Polyhedral Computation, Spring 2015 Solutions to Assignment 1

March 09, 2016

Problem 1 (Rational Numbers): Let $r=r_{1} / r_{2}$ and $s=s_{1} / s_{2}$ be two rational numbers.

1. Note that $r \times s=\frac{r_{1} s_{1}}{r_{2} s_{2}}$. Then,

$$
\begin{aligned}
\operatorname{size}(r \times s) & \leq 1+\left\lceil\log \left(\left|r_{1} s_{1}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|r_{2} s_{2}\right|+1\right)\right\rceil \\
& \leq 1+\left\lceil\log \left(\left(\left|r_{1}\right|+1\right)\left(\left|s_{1}\right|+1\right)\right)\right\rceil+\left\lceil\log \left(\left(\left|r_{2}\right|+1\right)\left(\left|s_{2}\right|+1\right)\right)\right\rceil \\
& \leq 1+\left\lceil\log \left(\left|r_{1}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|s_{1}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|r_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|s_{2}\right|+1\right)\right\rceil \\
& <\operatorname{size}(r)+\operatorname{size}(s)
\end{aligned}
$$

2. Note that $r+s=\frac{r_{1} s_{2}+s_{1} r_{2}}{r_{2} s_{2}}$. Then,

$$
\begin{aligned}
\operatorname{size}(r+s) & \leq 1+\left\lceil\log \left(\left|r_{1} s_{2}+s_{1} r_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|r_{2} s_{2}\right|+1\right)\right\rceil \\
& \leq 1+\left\lceil\log \left(\left|r_{1} s_{2}\right|+\left|s_{1} r_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|r_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|s_{2}\right|+1\right)\right\rceil \\
& \leq 1+\left\lceil\log \left(\left(\left|r_{1} s_{2}\right|+1\right)\left(\left|s_{1} r_{2}\right|+1\right)\right)\right\rceil+\left\lceil\log \left(\left|r_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|s_{2}\right|+1\right)\right. \\
& \leq 1+\left\lceil\log \left(\left|r_{1}\right|+1\right)\right\rceil+2\left\lceil\log \left(\left|s_{2}\right|+1\right)\right\rceil+\left\lceil\log \left(\left|s_{1}\right|+1\right)\right\rceil+2\left\lceil\log \left(\left|r_{2}\right|+1\right)\right\rceil \\
& <2(\operatorname{size}(r)+\operatorname{size}(s))
\end{aligned}
$$

Note that the constant 2, can not be replaced by one. Consider for example the case where $r_{1}=s_{1}=s_{2}=1$ and r_{2} arbitrary. Then one can check that

$$
\begin{aligned}
\operatorname{size}(r) & =\left\lceil\log \left(\left|r_{2}\right|+1\right)\right\rceil+2 \\
\operatorname{size}(s) & =3 \\
\operatorname{size}(r+s) & =\operatorname{size}\left(\frac{1+r_{2}}{r_{2}}\right) \geq 2 \operatorname{size}(r)-1
\end{aligned}
$$

Problem 2 (Matrix Size): Let $s>k$ and $r \leq k$. We want to bound the size of $\hat{a}_{r s}$. We observe that

$$
\begin{aligned}
\operatorname{det} \hat{A}_{K, K} & =\hat{a}_{r r} \operatorname{det} \hat{A}_{K \backslash\{r\}, K \backslash\{r\}}, \\
\operatorname{det} \hat{A}_{K, K \backslash\{r\} \cup\{s\}} & =\hat{a}_{r s} \operatorname{det} \hat{A}_{K \backslash\{r\}, K \backslash\{r\}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\hat{a}_{r s} & =\frac{\operatorname{det} \hat{A}_{K, K \backslash\{r\} \cup\{s\}}}{\operatorname{det} \hat{A}_{K, K}} \cdot \hat{a}_{r, r} \\
& =\frac{\operatorname{det} A_{K, K \backslash\{r\} \cup\{s\}}}{\operatorname{det} A_{K, K}} \cdot \hat{a}_{r, r} .
\end{aligned}
$$

It follows from the proof of Theorem 2.4 in the lecture notes that

$$
\operatorname{size}\left(\hat{a}_{r s}\right) \leq \underbrace{\operatorname{size}\left(\frac{\operatorname{det} A_{K, K \backslash\{r\} \cup\{s\}}}{\operatorname{det} A_{K, K}}\right)}_{<4 \Delta}+\underbrace{\operatorname{size}\left(\hat{a}_{r, r}\right)}_{<4 \Delta}<8 \Delta .
$$

Problem 3 (Euclidean Algorithm): Let $a_{i}>b_{i}$ be the two positive integers arising in the i 'th iteration. Note that $a_{i+1}=b_{i}$ and $b_{i+1}=a_{i}-\left\lfloor a_{i} / b_{i}\right\rfloor b_{i}$.

1. For each iteration i, the set of common divisor of $\left(a_{i}, b_{i}\right)$ and $\left(a_{i+1}, b_{i+1}\right)$ are the same. Secondly, we have $a_{i+1}=b_{i}<a_{i}$ and $b_{i+1}<b_{i}$, therefore the $\max \left\{a_{i}, b_{i}\right\}$ decreases with every iteration. Furthermore, the a_{i} and b_{i} stay non-negative. Thus, for some iteration k, we have to arrive at $a_{k} \geq 1$ while $b_{k}=0$. By the fact that the set of common divisors is preserved, the a_{k} is the greatest common divisor of (a, b).
2. Observe that $b_{i+1}<a_{i} / 2$ and $a_{i+1}=b_{i}$. In other words, $\operatorname{size}\left(a_{i+1}\right)+\operatorname{size}\left(b_{i+1}\right)$ is strictly less than $\operatorname{size}\left(a_{i}\right)+\operatorname{size}\left(b_{i}\right)$ since

$$
\begin{aligned}
\operatorname{size}\left(b_{i+1}\right) & =\left\lceil\log \left(b_{i+1}+1\right)\right\rceil+1 \\
& \leq\left\lceil\log \left(\frac{a_{i}}{2}-1+1\right)\right\rceil+1 \\
& \leq\left\lceil\log \left(a_{i}\right)-1\right\rceil+1 \leq \operatorname{size}\left(a_{i}\right)
\end{aligned}
$$

Hence, the number of arithmetic operations of the Euclidean algorithm is in $O(\operatorname{size}(a))$ which is asymptotically the same as $O(\log a)$. As the largest size of generated numbers is linear in the input size, the Euclidean algorithm runs in polynomial time.

Problem 4 (Hermite Normal Form): We are given the matrix

$$
A=\left(\begin{array}{cccc}
-4 & 6 & -6 & -6 \\
6 & -3 & -9 & -3 \\
4 & -3 & 9 & -3
\end{array}\right)
$$

1. When applying the procedure from the script, one starts operating on the first row:

$$
A_{1}:=A T_{1}=A\left(\begin{array}{cccc}
1 & -3 & 3 & 3 \\
1 & -2 & 3 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
3 & -12 & 0 & 6 \\
1 & -6 & 12 & 0
\end{array}\right)
$$

The procedure continues with the second row:

$$
A_{2}:=A_{1} T_{2}=A_{1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 2
\end{array}\right)=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
1 & 0 & 12 & -6
\end{array}\right)
$$

Finally, the result is:

$$
\left[\begin{array}{ll}
B & \mathbf{0}
\end{array}\right]:=A_{2} T_{3}=A_{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 2
\end{array}\right)=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
1 & 0 & 6 & 0
\end{array}\right)
$$

The Hermite normal form $\left[\begin{array}{ll}B & \mathbf{0}\end{array}\right]$ is unique. The matrix B is a nonsingular and nonnegative lower triangular matrix with $b_{i i}>0$ and $b_{i j}<b_{i i}$ for all rows i and columns $j<i$.
2. As the inverse of a lower triangular matrix is also lower triangular, the inverse of B

$$
B^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-\frac{1}{4} & \frac{1}{6} & 0 \\
-\frac{1}{12} & 0 & \frac{1}{6}
\end{array}\right)
$$

can be computed by hand. To check feasibility of the given equation systems we compute

$$
B^{-1} b=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-\frac{1}{4} & \frac{1}{6} & 0 \\
-\frac{1}{12} & 0 & \frac{1}{6}
\end{array}\right)\left(\begin{array}{c}
0 \\
12 \\
18
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right) \text { and } B^{-1} b^{\prime}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-\frac{1}{4} & \frac{1}{6} & 0 \\
-\frac{1}{12} & 0 & \frac{1}{6}
\end{array}\right)\left(\begin{array}{l}
4 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
\frac{1}{6}
\end{array}\right) .
$$

The only equation system allowing an integral solution is $A x=b$. For the other, the vector

$$
z=\left(\begin{array}{c}
-\frac{1}{12} \\
0 \\
\frac{1}{6}
\end{array}\right)
$$

is a certificate proving infeasibility. According to Corollary 2.6, any rational vector z for which $z^{T} A=$ is integral and $z^{T} b$ is fractional proves infeasibility.
3. The transformation matrix is

$$
T:=T_{1} T_{2} T_{3}=\left(\begin{array}{cccc}
1 & 3 & -3 & 9 \\
1 & 3 & -4 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & -2 & 4
\end{array}\right)
$$

4. Every vector

$$
x=T\left[\begin{array}{c}
B^{-1} b \\
z
\end{array}\right]=\left(\begin{array}{c}
-3+9 z \\
-6+11 z \\
z \\
-4+4 z
\end{array}\right)
$$

where z is an integral vector in \mathbb{Z}^{n-m} is a solution to the equation system $A x=b$.

Problem 5 (Lattice Basis):

1. Since the columns of B build a basis of $L(A)$, we can write each column of B^{\prime} as an integer linear combination of columns in B, that is, $B^{\prime}=B T$ for some integer matrix $T \in \mathbb{R}^{m \times m}$. Then $\left|\operatorname{det}\left(B^{\prime}\right)\right|$ equals $|\operatorname{det}(B)| \cdot|\operatorname{det}(T)|$, and as both B and B^{\prime} are non-singular, the absolute value $|\operatorname{det}(T)|$ is non-zero. As T is integral, the determinant $\operatorname{det}(T)$ is also integral and $|\operatorname{det}(T)| \geq 1$ accordingly. The inequality $|\operatorname{det}(B)| \leq\left|\operatorname{det}\left(B^{\prime}\right)\right|$ immediately follows.
2. Once the statement in a) is proved, the "only if" direction immediately follows. Suppose B^{\prime} is a basis, and observe that the columns of both B and B^{\prime} represent points in the lattice. Applying a) twice implies $|\operatorname{det}(B)| \leq\left|\operatorname{det}\left(B^{\prime}\right)\right|$ and $\left|\operatorname{det}\left(B^{\prime}\right)\right| \leq$ $|\operatorname{det}(B)|$. For the "if" direction, we assume that $|\operatorname{det}(B)|=\left|\operatorname{det}\left(B^{\prime}\right)\right|$ and recall $B^{\prime}=B T$ for some integer matrix T. Therefore $|\operatorname{det}(T)|=1$, that is, the matrix T is unimodular. The inverse of a unimodular matrix is again unimodular, therefore T^{-1} is integral with $\left|\operatorname{det}\left(T^{-1}\right)\right|=1$. Since $B=B^{\prime} T^{-1}$, the basis B can be expressed as a integer linear combination of columns in B^{\prime}, that is, B^{\prime} is a basis, too.
