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Problem 1 (Rational Numbers): Let r = r1/r2 and s = s1/s2 be two rational numbers.

1. Note that r × s = r1s1
r2s2

. Then,

size(r × s) ≤ 1 + dlog(|r1s1|+ 1)e+ dlog(|r2s2|+ 1)e
≤ 1 + dlog((|r1|+ 1)(|s1|+ 1))e+ dlog((|r2|+ 1)(|s2|+ 1))e
≤ 1 + dlog(|r1|+ 1)e+ dlog(|s1|+ 1)e+ dlog(|r2|+ 1)e+ dlog(|s2|+ 1)e
< size(r) + size(s)

2. Note that r + s = r1s2+s1r2
r2s2

. Then,

size(r + s) ≤ 1 + dlog(|r1s2 + s1r2|+ 1)e+ dlog(|r2s2|+ 1)e
≤ 1 + dlog(|r1s2|+ |s1r2|+ 1)e+ dlog(|r2|+ 1)e+ dlog(|s2|+ 1)e
≤ 1 + dlog((|r1s2|+ 1)(|s1r2|+ 1))e+ dlog(|r2|+ 1)e+ dlog(|s2|+ 1)

≤ 1 + dlog(|r1|+ 1)e+ 2dlog(|s2|+ 1)e+ dlog(|s1|+ 1)e+ 2dlog(|r2|+ 1)e
< 2(size(r) + size(s))

Note that the constant 2, can not be replaced by one. Consider for example the
case where r1 = s1 = s2 = 1 and r2 arbitrary. Then one can check that

size(r) = dlog(|r2|+ 1)e+ 2

size(s) = 3

size(r + s) = size

(
1 + r2

r2

)
≥ 2 size(r)− 1

Problem 2 (Matrix Size): Let s > k and r ≤ k. We want to bound the size of ârs. We
observe that

det ÂK,K = ârr det ÂK\{r},K\{r},

det ÂK,K\{r}∪{s} = ârs det ÂK\{r},K\{r}.
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Therefore

ârs =
det ÂK,K\{r}∪{s}

det ÂK,K

· âr,r

=
detAK,K\{r}∪{s}

detAK,K

· âr,r.

It follows from the proof of Theorem 2.4 in the lecture notes that

size(ârs) ≤ size

(
detAK,K\{r}∪{s}

detAK,K

)
︸ ︷︷ ︸

<4∆

+ size(âr,r)︸ ︷︷ ︸
<4∆

< 8∆.

Problem 3 (Euclidean Algorithm): Let ai > bi be the two positive integers arising
in the i’th iteration. Note that ai+1 = bi and bi+1 = ai − bai/bicbi.

1. For each iteration i, the set of common divisor of (ai, bi) and (ai+1, bi+1) are the
same. Secondly, we have ai+1 = bi < ai and bi+1 < bi, therefore the max{ai, bi}
decreases with every iteration. Furthermore, the ai and bi stay non-negative. Thus,
for some iteration k, we have to arrive at ak ≥ 1 while bk = 0. By the fact that the
set of common divisors is preserved, the ak is the greatest common divisor of (a, b).

2. Observe that bi+1 < ai/2 and ai+1 = bi. In other words, size(ai+1) + size(bi+1) is
strictly less than size(ai) + size(bi) since

size(bi+1) = dlog(bi+1 + 1)e+ 1

≤ dlog
(ai

2
− 1 + 1

)
e+ 1

≤ dlog(ai)− 1e+ 1 ≤ size(ai).

Hence, the number of arithmetic operations of the Euclidean algorithm is in O(size(a))
which is asymptotically the same as O(log a). As the largest size of generated num-
bers is linear in the input size, the Euclidean algorithm runs in polynomial time.

Problem 4 (Hermite Normal Form): We are given the matrix

A =

−4 6 −6 −6

6 −3 −9 −3

4 −3 9 −3

 .
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1. When applying the procedure from the script, one starts operating on the first row:

A1 := AT1 = A


1 −3 3 3

1 −2 3 3

0 0 1 0

0 0 0 1

 =

2 0 0 0

3 −12 0 6

1 −6 12 0

 .

The procedure continues with the second row:

A2 := A1T2 = A1


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 2

 =

2 0 0 0

3 6 0 0

1 0 12 −6

 .

Finally, the result is:

[
B 0

]
:= A2T3 = A2


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 2

 =

2 0 0 0

3 6 0 0

1 0 6 0

 .

The Hermite normal form
[
B 0

]
is unique. The matrix B is a nonsingular and

nonnegative lower triangular matrix with bii > 0 and bij < bii for all rows i and
columns j < i.

2. As the inverse of a lower triangular matrix is also lower triangular, the inverse of B

B−1 =


1
2

0 0

−1
4

1
6

0

− 1
12

0 1
6


can be computed by hand. To check feasibility of the given equation systems we
compute

B−1b =


1
2

0 0

−1
4

1
6

0

− 1
12

0 1
6


 0

12

18

 =

0

2

3

 and B−1b′ =


1
2

0 0

−1
4

1
6

0

− 1
12

0 1
6


4

6

3

 =

2

0
1
6

 .

The only equation system allowing an integral solution is Ax = b. For the other,
the vector

z =

−
1
12

0
1
6


is a certificate proving infeasibility. According to Corollary 2.6, any rational vector
z for which zTA = is integral and zT b is fractional proves infeasibility.
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3. The transformation matrix is

T := T1T2T3 =


1 3 −3 9

1 3 −4 1

0 0 0 1

0 1 −2 4

 .

4. Every vector

x = T

[
B−1b

z

]
=


−3 + 9z

−6 + 11z

z

−4 + 4z


where z is an integral vector in Zn−m is a solution to the equation system Ax = b.

Problem 5 (Lattice Basis):

1. Since the columns of B build a basis of L(A), we can write each column of B′ as
an integer linear combination of columns in B, that is, B′ = BT for some integer
matrix T ∈ Rm×m. Then | det(B′)| equals | det(B)| · | det(T )|, and as both B and
B′ are non-singular, the absolute value | det(T )| is non-zero. As T is integral, the
determinant det(T ) is also integral and | det(T )| ≥ 1 accordingly. The inequality
| det(B)| ≤ | det(B′)| immediately follows.

2. Once the statement in a) is proved, the “only if” direction immediately follows.
Suppose B′ is a basis, and observe that the columns of both B and B′ represent
points in the lattice. Applying a) twice implies | det(B)| ≤ | det(B′)| and | det(B′)| ≤
| det(B)|. For the “if” direction, we assume that | det(B)| = | det(B′)| and recall
B′ = BT for some integer matrix T . Therefore | det(T )| = 1, that is, the matrix T
is unimodular. The inverse of a unimodular matrix is again unimodular, therefore
T−1 is integral with | det(T−1)| = 1. Since B = B′T−1, the basis B can be expressed
as a integer linear combination of columns in B′, that is, B′ is a basis, too.
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