 «<— z
V||[Ax — b||? = =-\V||Cx—d|? A0 N\t 2os?
Stationary points: gradients are parallel 6| | B
e P, P3, Py: gradients have same direc- 51 — ||Ax-b||*=const
tions: — A <0 4t
e P»: gradients have opposite directions: 3
— A>0 4 i |“'AH
e Solutions of the secular equation: o _ | . | | H'II H'“.I
3 with A < 0 and one (the minimum, the - 5 A . o 1o — 1

solution of the problem) with A > 0.
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Inequality Constraint
| Ax — bl||* = min subject to ||Cx — d||? <
1. M ={x|||Ax — b|| = min}

2. If |[Cx* —d| <6 for some x* € M then x* is a solution.
Constraint i1s not active.

3. If {x | ||Cx —d| <6} N M = () then
constraint is active, solution on boundary: ||[Cx — d||* =6
(a) solve secular equation f(\) = 62 for the only \* > 0
(b) x(A*) is the solution.

One of the typical applications is from CHRISTIAN REINSCH,
“Smoothing by Spline Functions”, 1967.
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Example 1 ||[Ax — b|| = min s.t. ||Cx —d] < 10 Bept
A b
By o |t O o
- - -2 -1.6443  -1.9204 | 2.2650
09252 .1638 | -9.7631 -0.0203  -0:3913 | 3.0165
0.4241 06187 | -1.1464 -1.9660  -0.2804 | 2.0781
0.7646  0.0068 | -4.2864
e S g 5, e AN 10°
JA2ANNN |
TR R |
T SO 103} |
AN o
2r \ \ |I || |II |I|
i
5 102 vk N
2k \\ // \h_/ \\
:X\ N\ i ———— 4 * i == ==
8l N\ \\%\\\:\%;:-5_’ | \
e g LA N
A 15 10 5 0 5 B4 0.8 0.6 0.4 0.2 0 0.2
|Ax — b|| = const, ||Cx —d| =10 f) = ||Cx(N) —d||

active constraint, \; = [—0.7857,0.0772], poles= —u; = [—0.4582, —0.2935]
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Equality Constraint

|Ax — b||?* = min subject to ||Cx — d||?* = §*
1. Constraint is always active.
2. Compute the largest solution of the secular equation: A ax
3. Amax May be positive or negative.

4. The solution is X(Amax)
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Bsp2

Example 2 ||[Ax — b|| = min s.t. [[Cx —d| = 10

(o]
'

=t
'

w
"

(=]
—

ICx(A) —d]|

fA)

[—1.6157, —0.9211, —0.1827, —0.0962], poles = —pu;

|Ax — b|| = const, [|[Cx —d| = 10

[—1.2686, —0.1393]

1 pu—

A\
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Bsp3

=+ m
[=] =]
— —

102 F

101 L

10"

Example 3 secular equation with one (double) pole

-0.5 0.5 1.5

~1.5

[—1.0000, —1.0000]

[—1.4057, —0.5943],

2 pu—

by



Example 4 Special Case: Constant secular function Bepé
A b C d
0.9200  0.9900 | -0.7048 0.0925 -0.0088 | -0.2748
09800  0:8000 | 0.6638 02666 01165 | 0.6711
00400  0.8100 | 0:2285 00353 -0.3772 | 05353
01100 01800 | -0.1024 0.3100 -0.2802 | -0.4330

15t

10

un

o
T

0
n
T

-10

e In this example
A'b=0and C'd =0
— (ATA + ACTC) x =0

e x=0, f(A\) =||d||? = const .

e Nontrivial solution of normal equations
are eigenvectors for A = —pu;

o )\, = [—15.3424, —1.8882]

e Solution is eigenvector for eigenvalue
1.8882, scaled so that
|pCx — d|| =6 = 4.
p = £3.8730.
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Solving the Secular Equation
e Assume active constraint ||[Cx —d|| <6
e Want compute \* > 0

e Consider Newton's iteration for the equations

g1(A) := f(A) =82 =0
g2(A) ==V f(A) =0 =0
1 1

e Reinsch first used g9, starting with \g = 0.

He observed better global convergence using gs.

Proved also monotonic convergence.
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Why Better Global Convergence for g3 7

Compare the Newton iteration functions

_§2
)\—ff/(S forgl
—6% 2

)\—ff/ 5 forgg

14+ —

vii

f—52 Zﬁ
A — 0 for g
f! ) i

14+ —

vii

For /f >> 6 the Newton step for ¢y is twice the step for ¢!

Vi

And for g3 even larger, proportional to 5

23/33
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Geometric Argument for Reinsch’s Proposal

Geometric derivation to construct a zero finder for f(x) = §2:

Approximate f for x = x by simpler function h(x) such that
WD () = fO(xr),i = 0,1.

Solving h(x) = 6° gives the new iterate 1.

2
Newton's method: h(z) =ar +b = xpy1 = x) — f(?‘:()x_)a

k

. y . L a .
Reinsch’s proposal: h(x) = - 1b) gives
. Vi
Tht1 = Th — f(xjc) — Gz with G(z) = 0
f (ajk> 1+ i
v

The secular function is much better approximated by h than by a
linear function!
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Computing Derivatives of the Secular Function
Derivatives can be obtained by differentiating the normal equations:
o (ATA + )\C’TC’) x=A"b+)C"d
f(A) = [ICx —d|?
o (ATA+XCTC)xW = —kCTCxE—Y
Cx9 .=Cx—-d, k=1,2,...
o fCR=D()\) = krgp_y xFTOT Cx =)
FER(A) = yarl|Cx M2

2
Yor = (2k + V)vop—1, 7Yor—1 = 7 2k-2 M

I
MO
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Effective Computation for A, C' dense and \* > 0

e Avoid using normal equations! Rather solve the least squares

problem
A b
VAC vad
e Use Eldén’s Transformation to simplify
A b AT b’
X ~ — X =
VAC VAd VAT vad’

e For P, () orthogonal with y = Q'x

P 0 A 00 x ~ P'b — PTAQ\ (o
0 Q] \VarI “\og"vada ozl e,



Choose P and ()

> C1
1. SVD: ¥ = PTAQ — y A
\/X] Co

+ Efficient iteration (n Givens rotations per step)

- Preparation: need SVD

B
2. Bidiagonalization: B = P' AQ =— y &

\/XI Co

+ cheaper preparation

+ still efficient iteration using 2n Givens rotations per step
followed by backsolve with bidiagonal matrix

27/33
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One-point lteration Methods

e Every fixed point iteration x,41 = F(x,) can be seen as a Newton
iteration to some g(z) =0

o oRLCE LR (=)

2f (z) f' (x)
2f"(x)2—f"" () f(x)

@ =ew ([ (555~ 9707) &) = fffil>

Thus Halley for f(x) = 0 is Newton for g(z) = fz) o,

VI (@)

e Motivated by the secular equation | became interested in studiying fixed

e Example Halley's iteration F'(x) =« —

point iterations x,,+1 = F'(x,), where




Third Order lterative Methods

Assume s is a simple zero of f. Consider

o wne1 = Flan) = 20 — £5G(en)

o Let u(z) := f,((xm)) then F(z) = x — u(x)G(x)
e We wish to have F'(s) = F"(s) = 0 for cubic convergence
Fl'=1—-4G—-uG", F'=-u'G-2G —uG”

=g/t =1L

R LN S L) i

f/ f/3 f/2 |

e Since u(s) =0, u/(s) =1, u”(s) = ff/’(f))
) =

— F'(s)=0if G(s) =1 and F"(s

30/33
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Third Order Iterative Methods (cont.)

e G(s)=1, G'(s) = %J}/,/((j)) not helpful since we do not know s.
o H(o) = DL — 1 —w/(@) = ts) =0, ¥(s)=—u"(s) = L

e Consider G(z) = H(t(x)), G(s)= H(0)

¢ @) = H (@) (@) = &) = 1'(0) 5

Theorem Let s be a simple zero of f and H any function with H(0) = 1,
H'(0) =1/2 and |H"(0)| < co. The iteration x,,+1 = F(x,), with

F(z) = — ;/((Z>)H(t(x)) where t(z) = L (Jf)(«’; )gx)

is of third order.
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Many iterative methods are special cases of theorem

1.

2.

5.

Euler's formula H(t) = ﬁ =1+ 3t+ 32+ 233 +...

Halley's formula H(t) = — = 1 + 5t 4+ 31° + 3> + ...

N[+

. Quadratic inverse interpolation H(t) =1+ 5t

Ostrowski's square root iteration

H(t)= A= =1+ 5t + 57+ 50+ ...

Hansen-Patrick family H(t) = +\/‘1)‘+(1 o 14 t4+ 282 4.
(8% — (&

Result by Schroder: all third order iteration formula have the form

G(z) = H(t(z)) + f(2)b(z)

with b arbitrary bounded for x — s



Summary

My first encounter with Prof.
Gene H. Golub was very fruitful

it was the start in a new world

for me

it was the start of my academic

career

It was the start of deep friendship
with Gene and with international

colleagues

Thank you Gene!
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