Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Polyhedral Computation, Spring 2016 Assignment 3^{*}

March 23, 2016

Problem 1 (Hilbert Basis): Show that if a rational cone is not pointed, a minimal integral Hilbert basis is not unique.

Problem 2 (Lower bound on the Size of a Hilbert Basis): In the proof of Theorem 4.1, assume that $t=n$ and the rational cone is generated by n linearly independent vectors $C=$ cone $\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)$. Derive a tight lower bound of k in terms of n and the absolute value of the determinant $\operatorname{det}\left(\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right)$. Note that k is the number of lattice points in the zonotope Z and $k \geq 2^{n}$, because the zonotope Z is combinatorially a cube.

Problem 1 (Convexity Checking): Consider any collection $P_{1}, P_{2}, \ldots, P_{k}$ of convex polytopes. Each polytope P_{i} is given as a system of linear inequalities $A^{i} x \leq b^{i}$ and as the set V^{i} of extreme points. The decision problem of checking the convexity of the union $P_{1} \cup P_{2} \cup \ldots \cup P_{k}$ is coNP-complete. Give a mixed IP formulation which attains a positive optimal value if and only if the union is not convex.

[^0]
[^0]: * Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than Tuesday, April 12, 2016.

