Polyhedral Computation, Spring 2016 Assignment 2*

March 09, 2015

Problem 1 (Fourier-Motzkin Elimination): Consider a system of linear inequalities $A x \leq b$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Apply Fourier-Motzkin Elimination in the i 'th variable. Denote the resulting matrix with A^{\prime}, the right-hand side with b^{\prime}.

1. Prove that $A x \leq b \Leftrightarrow A^{\prime} x^{\prime} \leq b^{\prime}$ where $x^{\prime}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)^{T}$.
2. Determine whether the following two systems of inequalities admit a feasible solution.

$$
\left(\begin{array}{cc}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & -1 \\
-5 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
4 \\
5 \\
6 \\
0 \\
-8
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
4 & 2 \\
-3 & -1 \\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
5 \\
-1 \\
17 \\
-11 \\
8
\end{array}\right)
$$

Problem 2 (Farkas Lemma): Prove Farkas' lemma using Gale's theorem.
Problem 3 (Helly's Theorem): Complete the proof of Helly's Theorem (Theorem 3.8).
Problem 4 (Minkowski-Weyl's Theorem for Polyhedra): Derive Theorem 3.9 from Theorem 3.10.

Problem 5 (Pointed Cone): Complete the proof of Corollary 3.13, namely prove that if P is a pointed cone $\{x: A x \leq \mathbf{0}\}$, then there exists a vector c such that $c^{T} x>0$ for all nonzero $x \in P$.

[^0]
[^0]: * Please hand in your solution to May Szedlák CAB G19.2 (may.szedlak@inf.ethz.ch) no later than Tuesday, March 22, 2015.

