Cyclic Polytope

The convex hull of n distinct points on the moment curve $\{m(t) = (t^1, t^2, \ldots, t^d)^T : t \in R\}$ in R^d is known as a *cyclic polytope*. It is known that its combinatorial structure (i.e. its face lattice) is uniquely determined by n and d. Thus we often write c(d, n) to denote any polytope combinatorially equivalent to a cyclic d-polytope with n vertices.

Let $f_k(P)$ denote the number of k-faces in a polytope P. McMullen's Upper Bound Theorem shows that the maximum of $f_k(P)$ over all d-polytopes P with n vertices is attained by the cyclic polytopes for all values of k = 1, 2, ..., d - 1.

Theorem 1 (Upper Bound Theorem) For any d-polytope with n vertices,

$$f_k(P) \le f_k(c(d,n)), \ \forall k = 1, \dots, d-1,$$

holds.

The number of k-faces of a cyclic polytope c(d, n) can be explicitly given and thus one can evaluate the order of the upper bound in terms of n and d.

Theorem 2 For $d \ge 2$ and $0 \le k \le d-1$,

$$f_k(c(d,n)) = \sum_{r=0}^{\lfloor d/2 \rfloor} \binom{r}{d-k-1} \binom{n-d+r-1}{r} + \sum_{r=\lfloor d/2 \rfloor+1}^d \binom{r}{d-k-1} \binom{n-r-1}{d-r}.$$

In particular, by using the binomial identity

$$\binom{p+q+1}{q} = \binom{p+q}{q} + \binom{p+q-1}{q-1} + \dots + \binom{p+1}{1} + \binom{p}{0},$$

we have

$$f_{d-1}(c(d,n)) = \binom{n - \left\lceil \frac{d}{2} \right\rceil}{n-d} + \binom{n - \left\lfloor \frac{d}{2} \right\rfloor - 1}{n-d}$$
$$= \binom{n - \left\lceil \frac{d}{2} \right\rceil}{\left\lfloor \frac{d}{2} \right\rfloor} + \binom{n - \left\lfloor \frac{d}{2} \right\rfloor - 1}{\left\lceil \frac{d}{2} \right\rceil - 1}$$
$$= O(n^{\left\lfloor \frac{d}{2} \right\rfloor}) \quad for any fixed d.$$

For example,

P	f_0	f_1	f_2	f_3	f_4
c(5, 10)	10	45	100	105	42
c(5, 20)	20	190	580	680	272
c(5, 30)	30	435	1460	1755	702

The upper bound theorem can be written in dual form which gives, for example, the maximum number of vertices in a d-polytope with m facets.

Theorem 3 (Upper Bound Theorem in Dual Form) For any d-polytope with m facets,

$$f_k(P) \le f_{d-k-1}(c(d,m)), \ \forall k = 0, 1, \dots, d-2,$$

holds.

The original proof of the Upper Bound Theorem is in [2, 3]. There are different variations, see [1, 4, 5].

References

- [1] G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, 79(1-3, Ser. B):217–233, 1997. Lectures on mathematical programming (ismp97) (Lausanne, 1997), ps file available from http://www.ma.huji.ac.il/~kalai/papers.html.
- [2] P. McMullen. The maximum number of faces of a convex polytope. *Mathematika*, XVII:179–184, 1970.
- [3] P. McMullen and G.C. Shephard. *Convex polytopes and the upper bound conjecture*. Cambridge University Press, 1971.
- [4] K. Mulmuley. Computational Geometry, An Introduction Through Randamized Algorithms. Prentice-Hall, 1994.
- [5] G.M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics 152. Springer-Verlag, 1994.