
Appendix A

Some Useful Links and Software Sites
on Optimization

A.1 General Optimization/Operations Research Sites

1. Optimization FAQ (LP and NLP FAQ) [14] contains a lot of information and html
links concerning available software tools for LP and NLP, both commercial and non-
commercial.

2. INFORMS OR/MS Resource Page (aka Michael Trick’s Operations Research Page)
[38] is an excellent www page for general information on operations research. This
includes many links to OR-related societies, journals, software and online FAQs.

A.2 LP References

1. The earliear history of linear programming presented in Section 1.5 is mainly taken
from Dantzig’s classical book [8].

2. Some of the best books on the theory of Linear Programming are [35, 4, 39].

3. The proof of the strong duality theorem in Chapter 4 is quite unique, and its ideas can
be found in [16, 19].

4. Our presentation of interior-point methods for linear programming in Chapter 10 is
based on the excellent book [41] which contain detailed analyses of polynomial-time
interior-point algorithms.

5. As it was discussed in Section 4.8, whether or not there is a polynomial-time pivot
algorithm for linear programming is a widely open problem. There are subexponential
bounds known for certain randomized (dual) simplex algorithms, see [24, 25, 22, 37].
An implementation and computational experiments were reported in [11, 12].

There is a quite different approach to target a polynomial-time algorithm that uses
admissible pivots (described in Figure 4.4). The criss-cross method is of this type.
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Some positive results have been given in [18, 20], showing that there are very short
(linear-length) admissible pivot paths from any basic solution to an optimal basic
solution. Conjecture 4.20 on the polynomiality of the randomized criss-cross method
is presented in a more general framework of linear complementarity in [13].

A.3 Complexity Theory References

1. Some of the best books on complexity theory are [1, 21, 32].

2. Stephan Cook’s account of complexity theory is in [5].

A.4 Combinatorial Optimization References

1. Edmonds’ polynomial algorithms for the minimum-cost matchings was given in [9].

2. A polynomial algorithm for the Chinese postman problem was given in [10].

3. Some of the excellent books on combinatorial optimizations are [35, 6, 23, 36]. There
are a few classical books, e.g. [29, 33] that are still very useful.

4. To learn network flows and algorithms in depth, [2] is a great source.

5. Our account of approximation algorithms is largely based on an excellent book [40].

A.5 Useful Solvers and Libraries

1. One of the most efficient exact code, Concorde, for solving TSP is available from [3].
It contains a heuristic algorithm by Lin-Kernighan. A very efficient implementation of
Edmonds’ minimum-weight matching algorithm is available from [7], which uses the
Concorde library. Recently, further improvements have been made with an implemen-
tation (requiring LEDA) reported to be even faster, see [31].

2. A parallel library of search algorithms, such as branch-and-bound, back track search,
reverse search, is available at [30]. This library can be used to implement a B&B
algorithm or an enumeration algorithm to run in parallel on networked workstations
or on a parallel computers without knowing parallel computation.
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