
Chapter 10

Interior-Point Methods for Linear
Programming

We studied two pivoting algorithms for linear programming in Chapter 4. These algorithms
are finite and the simplex method in particular is known to be very efficient practically. Yet,
there is no known pivoting algorithm that is polynomial. There are pathological examples of
linear programs for which the simplex method (or the criss-cross method) behaves badly, i.e.,
generates an exponential number of pivots to find an optimal solution. There is a famous
example due to Klee and Minty, [28, 35]. An explicit description is given by

max xn

subject to 0 ≤ x1 ≤ 1,
ε xj−1 ≤ xj ≤ 1− ε xj−1, ∀j = 2, . . . n

(10.1)

where 0 < ε < 1/2.

x1

x2

x3

Figure 10.1: Three Dimensional Klee-Minty’s Example with ε = 1/5

120 Interior-Point Methods for Linear Programming

As you can see in Figure 10.1, the feasible region is combinatorially a n dimensional hyper-
cube with 2n extreme points and the simplex method can visit all 2n extreme points. This
example is given by a system of 2n inequalities in n variables and in particular the binary
encoding length of the problem is O(n). Thus, any polynomial algorithm uses at most a
polynomial number of arithmetic operations in terms of n. The orientation by the objective
function has a recursive structure. Namely, the orientation restricted to the (bottom) facet
associated with εxn−1 ≤ xn is reversed on the opposite facet associated with xn ≤ 1− εxn−1.
Each of these orientations are isomorphic to the orientation of an (n− 1) dimensional Klee-
Minty’s example. A typical exponential behavior of the simplex method goes though all
vertices of the bottom facet first, moves up to the top facet, and then goes through all
vertices of the facet to reach the optimal vertex.

The first polynomial algorithm for linear programming was proposed by Khachiyan [27]
in 1979. The algorithm is known as the ellipsoid method. Although it was considered a
breakthrough, the algorithm is not known to be practical because it is difficult to imple-
ment it with a reasonable arithmetic precision. The first practical polynomial algorithm
(class), known as interior-point methods, was invented by Karmarker [26] in 1984, and many
variations have been proposed afterwards including the primal-dual interior-point methods.

The purpose of this chapter is to give a brief description of the primal-dual interior-point
methods. Our main goals are to give a basic theoretical framework and to explain key algo-
rithmic components which were developed in the field of nonlinear continuous optimization.

10.1 Notions

For a function f : Rn → R, the gradient ∇f of f is defined as the vector of its partial
derivatives

∇f(x) :=

∂f(x)
∂x1

...
∂f(x)
∂xn

(10.2)

Of course, for the gradient to be defined, the function must be differentiable.

The matrix of second partial derivatives of f is the Hessian matrix denoted by H(x) or
∇2f(x) defined by

∇2f(x) = H(x) :=

∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

. . .
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn

(10.3)

In this chapter, for simplicity, we assume that any function f is twice continuously differen-
tiable, i.e. it has a second derivative that is continuous. This class of function is denoted by
C2.

10.1 Notions 121

For example, when f(x) = x2
1 − x1x3 + x2

2 + 3x2 + 2x2
3,

∇f(x) =

2x1 − x3

2x2 + 3
−x1 + 4x3

 ∇2f(x) = H(x) =

2 0 −1
0 2 0
−1 0 4

 .(10.4)

Note that when f(x) is a quadratic function as for this example, the Hessian matrix is a
constant matrix.

Taylor’s theorem or the mean value theorem states that for a function f ∈ C2, for any
x0, x ∈ R and ∆x := x− x0,

f(x) = f(x0)+∇f(x0 + θ∆x)T∆x, for some 0 ≤ θ ≤ 1(10.5)

f(x) = f(x0)+∇f(x)T∆x+
1

2
∆xT H(x0 + θ∆x)∆x, for some 0 ≤ θ ≤ 1.(10.6)

When f is a linear (quadratic) function, the first (second, respectively) equation above is
satisfied with θ = 0. The linear approximation f̄ and the quadratic approximation ¯̄f of a
function f at x0 are define by

f̄(x) := f(x0) +∇f(x0)
T (x− x0)(10.7)

¯̄f(x) := f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

T H(x0)(x− x0),(10.8)

which are exact when f is linear and quadratic, respectively.

Let’s look at a little example of one-variable function. Consider the function in one
variable

f(x) = −x3 + x2 − 7x− 145.(10.9)

Figure 10.2 depicts the behavior of this polynomial of order 3 and its linear and quadratic
approximations at x = −10. Although these functions are quite different from the original
function, at a small neighborhood of x = −10, all three functions are similar.

-15 -10 -5 5 10
x

-1000

-500

500

1000

1500

2000

f!x"

-20 -15 -10 -5 5 10 x

-4000

-2000

2000

4000

6000

8000

quad_f

lin_f

f

Figure 10.2: The function −x3 + x2 − 7x− 145 and its linear and quadratic approximations
at x = −10

122 Interior-Point Methods for Linear Programming

10.2 Newton’s Method

Newton’s method is to find a zero (root) of a vector-valued function F : Rn → Rn.

Let’s first look at the simplest case of one-variable function f : R → R. The basic idea
is quite simple. Newton’s method starts with an initial point x0 ∈ R, finds a root x1 of the
linearization (10.7) of f and repeats the same with the new point x1. Figure 10.3 depicts
the first two iterations applied to the function −x3 + x2 − 7x − 145 with an initial point
x0 = −12.

-15 -10 -5 5 10 x

-1000

1000

2000

3000

f!x"

Figure 10.3: First two iterations of Newton’s method applied to the function −x3 + x2 −
7x− 145 starting at x0 = −12

Recall that the linear approximation of f at xk is given by

f̄(x) = f(xk) +∇f(xk)
T (x− xk).

Thus, the key equation to find a root of f̄ is

∇f(xk)
T∆xk = −f(xk), or more explicitly,(10.10)

∆xk = −∇f(xk)
−1f(xk).(10.11)

Therefore, Newton’s method updates xk with

xk+1 := xk +∆xk.(10.12)

More generally, for a vector valued function F : Rn → Rn with F (x) = (f1(x), . . . , fn(x))T

and fi : Rn → R for i = 1, . . . , n, Newton’s step is given by

∇f i(xk)
T∆xk = −fi(xk) for i = 1, . . . , n.(10.13)

10.3 Primal-Dual Interior-Point Methods 123

Here a step vector ∆xk ∈ Rn is to be determined given a current point xk ∈ Rn. A more
compact expression in matrix form of these simultaneous equations is

J(xk)∆xk = −F (xk),(10.14)

where J(x) is the n× n Jacobian matrix of F defined by

J(x) :=

∇f1(x)
T

...
∇fn(x)

T

 =

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

. . .
∂fn(x)
∂x1

· · · ∂fn(x)
∂xn

 .(10.15)

In general, Newton’s method might not converge to a root even if exists. For example,
it is not hard to find a one-variable example where Newton’s method swings between two
points forever. However, under some assumptions on the function and the initial point, one
can state fast conversion theorems such as the superlinear convergence. This is the case
when Newton’s Method is applied to “almost-linear” systems in primal-dual interior-point
methods given in the next section.

Exercise 10.1 Consider a function F (x) = (f1(x), . . . , fn(x))T and fi : Rn → R for i =
1, . . . , n, which is partially linear, namely,

fi(x) = Aix− bi for i = 1, . . . , k(≤ n).(10.16)

Show that when you apply Newton’s method to this class of functions F with an initial point
x0 such that fi(x0) = Aix0 − bi = 0 for all i = 1, . . . , k, all subsequent points will satisfy
these linear equations. How many iterations does Newton’s method take to satisfy all linear
equations, if the initial point violates some?

Exercise 10.2 One often applies Newton’s algorithm to find a global minimizer of a function
f : Rn → R by searching for a point x such that ∇f(x) = 0. Let f(x) = x2

1+3x1−2x1x2+ax2
2

for some a ∈ R. Explain the first Newton iteration with an initial point x0 ∈ R2 with
(x0)1 = (x0)2 = 1. When does it find a global minimizer? When does it fail? When it works,
how many iterations does it take?

10.3 Primal-Dual Interior-Point Methods

Consider an LP in standard form with its dual.

max cTx
subject to Ax = b

x ≥ 0,
(10.17)

min bTy
subject to ATy −s = c

s ≥ 0.
(10.18)

124 Interior-Point Methods for Linear Programming

where A ∈ Zm×n, b ∈ Zm and c ∈ Zn are given.

The complementarity slackness condition says a dual pair of feasible solutions x and (y, s)
are both optimal if and only if x and s are orthogonal, i.e.,

xT s =
n
∑

j=1

xjsj = 0.(10.19)

It will be convenient to introduce a notation

X := diag(x1, x2, . . . , xn), S := diag(s1, s2, . . . , sn)

where diag(a1, a2, . . . , an) denotes the n× n diagonal matrix of diagonal entries a1, . . ., an.
Using this notation, a dual pair of x and (y, s) are both optimal if and only if

x ≥ 0 and s ≥ 0 and(10.20)

F (x, y, s) = 0,(10.21)

where

F (x, y, s) :=

ATy − s− c
Ax− b
XSe

 .(10.22)

Let us denote by X the set of vectors (x, y, s) such that x is primal feasible and (y, s) is dual
feasible, and X0 the relative interior of X , i.e.,

X := {(x, y, s) : ATy − s = c, Ax = b, x ≥ 0 and s ≥ 0},(10.23)

X0 := {(x, y, s) ∈ X : x > 0 and s > 0}.(10.24)

The generic primal-dual interior point methods can be written as follows.

Generic Primal-Dual Interior-Point Algorithm(10.25)

• start with a point (x, y, s) ∈ X0.

• generate a new point (x, y, s)+α·(∆x,∆y,∆s) where the search direction (∆x,∆y,∆s)
is obtained by Newton’s method applied to a slight modification of F , and α ≤ 1 is a
step length (for example, to make sure a new point stays in X0).

• repeat.

Of course, finding a point in X0 is itself a nontrivial problem and may not be possible
even if X is nonempty. There are other technical issues as well that need to be resolved, see
Section 10.3.3. For the sequel we assume a point (x, y, s) ∈ X0 is given.

10.3 Primal-Dual Interior-Point Methods 125

10.3.1 Newton’s Method Directly Applied to F

Here, we discuss the special case of the generic algorithm (10.25) where Newton’s method
is applied directly to F defined in (10.22) and the step length α is 1. This means that the
basic incremental step (∆x,∆y,∆s) is computed by solving

0 AT −I
A 0 0
S 0 X

∆x
∆y
∆s

 =

0
0

−XSe

 .(10.26)

This leads to the following algorithm.

Naive Primal-Dual Algorithm(10.27)

• start with a point (x, y, s) ∈ X0.

• generate a new point (x, y, s) + (∆x,∆y,∆s) where the search direction (∆x,∆y,∆s)
is computed by solving (10.26).

• repeat.

Does this algorithm work? The problem is that even if we start with a point (x, y, s) ∈ X0,
there is no guarantee that the next point stays in X0 or even in X . Newton’s algorithm
applied to F search for some root of F without respecting the nonnegativity of x and s.

Example 10.1 Let’s look at the Chataux ETH wine production problem, Example 1.1. The
matrix A, the vectors c and b of this problem in standard form setting is

A =

−2 0 0 1 0 0
−1 0 −2 0 1 0
0 −3 −1 0 0 1

 , b =

4
8
6

 , cT =
[

3 4 2 0 0 0
]

.(10.28)

One can easily verify that (x, y, s) as fixed below satisfifies (x, y, s) ∈ X0.

xT =
[

1 1 1 2 5 2
]

, yT =
[

2 2 2
]

, sT =
[

3 2 4 2 2 2
]

.(10.29)

At this point (x, y, s), the evaluation of F is

F (x, y, s)T =
[

0 0 0 0 0 0 0 0 0 3 2 4 4 10 4
]

.(10.30)

In Figure 10.4, the numbers 1, 2, 3, 4, 5 indicate the location of the initial point, the second
point,.., the fifth point generated by the Naive Primal-Dual Method. The second point in x-
space (1.39431, 1.33563, 1.10267, 1.21139, 4.40035, 0.890423) is still totally positive, while the
second point in s-space (−1.18292,−0.671268,−0.410699, 0.788611, 0.239862, 1.10958) is not
totally positive, The last three points in x-space are not totally positive and thus not feasible.
It converges to a feasible extreme point which is not optimal.

Such an behavior is not surprising because the naive primal-dual algorithm does not respect
the positivity of x and s at all.

126 Interior-Point Methods for Linear Programming

x1
x2

x3

12

3

4
5

Figure 10.4: First five points generated by the naive primal-dual algorithm

10.3.2 The Central Path

As seen in the previous section, the naive primal-dual interior-point method does not work as
generated points (x, y, s) do not stay in X0 and has no guarantee to converge to an optimal
point. To make the naive algorithm work, we must modify the function F in such a way
that the points in X0 satisfying F = 0 is not far from the current point. One way to do this
is to parametarise F as

Fτ (x, y, s) :=

AT y − s− c
Ax− b

XSe− τe

 , for any τ ≥ 0.(10.31)

The only difference from the original F is the last part XSe − τe. The effect is that
Fτ (x, y, s) = 0 implies

xjsj = τ, ∀j = 1, . . . , n,(10.32)

which are relaxed complementary slackness conditions. The central path is the set of all
feasible solutions satisfying these equations above for some τ ,

C := {(x, y, s) ∈ X0 : ∃τ ≥ 0 such that xjsj = τ, ∀j = 1, . . . , n}.(10.33)

When we have a point (x, y, s) ∈ X0, we can use the following average distance from the
complementary slackness to control an algorithm to follow the central path approximately,

µ(x, s) := (
n
∑

j=1

xjsj)/n.(10.34)

10.3 Primal-Dual Interior-Point Methods 127

This distance can be also called the average duality gap. A simple primal-dual algorithm
applies Newton’s method to Fσµ(x,s), which results in trying to solve

xjsj = σµ(x, s), ∀j = 1, . . . , n,(10.35)

for some 0 ≤ σ ≤ 1.

This leads to the following algorithm.

Simple Primal-Dual Algorithm(σ)(10.36)

• start with a point (x, y, s) ∈ X0.

• generate a new point (x, y, s) + (∆x,∆y,∆s) where the search direction (∆x,∆y,∆s)
is computed by applying Newton’s method to Fσµ(x,s) = 0.

• repeat.

When σ = 0, this algorithm coincides with the naive primal-dual algorithm. When σ = 1,
this algorithm tries to find a point on C where all xjsj’s equal to the average duality gap
at the current point. This is just too conservative to aim for an optimal solution, as the
average distance may not decrease at all. This algorithm does not guarantee that the new
point (x, y, s) + (∆x,∆y,∆s) is feasible, but it tends to stay in X0 because it tries to get
closer to the central path.

Example 10.2 Let’s look at the Chataux ETH wine production problem, Example 1.1,
again. Figure 10.5 shows the behavior of the basic primal-dual algorithm for three differ-
ent settings of σ = 0.6, σ = 0.4 and σ = 0.2. The smaller σ is, the faster the conversion.
Yet, when σ is too small (σ = 0.2), it may not follow the central path, as you see the 4th
point generated is very close to a boundary of the feasible region. When σ is large (σ = 0.8),
the algorithm is very conservative and works slowly.

Figure 10.6 depicts the behavior of the basic primal-dual algorithm with a conservative
setting of σ = 0.9. As you easily see, the first ten points stay in a neighborhood of the initial
point. The later sequence of points follows closely to the central path, and eventually gets
very close to the optimal solution.

Finally, the behavior of the basic primal-dual algorithm applied to the Klee-Minty’s ex-
ample (10.1) with n = 3 and ε = 1/5 is shown in Figure 10.7. The starting interior point is
(1/2, 1/2, 1/2).

Exercise 10.3 Using your favorite computer language, write an implementation of the sim-
ple primal-dual interior-point method (10.36). Using a very high level language like Maple
or Mathematica, it is also easy to plot the sequence of generated points and to compare your
plots with Figure 10.5, for example.

128 Interior-Point Methods for Linear Programming

x1

x2

x3

1
2

3

4

5

6

7
89

10

x1

x2

x3

1
2

3

4

56
78910

x1

x2

x3

12

3

4

5678910

Figure 10.5: First ten points generated by the simple primal-dual algorithm with σ = 0.6
(left), σ = 0.4 (middle), σ = 0.2 (right)

10.3.3 Polynomial Complexity

The previous section describes the basic idea of following the central path and converging to
an optimal solution. In order to make this idea work to design a polynomial-time algorithm
for linear programming, there are still a few more basic ideas to be incorporated carefully.

For discussions below, recall that input data c, b and A are all integral. We also use L
as the length of all these inputs in binary representation, or more exlicitely

L := L0 +mn+m+ n,

where L0 is the total length of binary encodings of each components cj , bi and aij . One can
interpret the term mn as the number of spaces (separators) needed to separate all aij ’s, n
as that to separate cj’s and m to separate bi’s.

Purification. This is a procedure to move from any feasible solution x to a basic feasible
solution x′ in such a way that the objective value at x′ is at least as large as at x. This
procedure is sometimes called as a raindrop procedure in which a raindrop falls from
an interior of the feasible region until it hits a bottom extreme point. In this setting,
the objective vector c points vertically downward. It is not difficult to imitate this
behavior algebraically using some kind of pivot operations.

Satisfactory Neighborhood. When can we say that a generated point (xk, yk, sk) is close
enough to a basic optimal solution so that the purification leads to a basic optimal
solution?

The key observation is the following: given two basic feasible solutions x and x′ with
different objective values, say cTx > cTx′, there is a lower bound of the difference
cTx− cTx′ in terms of L, namely, 2−L. This number in binary representation has the

10.3 Primal-Dual Interior-Point Methods 129

x1

x2

x3

1

2
345
678

910

Out[304]=

x1

x2

x3

1

2
345
678

910
1112
1314
1516
1718
1920
2122
2324
2526
272829
303132
3334353637
383940414243444546
47484950

Figure 10.6: First ten and fifty points generated by the simple primal-dual algorithm with
σ = 0.9

number of digits linearly bounded in L (namely, L+constant). Therefore, if (xk)T sk <
2−L, then (ck)Txk = bTyk− (xk)T sk ≥ bT y∗− (xk)T sk > z∗−2−L, where y∗ denotes any
dual optimal solution and z∗ denotes the optimal value. It follows that (xk)T sk < 2−L

is a correct termination criterion.

Fixing Parameter σ and Step Length α. To obtain an explicit polynomial complexity,
one needs to control the step length and the parameter very carefully. The most crucial
argument is to show the average duality gap µ(xk, sk) rapidly shrinks, such as, for any
ε ∈ (0, 1), if our primal-dual method generates a sequence (xk, yk, sk) such that

µ(xk+1, sk+1) ≤
(

1− δ

nω

)

µ(xk, sk)(10.37)

for some positive constant δ and ω, and the initial average duality gap is small, i.e.,
µ(x0, s0) ≤ 1/εκ for some positive constant κ, then there is an index K = O(nω| log ε|)
such that

µ(xk, sk) ≤ ε ∀k ≥ K.(10.38)

By setting ε = n2−L, we obtain the necessary number of iterations of form O(nωL)
which is a polynomial complexity in terms of input size. Note that this complexity
measures the number of iterations, and thus the actual complexity must be multiplied
by the complexity of solving Newton’s equations which is again polynomially bounded
by the input size.

A closely related is the potential reduction algorithm which uses the same search direc-
tions as the primal-dual interior-point method but uses step sizes that approximately
minimize a potential function that leads to an optimal solution. The resulting algo-
rithm has the best known iteration complexity of O(

√
nL).

130 Interior-Point Methods for Linear Programming

x1

x2

x3

1

2

3

4

5

6
7
8910

x1

x2

x3

1

23456
78910

11121314
15161718
19202122

232425
262728

293031
323334

35363738
39404142
43444546
4748495051
5253545556575859
60

Figure 10.7: The simple primal-dual algorithm applied to a 3D Klee-Minty’s Example with
σ = 0.4 (left, showing first 10 points) and σ = 0.9 (right, first 60 points)

10.3.4 How Important is Polynomial Complexity in Practice?

Many researchers in optimization might argue that interior-point methods are practically
efficient because of their polynomial complexity. Unfortunately, there is no correct imple-
mentation of a polynomial-time interior-point method. The reason is obvious: in order to
evaluate the termination criterion (xk)T sk < 2−L, one need to use arithmetic operations of
accuracy astronomically precise (i.e. L binary digits accurate) and this cannot be done in
any reasonable time even for a moderate size of L, say 10, 000. More over, the rigorous
algorithm requires one to solve Newton’s system when some components of xk and sk be-
come terribly small. Of course, using rational exact arithmetic, one can implement Newton’s
method correctly but it will take a long long time to solve each system.

There are a plenty of evidences that primal-dual interior-point methods are practically
useful to deal with large scale problems, if an implementation simply ignores the termina-
tion criterion and replaces it with a wildly simplified version, like, (xk)T sk < 2−38. Such
a method requires the number of iterations independent of L and can be very useful when
the user does not worry about numerical errors too much and, in particular the goal is not
proving mathematical statements. On the other hand, if one needs an LP code which is
mathematically correct, an implementation of the simplex method with exact rational arith-
metic is extremely powerful, as it never has to use L to control the computation. Developing
an efficient implementation of interior-point methods that is guaranteed to find a (rational)
exact solution remains to be hard and challenging.

