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Problem 1 (Rational Numbers): Let r = r; /ry and s = s1/s3 be two rational numbers.

1. Note that r x s = ”51 . Then,

size(r x s) <1+ Hog(|r151| + 1)] + [log(|rasa| + 1)]
< 1+ Nlog(([r1] + 1)(sal + 1)] + Mog((fra] + 1)([s] + 1))
<1+ [og(ira| + 1)] + [og(Jsa] + 1)] + [og(lra] + 1] + [log(|s] + 1)]
< size(r) + size(s)

2. Note that r 4 s = 18248172 Thep,

282
size(r + s) < 1+ [log(|ris2 + s1m2| + 1)] + [log(|rasa| + 1)]
< 1+ [log(|risa| + |sira| + 1) + [log(|ro| + 1)1 + [log(]s2| + 1)
< 1+ [log((|ris2] + 1)(|sira| 4+ 1)1 + [log(|ra| + 1)] + [log(|s2| + 1)
< 1+ [log(|r1] + 1)] + 2[log(|s2| + 1)] + [log(|s1] + 1)] + 2[log(|r2| + 1)]
< 2(size(r) + size(s))
Note that the constant 2, can not be replaced by one. Consider for example the
case where ry = s; = s, = 1 and ry arbitrary. Then one can check that
size(r) = [log(|ra| +1)] + 2
size(s) = 3

1
size(r + s) = size < i 7“2) > 2size(r) — 1

T

Problem 2 (Matrix Size): Let s > k and r < k. We want to bound the size of a,5. We
observe that

det AKJ( = Q,, det AK\{rp},K\{T}?
det AK,K\{T}U{S} = drs det AK\{T},K\{T} .



Therefore
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det Ax i

_ detAx o
det Ax i

Qs T

T

It follows from the proof of Theorem 2.4 in the lecture notes that

det A UL s
size(a,s) < size KK friUte} + size(a,,) < 8A.
det AK,K ——
<4A

Problem 3 (Euclidean Algorithm): Let a; > b; be the two positive integers arising
in the i’th iteration. Note that a;11 = b; and b1 = a; — |a;/b;]b;.

1. For each iteration i, the set of common divisor of (a;,b;) and (a;;1,b;11) are the
same. Secondly, we have a;;1 = b; < a; and b1 < b;, therefore the max{a;,b;}
decreases with every iteration. Furthermore, the a; and b; stay non-negative. Thus,
for some iteration k, we have to arrive at a, > 1 while by = 0. By the fact that the
set of common divisors is preserved, the ay is the greatest common divisor of (a, b).

2. Observe that b1 < a;/2 and a;41 = b;. In other words, size(a;;1) + size(b;11) is
strictly less than size(a;) + size(b;) since
size(biy1) = [log(biy1 +1)] + 1
< [log(%—1+1>1+1
< [log(a;) — 1] 4+ 1 < size(a;).
Hence, the number of arithmetic operations of the Euclidean algorithm is in O(size(a))

which is asymptotically the same as O(loga). As the largest size of generated num-
bers is linear in the input size, the Euclidean algorithm runs in polynomial time.

Problem 4 (Hermite Normal Form): We are given the matrix

-4 6 -6 —6
A=16 -3 -9 -3
4 -3 9 =3



1. When applying the procedure from the script, one starts operating on the first row:

1 -3 3
1 -2 3 3 2 000
A1 = AleA = 3 =12 0 6
0 0 10
1 -6 12 0
0 0 01
The procedure continues with the second row:
1000
000 1 20 0 O
Ay = AT, =A =13 6 0 0
2 142 o 01 0
1 0 12 -6
010 2
Finally, the result is:
10 0 O
61 0 0 2000
B 0] = ATy = 4, —[36 00
00 0 1
1 06 0
00 —1 2

The Hermite normal form [B 0} is unique. The matrix B is a nonsingular and

nonnegative lower triangular matrix with b; > 0 and b;; < b;; for all rows 7 and
columns j < 1.

2. As the inverse of a lower triangular matrix is also lower triangular, the inverse of B

1 oo
—1 1 1
Bl=|-1 19
1 1
-1 0 G

can be computed by hand. To check feasibility of the given equation systems we
compute

L 00 0 0 L0 0\ /4 2
1 2 1 2
—1p _ 1 1 _ —1pr _ 1 1 _
1 1 1 1 1
—13 0 3 18 3 —13 0 5 3 5

The only equation system allowing an integral solution is Az = b. For the other,
the vector

is a certificate proving infeasibility. According to Corollary 2.6, any rational vector
z for which 27 A = is integral and z7b is fractional proves infeasibility.

3



3. The transformation matrix is

-3 9
—4 1
0 1
-2 4

T := TlTQTS =

o O = =
_ O W W

4. Every vector

-3+ 9z

—6 + 112
z

—4+4z

B0|

=T

where z is an integral vector in Z"~™ is a solution to the equation system Az = b.

Problem 5 (Lattice Basis):

1. Since the columns of B build a basis of L(A), we can write each column of B’ as
an integer linear combination of columns in B, that is, B’ = BT for some integer
matrix 7' € R™*™. Then |det(B’)| equals |det(B)| - |det(T")|, and as both B and
B’ are non-singular, the absolute value |det(7)| is non-zero. As T is integral, the
determinant det(T") is also integral and |det(7)| > 1 accordingly. The inequality
| det(B)| < |det(B’)| immediately follows.

2. Once the statement in a) is proved, the “only if” direction immediately follows.
Suppose B’ is a basis, and observe that the columns of both B and B’ represent
points in the lattice. Applying a) twice implies | det(B)| < | det(B’)| and | det(B’)| <
| det(B)|. For the “if” direction, we assume that |det(B)| = | det(B’)| and recall
B’ = BT for some integer matrix 7T". Therefore | det(7)| = 1, that is, the matrix T
is unimodular. The inverse of a unimodular matrix is again unimodular, therefore
T is integral with |det(T~1)] = 1. Since B = B'T!, the basis B can be expressed
as a integer linear combination of columns in B’, that is, B’ is a basis, too.



