Cyclic Polytope

The convex hull of n distinct points on the moment curve $\left\{m(t)=\left(t^{1}, t^{2}, \ldots, t^{d}\right)^{T}: t \in R\right\}$ in R^{d} is known as a cyclic polytope. It is known that its combinatorial structure (i.e. its face lattice) is uniquely determined by n and d. Thus we often write $c(d, n)$ to denote any polytope combinatorially equivalent to a cyclic d-polytope with n vertices.

Let $f_{k}(P)$ denote the number of k-faces in a polytope P. McMullen's Upper Bound Theorem shows that the maximum of $f_{k}(P)$ over all d-polytopes P with n vertices is attained by the cyclic polytopes for all values of $k=1,2, \ldots, d-1$.

Theorem 1 (Upper Bound Theorem) For any d-polytope with n vertices,

$$
f_{k}(P) \leq f_{k}(c(d, n)), \forall k=1, \ldots, d-1,
$$

holds.
The number of k-faces of a cyclic polytope $c(d, n)$ can be explicitely given and thus one can evaluate the order of the upper bound in terms of n and d.

Theorem 2 For $d \geq 2$ and $0 \leq k \leq d-1$,

$$
f_{k}(c(d, n))=\sum_{r=0}^{\lfloor d / 2\rfloor}\binom{r}{d-k-1}\binom{n-d+r-1}{r}+\sum_{r=\lfloor d / 2\rfloor+1}^{d}\binom{r}{d-k-1}\binom{n-r-1}{d-r} .
$$

In particular, by using the binomial identity

$$
\binom{p+q+1}{q}=\binom{p+q}{q}+\binom{p+q-1}{q-1}+\cdots+\binom{p+1}{1}+\binom{p}{0}
$$

we have

$$
\begin{aligned}
f_{d-1}(c(d, n)) & =\binom{n-\left\lceil\frac{d}{2}\right\rceil}{ n-d}+\binom{n-\left\lfloor\frac{d}{2}\right\rfloor-1}{n-d} \\
& =\binom{n-\left\lceil\frac{d}{2}\right\rceil}{\left\lfloor\frac{d}{2}\right\rfloor}+\binom{n-\left\lfloor\frac{d}{2}\right\rfloor-1}{\left\lceil\frac{d}{2}\right\rceil-1} \\
& =O\left(n\left\lfloor\frac{d}{2}\right\rfloor\right) \quad \text { for any fixed } d .
\end{aligned}
$$

For example,

P	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}
$c(5,10)$	10	45	100	105	42
$c(5,20)$	20	190	580	680	272
$c(5,30)$	30	435	1460	1755	702

The upper bound theorem can be written in dual form which gives, for example, the maximum number of vertices in a d-polytope with m facets.

Theorem 3 (Upper Bound Theorem in Dual Form) For any d-polytope with m facets,

$$
f_{k}(P) \leq f_{d-k-1}(c(d, m)), \forall k=0,1, \ldots, d-2
$$

holds.
The original proof of the Upper Bound Theorem is in [2, 3]. There are different variations, see [1, 4, 5].

References

[1] G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, 79(1-3, Ser. B):217-233, 1997. Lectures on mathematical programming (ismp97) (Lausanne, 1997), ps file available from http://www.ma.huji.ac.il/~kalai/papers.html.
[2] P. McMullen. The maximum number of faces of a convex polytope. Mathematika, XVII:179-184, 1970.
[3] P. McMullen and G.C. Shephard. Convex polytopes and the upper bound conjecture. Cambridge University Press, 1971.
[4] K. Mulmuley. Computational Geometry, An Introduction Through Randamized Algorithms. Prentice-Hall, 1994.
[5] G.M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics 152. SpringerVerlag, 1994.

