
Chapter 5

Combinatorial Optimization and
Complexity

5.1 Examples

Efficiently Solvable Problems (Polynomially Solvable Problems)

• Assignment Problem (Bipartite Perfect Matching Problem)
Given an n× n matrix W = [wij], select n entries one for each row and column so as
to maximize (or minimize) the sum.

1

2 2

1

 n n

Workers Jobs

 i

 j
wij

1

2 2

1

 4 4

 3 3

assignment
(or matching)

• Perfect Matching Problem
Given a graph with edge weights, find a perfect matching (a set of edges that cover
each node exactly once) of maximum total weight.

74 Combinatorial Optimization and Complexity

1

3

 7

2

 5 6

 4

w46

perfect matching

8

1

3

 7

2

 5 6

 4

8

• Shortest Path Problem
Given a directed graph with positive edge weights (e.g. distance, cost), find a path
between given two nodes that minimizes the total weight (i.e. the sum of the weights
of its edges).

a f

e

c

d

b

5

2

6

8

2

1

5

3

1
4

• Minimum Spanning Tree Problem
Given a graph with edge weights (e.g. distance, cost), find a spanning tree that mini-
mizes the total weight (i.e. the sum of the weights of its edges).

a f

e

c

d

b

5

2

6

8

4

1

3
1

2

• Chinese Postman Problem (slightly extended)
Given a graph with edge weights (e.g. distance, cost) and a connected subgraph, find
a route of visiting each edge of the subgraph at least once that minimizes the total
weight.

5.1 Examples 75

P1 1 1

2

2

1111

2

2

1.4

1

4

3

2

2 2

1

1
: Mail delivery streets

postoffice

• Maximal Flow Problem
Given a directed graph with edge capacities (e.g. volume/second), find a flow from a
given source node to a given sink node that maximizes the total flow.

• Minimum Cost Flow Problem
Given a directed graph with edge weight (e.g. cost) and demands for each nodes, find
a flow satisfying all demands that minimizes the total cost.

Hard Problems (NP-Complete Problems)

• Traveling Salesman Problem (TSP)
Given a complete graph with edge weights (e.g. distance, cost), find a tour of visiting
each node exactly once that minimizes the total weight.

Eucledian TSP Problem and an Optimum Tour (a TSPLIB problem, pcb442.tsp)

• 3-dimensional Assignment Problem
Given a 3-dimensional n× n× n matrix W = [wijk], select n entries one for each row,
column and level so as to maximize (or minimize) the sum.

• Longest Path Problem
Given a directed graph with positive edge weights (e.g. distance, cost), find a simple
path between given two nodes that maximizes the total weight.

76 Combinatorial Optimization and Complexity

• Knapsack Problem
From n items with given values, select items with total weight at most b (a given
constant) so as to maximize the total value.

Tuna CheeseChocolate
e

weight

utility (value) c2c1 c3

w3w1 w2

cn

wn

Game

??
? ?

max weight b

• Set Cover Problem
Let U be a finite set and let S be a family of subsets of U . Find a minimum-cardinality
subfamily C of S that covers the ground set U , i.e. the union of all sets in C is U .

• Satisfiability Problem
Given a boolean expression B(x) :=

∧m
i=1Ci in conjunctive normal form where Ci is

the disjunction of one or more literals (e.g. (x1

∨

¬x2

∨

x5)), decide whether there is
an assignment x ∈ {0, 1}n with B(x) = 1.

5.2 Efficiency of Computation

What do we mean by “the assignment problem is efficiently solvable” ?

Efficient Algorithms

• Intuitive Explanation

An algorithm is efficient if the time necessary to solve a problem instance does not
increase too fast as the problem size increases.

• More Precise Definition

An algorithm is efficient (good , polynomial) if the time necessary to solve any instance
of input size L is bounded above by a polynomial function of L. (Thus it does not

5.2 Efficiency of Computation 77

increase as fast as an exponential function such as 2L.)

The size of a problem instance is the number of bits necessary to represent the problem
(in binary encoding).

• Even More Precise Definition
One still needs to set up a machine model to define “time”. For this, the Turing
machine is standard. It is a very simple mathematical model of digital computers
with an infinite tape device. For example the machine can do elementary arithmetic
operations of two numbers in polynomial time in the size of the two numbers. Thus,
to prove an algorithm runs in a polynomial time in the Turing machine, it is essential
to show that both the number of arithmetic operations the algorithm executes and the
sizes of the operands (numbers) are bounded by polynomial functions of the input size.

Polynomial Functions and Exponential Functions

-5 0 5 10 15
n

5000

10000

15000

20000

25000

f[n]

 2
10 n

 3
3 n

 n
2

 n!------100000

• There is an O(n3) algorithm for the assignment problem.

• No polynomial algorithm is known for the traveling salesman problem.

5.2.1 Evaluating the Hardness of a Problem

How can we distinguish the hardness of problems listed in Section 5.1? More explicitly,

Which problems can be solved in polynomial time?
Which ones cannot be?

78 Combinatorial Optimization and Complexity

• Easy Problems (Class P)

A problem is in the class P (or polynomially solvable) if it admits a polynomial algo-
rithm.

• To classify “possibly easy problems” we define two classes NP and co-NP.

• First we consider, for each optimization problem, the associated decision problem
(problem demanding only YES or NO answer):

For any fixed (rational) number K, decide whether there exists a feasible
solution with objective value better than K.

(Here “better” means “greater” for maximization, and “smaller” for minimization.)

• A Universe of Problems (Class NP)

A problem is in the class NP (nondeterministic polynomial) if YES answer for the as-
sociated decision problem admits a certificate with which one can prove the correctness
of the answer in polynomial time. (Such a cerficate is called succinct certificate.)

Proposition 5.1 The traveling salesman problem (and every problem in Section 5.1)
is in NP.

Proof. Let K be any number. If there is a tour in the given graph whose total
length is less than K, such a tour itself is a succinct certificate. We can check the
length is less than K by simple computation with a polynomial number of elementary
arithmetic operations.

• Another Universe of Problems (Class co-NP)

A problem is in the class co-NP (dually nondeterministic polynomial) if NO answer
for the associated decision problem admits a certificate with which one can prove the
correctness of the answer in polynomial time.

• A Key Proposition:

Proposition 5.2 Every problem in P belongs to both NP and co-NP.

• Important Remark:

Remark 5.3 If a problem belongs to both NP and co-NP, then it often belongs to P.

5.2 Efficiency of Computation 79

• Polynomial Reduction:

We say a decision problem A is polynomially reducible to a decision problem B, de-
noted by A ∝ B, if there is a polynomial time transformation of every instance of A
to an instance of B that preserves the answer.

The polynomial reducibility provides a convenient way to say one problem is not harder
than another. That is:

Proposition 5.4 If A ∝ B, then A is not harder than B, i.e., B ∈ P implies A ∈ P.

Remark 5.5 One can easily see that (the decision problem of) the assignment problem
is polynomially reducible to the 3-dimensional assignment problem.

• The Hardest Problems in NP (and in co-NP)

Here is the most important theorem in Computational Complexity Theory:

Theorem 5.6 (Cook’s Theorem) .
The class of hardest problems in NP, that is the class of problems in NP to each of
which every problem in NP is polynomially reducible, is nonempty. In particular, this
class, defined as the class NP-complete or NPC, contains the satisfiability problem.

It has been proved by various people that all hard problems in Section 5.1 are NP-
complete.

• Important questions remain open and appear to be hard:

(1) Is P = NP? (Probably no. If yes, P = NP = co-NP).

(2) Is P = NP ∩ co-NP?

See Figure 5.1 for the complexity map assuming the answer to (1) is no.

NP

P

co-NP

NPC
co-
NPC

Figure 5.1: The complexity map assuming P $= NP .

80 Combinatorial Optimization and Complexity

5.2.2 A Little History

1937 Turing Machine Alain Turing
1953 Polynomial vs Exponential time von Neumann
1965 Class L (a subclass of NP) Alan Cobham
1965 Good Algorithms (P), Good Characterizations (NP) Jack Edmonds
1970 Axioms for Complexity Measures Michael Rabin
1971 Class L+ (equiv. to NP), Completeness Stephen Cook
1972 Classes P, NP, NPC Richard Karp
1979 Class #P, #P-complete Leslie Valiant

Note: Class #P is a universe of counting problems. Surprisingly, even if a decision problem
is polynomially solvable, the associated counting problem might be hard. Valiant proved,
for example, the counting problem for the assignment problem is in #P-complete, implying
it is not easier than any NP-complete problems.

5.3 Basic Graph Definitions

5.3.1 Graphs and Digraphs

Graphs or digraphs are a mathematical formalization of diagrams such as those illustrated
in Figure 5.2.

A graph or undirected graph is a pair G = (V,E) where V = V (G) is a finite set called
the vertex (or node) set and E = E(G) is a subset of

(
V
2

)

, called the edge (or arc) set. Each
edge {i, j} is often denoted by ij or ji, both of which represent the same edge. When ij is
an edge (ij ∈ E), the vertices i and j are called endvertices (or endnodes) of e, and they are
said to be adjacent. We also say the edge e = ij joins i and j, e is incident to i and j and
conversely.

1

2

4

3

a b

dc

e 1

2

4

a

c

e f 3

b

d

1

2

4

a

c

e 3

b

d

Figure 5.2: A graph, an oriented graph and a directed graph

A directed graph or a digraph is a pair G = (V,E) where everything is the same as for
undirected graphs except that E is a set of ordered pairs of distinct vertices. Each edge is

5.3 Basic Graph Definitions 81

denoted by (i, j) or ij ($= ji). Clearly |E| ≤ |V | × (|V | − 1). If e = ij ∈ E, i is called the
tail and j is the head of e. We say an edge e is directed from i to j. In order to distinguish

a digraph from a graph, one might use
−→
G ,
−→
E ,
−→
ij instead of G, E, ij.

An oriented graph is a digraph G = (V,E) with at most one of (i, j) or (j, i) is an edge,
for each i, j ∈ V .

For example, the left one in Figure 5.2 illustrates a graph with V = {1, 2, 3, 4} and
E = {a, b, c, d, e}. Each edge is denoted by a line segment joining the two endvertices, and
therefore a = 12 = 21, b = 23 = 32, c = 14 = 41, etc. The right most figure is a digraph

with the vertex set V = {1, 2, 3, 4} and the edge set
−→
E = {a, b, c, d, e, f}, where each edge is

an ordered pair of vertices, a =
−→
21($=

−→
12), e =

−→
24, f =

−→
42, etc. In this digraph, the edge a

is directed from its tail 2 to its head 1. The head (tail) of e is the tail (head) of f , and thus
they are directed oppositely and parallel.

Sometimes it is useful to introduce multiple parallel edges (i.e. edges between the same
pair of vertices), or to have a loop (i.e. an edge connecting the same vertex). One can
treat such a general structure by modifying the definitions. Some people call such structures
multigraphs. and others call them graphs and define our graphs as simple graphs. Since our
lecture does not profit from this generality, our definition is appropriate.

1

2

4

3

a b

dc

e f 1

2

4

a

e

e f
g

3
g

d

Figure 5.3: Multigraphs, that we do NOT treat in the lecture

Two graphs G and H are called isomorphic (denoted by G (H) if there is a bijection
f : V (G) → V (H) such that for any i, j ∈ V (G), i and j are adjacent in G if and only if
f(i) and f(j) are adjacent in H .

The order of a (di)graph G = (V,E) is |V | and its size is |E|. We use the letter n for |V |
and m for |E|, unless otherwise stated.

A degree or valency deg(v) of a vertex v in a (di)graph G is the number of edges incident
to v. A vertex of degree 1 is called a leaf.

Proposition 5.7 Every graph has an even number of vertices with odd degrees.

Proof. Since every edge has two endvertices, we have
∑

i∈V

deg(i) = 2|E|.

82 Combinatorial Optimization and Complexity

Since the RHS is even, we must have an even number of odd degrees in the LHS.

A graph G′ is said to be a subgraph of G (denoted by G′ ⊆ G) if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We say G′ is contained in G if G′ ⊆ G. A subgraph G′ is spanning if
V (G′) = V (G).

For any subset V ′ of V , the subgraph of G = (V,E) with the vertex set V ′ and the edge
set E ′ consisting of all edges of G whose endvertices are in V ′ is called the subgraph of G
induced by V ′, and denoted as G[V ′]. (i.e. E ′ = {ij ∈ E : {i, j} ⊆ V ′}.) For any i ∈ V , the
induced subgraph G[V − i] is simply denoted by G− i.

Similarly, for any subset E ′ of E, the subgraph G′ = (V ′, E ′) of G whose vertex set V ′

is the set of vertices of G which are incident to some edge of E ′ is called the subgraph of
G induced by E ′ and denoted by G[E ′]. (i.e. V ′ = {i ∈ V : ij ∈ E ′ for some j}). For any
subset E ′ of E, G − E ′ denotes the subgraph of G defined by (V,E − E ′). Similarly, for
E ′ ⊆

(
V
2

)

−E, we use G+E ′ to denote the graph (V,E +E ′). For simplicity, we use G− e
and G+ e for G− {e} and G ∪ {e}, respectively.

A empty or null graph is a graph G with no edges (i.e. E(G) = ∅).

A path graph is a graph isomorphic to the graph G = (V,E) with V = [n] and E =
{12, 23, 34, . . . , (n−1)n}. A cycle graph is a graph isomorphic to the graph G = (V,E) with
V = [n] and E = {12, 23, 34, . . . , (n− 1)n, n1}.

A complete graph is a graph in which all pairs of distinct vertices are joined by an edge.
Thus, a complete graph of order n contains exactly n(n − 1)/2 edges. Of course, any two
complete graphs of order n are isomorphic, and we use Kn to denote this class.

A graph G = (V,E) is called bipartite if the vertex set can be partitioned into two sets
V = V1 ∪ V2 such that there are no edges between any two vertices in the same set V1 or
V2. Any such partition is called bipartition. Often a bipartite graph is given by a specific
bipartition, and thus may be denoted as G = (V1, V2, E).

Problem 5.3.1 Prove that no bipartite graph can contain a cycle of odd length. (In fact,
this property is sufficient and thus characterizes bipartite graphs. How can we prove the
sufficiency?)

A complete bipartite graph is a bipartite graph with bipartition (V1, V2) in which every
vertex in V1 is joined (by an edge) to each vertex in V2. When |V1| = p and |V2| = q, such a
graph is denoted by Kp,q.

5.3 Basic Graph Definitions 83

1

2

3

4

5

1

2

3

4

5

6

Figure 5.4: K5 and K3,3

A walk (of length k) in a graph G = (V,E) is a sequence (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk)
in which all vi’s are in V and each ei is an edge joining the vertices vi−1 and vi (i.e. ei =
vi−1vi ∈ E for i = 1, 2, . . . , k). The vertices v0 and vk are called the origin and the terminus
of the walk, and the vertices v1, . . . , vk−1 are internal vertices of the walk. We say a walk
connects v0 and vk. A walk is closed if k > 0 and v0 = vk. Since we do not allow parallel
edges, a walk can be denoted simply by the sequence of its vertices: (v0, v1, v2, . . . , vk).

A trail is a walk with distinct edges (but possibly with some vertices used more than
once). A path is a walk with distinct vertices (and thus distinct edges). A cycle is a closed
trail whose origin and the internal vertices are distinct.

A path (or a cycle) is often identified with their underlying graph consisting of its vertices
and edges.

A graph G is called connected if for every pair u, v of vertices, there exists a path con-
necting u and v. A connected component of a graph G is a connected subgraph G′ of G
which is maximal, i.e. there is no connected subgraph of G properly containing G′.

A forest is a graph containing no cycle. A tree is a connected forest. A tree (forest, cycle,
etc.) in a graph is a subgraph of G which is tree (forest, cycle, etc.).

Proposition 5.8 Let T be a tree of order n. Then the following properties hold:

(a) T contains at least two leaves for n ≥ 2.

(b) T has exactly n− 1 edges.

(c) There is a unique path between any two vertices in T .

(d) For any edge f ∈ E(T), T − f contains exactly two connected components.

Proof. First we show (a). Assume n ≥ 2. Take any vertex v0. Then take any edge e1
incident to v0. e1 exists because G is connected. Let v1 be the other endvertex of e1. If
deg(v1) $= 1, one can extend the sequence to generate a walk (v0, e1, v1, e2, v2). This procedure

84 Combinatorial Optimization and Complexity

can continue to generate a walk P = (v0, e1, v1, e2, v2, . . . , ek, vk) as long as the last vertex vk
is not a leaf. Since T contains no cycle, P contains no repeated vertices and is thus a path.
Since V is finite, this sequence must end with a vertex of degree 1. If deg(v0) = 1, the claim
is proved. Otherwise, one can apply the same process using another edge incident to v0 to
find another vertex of degree 1.

To prove (b), use induction on n. For n = 1, the statements are trivial. Let n ≥ 2, and
assume by induction that (b) is true for any smaller n. By (a), we have a vertex v of degree
1. By removing the vertex and the unique edge incident to it from the graph, we obtain a
tree of size n − 1. By the induction hypothesis, this graph has n − 2 edges. Since we have
one more edge in T , we have n− 1 edges in T .

(c) and (d) are left for exercise.

Problem 5.3.2 Let T be a connected graph of order n. Prove that the following statements
are equivalent:

(1) T is a tree.

(2) T has exactly n− 1 edges.

(3) For each edge f ∈ E(T), T − f is not connected.

For any graph G = (V,E) and any subset S of V , we denote by δ(S) the set of edges
which connect a vertex in S and a vertex in V − S. The set δ(S) is called the cut set with
respect to S.

It follows from Proposition 5.8 (c) and (d) we have two basic operations for spanning
trees in a graph.

Proposition 5.9 Let T be a spanning tree in a connected graph G, and f be any edge not
in T . Then,

(a) T + f , the graph obtained by adding the edge f to T , contains a unique cycle, called the
fundamental cycle of T with f , denoted by FCG(T, f).

(b) For each g ∈ E, T + f − g is a spanning tree if and only if g ∈ FCG(T, f).

f

FC(T, f)

5.3 Basic Graph Definitions 85

Proposition 5.10 Let T be a spanning tree in a connected graph G, and g be any edge in
T . Then,

(a) T − g contains exactly two connected components that are of form T [S] and T [V − S],
for some S ⊂ V . (The cut set δ(S) is called the fundamental cut of T with g, denoted
by FC∗

G(T, g)).

(b) For any f ∈ E, T − g + f is a spanning tree if and only if f ∈ FC∗
G(T, g).

g

S V-S
FC*(T, g)

86 Combinatorial Optimization and Complexity

Chapter 6

Polynomially Solvable Problems

The easy problems listed in the first part of Section 5.1 are in the class P, that is, they all
admit a polynomial (= efficient, good) algorithm. Known polynomial algorithms, each of
which is specific to the target problem, look all so different from each other. The purpose
of the present chapter is to present a succinct certificate of optimality for some of these
problems. It is important to observe that all efficient algorithms are the same in one sense:
they all find an optimal solution and a succinct certificate in polynomial time.

6.1 Minimum-weight Spanning Tree Problem

• Minimum-weight Spanning Tree (MST) Problem

Given a graph G = (V,E) with edge weights w(e) (e ∈ E), find a minimum-weight
spanning tree (MST), i.e. a spanning tree T ∗ that minimizes the total weight w(T) =
∑

e∈T w(e).

(Note that we represent a tree as a subset of edges.)

• This problem is clearly in NP. The following theorem not only shows it is in co-NP,
but suggests an obvious algorithm and proves the correctness of many algorithms.

For a spanning tree T ⊆ E, f ∈ E\T and g ∈ FC(T, f), the replacement of T by the
spanning tree T ′ = T +f−g is called an flip operation. An edge flip is called improving
if w(T ′) < w(T).

6

8

5

4

Improving Flip

88 Polynomially Solvable Problems

Theorem 6.1 A spanning tree T ∗ is an MST if and only if it admits no improving
flip.

Proof. (Here we assume that all weights are distinct.) Let T be a spanning tree
with no improving flip, and suppose it is not optimal. Take any MST T ∗. Without loss
of generality, we may assume T ∩ T ∗ = ∅, since we can contract all edges in common.
Let f be the edge of minimum weight. It is clear that f ∈ T ∗. Then any edge flip on
T with f and g ∈ FC(T, f) is improving.

• This theorem immediately shows the following algorithms find an MST correctly.

Flip Algorithm Start from any spanning tree G(T) and apply any improving flips
until no such flip is possible.

Greedy Algorithm 1: Kruskal’s Algorithm Start from the forest G(T) = (V, ∅),
and add to T any smallest weight edge e ∈ E\T that can be added to T without
creating a cycle.

Greedy Algorithm 2: Prim’s Algorithm Start from the any single node treeG(T) =
({v}, ∅), and add to T any smallest weight edge e ∈ E\T that can be added to T
without creating a cycle and preserve the connectivity.

• Exercise How many flips does Flip algorithm perform? Upper bounds?

• Extensions?

One can solve a more general class of problems by the greedy algorithms. This include
the minimum weight basis problem:

Given m× E matrix A and weights w(e), e ∈ E, find B ⊆ E such that A·B is a basis
of A (i.e. nonsingular) and w(B) is minimum over all bases.

There is a characterization of problems that can be solved by the greedy algorithm
in terms of matroids. Matroids is a combinatorial abstraction of linear indepen-
dence/dependence.

6.2 Bipartite Perfect Matching Problem

• Matching

A matching in a graph G = (V,E) is a subset M of edges such that each node of G
is the endnode of at most one member of M . An endnode of an edge in M is called
saturated by M . A matching M is called perfect if every node is saturated.

• Bipartite Perfect Matching Problem Given a bipartite graph G = (V1, V2, E), find a
perfect matching M in G.

• Hall’s Theorem

6.2 Bipartite Perfect Matching Problem 89

Theorem 6.2 There exists a matching M that saturates every node of V1 if and only
if

|N(S)| ≥ |S| for all S ⊆ V1,(6.1)

where N(S) = {v ∈ V2 : v is adjacent to some node in S}, the neighbor set of S.

Proof. The only if part is trivial, since if there is a matching saturating all V1 nodes,
N(S) contains all nodes matched with S.

To prove the if part, we present a finite algorithm which for any bipartite graph G finds
either a matching meeting every node of V1 or a set S ⊆ V1 violating the condition
(6.1).

The general stage of the algorithm starts with any matching M and a node v ∈ V1 not
saturated by M . We set M = ∅ at the beginning. The algorithm tries to augment M
to saturate v. For this, we start to grow a tree T starting at v.

(0) Let S = S1 = {v}, T = (S, ∅) and S2 = ∅. (Note S1 ⊆ V1 and S2 ⊆ V2.)

(1) Let W2 = N(S1)\S2 and add the edges connecting S1 to W2 to the tree T . If
W2 = ∅, the set S violates (6.1) and stop. (See Fig. 6.1.)

(2) If W2 contains an M-unsaturated node w, we find a path from v to w that uses
non-matching and matching edges alternately. This means we can reverse the
matching edges and the non-matching edges along the path to augment M so
that v is newly saturated by the new M . (See Fig. 6.2.)

(3) Otherwise, all nodes in W2 have their matched nodes, which we newly call S1.
Add S1 to S, W2 to S2, the maching edges incident with W2 and S1 to the tree
T . Repeat from (1).

v
M

S1 S2 S1 W2 S1

Figure 6.1: Case (1): a violating set S = ∪S1 is found

90 Polynomially Solvable Problems

v
M

w

S1 S2 S1 W2

unsaturated
node

Figure 6.2: Case (2): an augmenting path is found

6.3 Assignment Problem

• Assignment Problem

Given an n× n matrix W = [wij], select n entries one from each row and each column
so as to maximize (or minimize) the sum.

Equivalently, given a weighted complete bipartite graph G = (V1, V2, E) with |V1| =
|V2| = n, find a perfect matching M ⊆ E of maximum total weight.

• IP Formulation of the Assignment Problem

Let X = [xij] be an n× n variable matrix. One can also consider X as a vector of size
n× n. The meaning of each variable xij is:

xij =

{

1 if the position (i, j) is chosen
0 if the position (i, j) is not chosen

(IP-A) max w(X) :=
∑

i,j

wijxij

subject to
n∑

j=1

xij = 1 ∀i = 1, . . . , n

n
∑

i=1

xij = 1 ∀j = 1, . . . , n

xij = 0 or 1, ∀i, j = 1, . . . , n.

This is an integer programming (IP) formulation of the assignment problem. A feasible
solution to (IP-A) can be identified with an assignment, since any feasible solution X
has exactly one in each row and each column, and such an X is feasible for (IP-A).

6.3 Assignment Problem 91

In general, an IP is hard to solve. However some IP problems have certain favorable
structures which help us to find an optimal solution efficiently. The above IP is for-
tunately of this kind. In fact the IP problem above is essentially equivalent to an LP
where the integer restriction xij = 0 or 1 is replaced by 0 ≤ xij ≤ 1. More precisely,

• LP Relaxation of the Assignment Problem

(LP-A) max w(X) :=
∑

i,j

wijxij

subject to
n
∑

j=1

xij = 1, ∀i = 1, . . . , n

n
∑

i=1

xij = 1, ∀j = 1, . . . , n

xij ≥ 0, ∀i, j = 1, . . . , n.

Since (LP-A) has a less restricted constraint set, its optimal value is at least as large
as that of (IP-A). An important fact is

Theorem 6.3 There is an integral optimal solution to the linear programming problem
(LP-A). Consequently, the optimal values of (LP-A) and (IP-A) are equal.

Exercise: Prove Theorem 6.3 by an elementary argument. More precisely, for any given
fractional solution X to (LP-A), find an algorithm to find an integral solution X̃ which
is as good as X , i.e. satisfies w(X̃) ≥ w(X). Is it polynomial?

These together imply

Remark 6.4 The assignment problem can be solved by an LP algorithm applied to
(LP-A) and the “integerizer”. Furthermore any pivot methods return an integral solu-
tion in this case (see Theorem 6.6).

• Certificate for Optimality

There is a direct algorithm for the assignment problem, known as the Hungarian
method, which is a polynomial algorithm and practically more efficient. While the
simplex method works reasonably well for the assignment problem, if one needs the
most efficient algorithm, the Hungarian method should be chosen. The Hungarian
method exploits a certificate for optimality that coincides with the certificate (the LP
strong duality theorem, Theorem 2.2) applied to the (LP-A).

Theorem 6.5 An assignment X∗ = [x∗
ij] is optimal if and only if there exist two

vectors u ∈ Rn and v ∈ Rn such that

ui + vj ≥ wij ∀i, j = 1, 2, . . . , n(6.2)

w(X∗) =
∑

i

ui +
∑

j

vj.(6.3)

92 Polynomially Solvable Problems

As for the optimality certificate for linear programming, one direction of the equivalence
above is easy and the other is nontrivial. Namely, if there exist two vectors u ∈ Rn

and v ∈ Rn satisfying the conditions above, then for any assignment X = [xij]

w(X) =
∑

i

∑

j

wijxij ≤
∑

i

∑

j

(ui + vj)xij

=
∑

i

(

ui

∑

j

xij

)

+
∑

j

(

vj
∑

i

xij

)

=
∑

i

ui +
∑

j

vj

= w(X∗).

(6.4)

This means X∗ is an optimal assignment.

• Theorem 6.3 is “equivalent to” a more geometric theorem (Here we mean by “equiva-
lent” easily reducible from each other):

Theorem 6.6 Every extreme point of the feasible region

Ω = {X ∈ Rn×n : X satisfies the constraints of (LP-A)}

of (LP-A) is integral. (Such a convex polytope is called integral.)

Recall that a point X ∈ Ω is called a extreme point of Ω if they are not on the line
segment connecting two other points X1 and X2 of Ω. As it was shown in Section 4.9.3,
any pivot algorithms such as the simplex method (see, Section 4.4.3) always finds an
extreme optimal solution.

• Theorem 6.6 can be considered as a special case of a more general theorem:

Theorem 6.7 For any totally unimodular matrix A ∈ Zm×d and any integral vector
b ∈ Zm, the feasible region

Ω(A, b) = {x ∈ Rd : Ax = b and x ≥ 0}

is integral.

Proof. (Outline) This follows from the fact that any extreme solution is elementary
(see Section 4.9.3). This implies it is a unique solution to a subsystem A·BxB =
b, xN = 0 for some partition (B,N) of the column index set. The total unimodularity
and Cramer’s rule imply the result.

Here, a matrix is called totally unimodular if all its subdeterminants are either 0, −1
or 1. (A subdeterminant is the determinant of a square submatrix of A).

To see that Theorem 6.6 is a special case, write the matrix A for (LP-A) by considering
the matrix X as a long vector x = (x11, x12, . . . , x1n, x21, . . . , . . . , xnn).

6.4 Optimal Matching Problem 93

6.4 Optimal Matching Problem

• Optimal Matching Problem

Given a graph G = (V,E) with edge weight wij for each (i, j) ∈ E, find a matching M
with maximum total weight.

• Optimal Perfect Matching Problem?

The optimal perfect matching problem can be defined similarly. Is it more difficult than
the optimal matching problem? In fact, they are essentially the equivalent. How can
we solve the optimal perfect matching problem by using an algorithm for the optimal
matching problem? (Exercise) Because of the equivalence, we discuss the optimal
matching problem only.

• IP Formulation of the Optimal Matching Problem

Let xij denote a variable for each edge (i, j) ∈ E to represent a matching. The meaning
of each variable xij is:

xij =

{

1 if (i, j) is a matching edge
0 otherwise

(IP-M) max w(x) :=
∑

(i,j)∈E

wijxij

subject to
∑

(i,j)∈E

xij ≤ 1 ∀i ∈ V

xij = 0 or 1, ∀(i, j) ∈ E.

This is an integer programming (IP) formulation of the assignment problem. A feasible
solution to (IP-M) can be identified with a matching.

(LP-M) max w(x) :=
∑

(i,j)∈E

wijxij

subject to
∑

(i,j)∈E

xij ≤ 1 ∀i ∈ V

xij ≥ 0, ∀(i, j) ∈ E.

This LP relaxation is not as good as the LP relaxation (LP-A) for the assignment
problem given in Section 6.3. Why? This is because a statement corresponding to
Theorem 6.3 is not true.

• Small Example

Consider the following graph. It is a triangle of equal edge weight 1. Clearly we cannot
select two edges for a matching, and so any single edge forms an optimal matching of
weight 1.

94 Polynomially Solvable Problems

a

c

b
1

1 1

On the other hand, the relaxation (LP-A) has a better solution. Namely, the vector
(xab, xbc, xac) = (1/2, 1/2, 1/2) is feasible since the constraints say:

xab + xac ≤ 1(6.5)

xab + xbc ≤ 1(6.6)

xac + xbc ≤ 1(6.7)

xac, xbc, xac ≥ 0.(6.8)

This fractional solution has a better weight, 1.5, and can be shown to be optimal for
(LP-M). (Why?)

• How to cut off the fractional solutions?

The small example shows that the LP relaxation (LP-M) is not very useful (yet) to
solve the optimal matching problem. Edmonds showed that we only need to add one
extra class of constraints. The idea can be seen in the example. Since there are three
nodes, the sum of all variables for the edges cannot be more than 1, if x represents a
matching.

In general, if we pick up any subset S of nodes with odd cardinality 2k + 1 for some
k, any vector x representing a matching must satisfy the inequality:

∑

i,j∈S,(i,j)∈E

xij ≤ k.(6.9)

This observation leads to an appropriate LP relaxation of the optimal matching prob-
lem.

(LP-M2) max w(x) :=
∑

(i,j)∈E

wijxij

subject to
∑

(i,j)∈E

xij ≤ 1 ∀i ∈ V

subject to
∑

i,j∈S,(i,j)∈E

xij ≤
|S|− 1

2
∀ odd set S ⊆ V

xij ≥ 0, ∀(i, j) ∈ E.

Theorem 6.8 The optimal values of (IP-M) and (LP-M2) are equal. That is, there is
an integral optimal solution to the linear programming problem (LP-M2).

6.5 Maximal Flow Problem 95

• Certificate for Optimality

Theorem 6.9 A matching x∗ = (x∗
ij) is optimal if and only if there exists a feasible

solution to the dual of (LP-M2) whose objective value is equal to w(x∗).

Edmonds found an ingenious algorithm, known as Blossom Algorithm, for the optimal
matching problem which finds an optimal matching with a dual feasible solution in
polynomial time. Unlike the assignment problem, one should not apply the simplex
method to the LP relaxation (LP-M2), because there are just too many (exponential
in n) odd set inequalities and therefore too many dual variables. Edmonds’ algorithm
considers only a small set of such inequalities at a time, and update the set whenever
necessary. Fortunately it is possible to show that there is a dual optimal solution with
a polynomial number of nonzero components.

• Using an LP relaxation is a very powerful technique, even when a system of linear
inequalities to determine the integral polytope is not known. Here is a general approach
to the combinatorial optimization:

(a) Formulate a combinatorial optimization problem as an IP whose feasible solutions
represent the feasible solutions to the original problem;

(b) Relax the IP as an LP;

(c) Solve the LP by the simplex method or any LP algorithm that returns an extreme
optimal solution;

(d) If the solution to the LP is integral, it solves the original problem;

(e) Otherwise, try to add constraints that cut off this fractional extreme point but
not any integral feasible points. Repeat from (c).

This technique is known as the cutting plane technique for combinatorial optimization,
and has been used together with the branch-and-bound technique to solve a large-scale
hard optimization problems such as the TSP. We shall discuss this in Chapter 7.

6.5 Maximal Flow Problem

• Network

– a graph where the nodes and/or the edges are associated with some given numbers
that (usually) have some physical or economic meaning.

• Maximum Flow Problem

Graph
G = (V,E) a directed graph
V = {1, 2, · · · , n} the node set
E = the set of pairs (i, j) the edge set

Edge capacity
bij the capacity of flow per unit time for the edge (i, j)

96 Polynomially Solvable Problems

i j
bij

Problem Description
Determine a flow from the source s to the sink t maximizing the amount leaving the
source node s. Here we assume that at all nodes other than s and t the conservation law
is satisfied: the entering total flow = the leaving total flow.

i j

ts

bij

Variables
xij a flow on the edge (i, j)
v the value of a flow x

max v

subject to
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij =

−v i = s
0 ∀i $= s, t
v i = t

0 ≤ xij ≤ bij ∀(i, j) ∈ E

• If all bij are integers, there exists an integral optimal solution. Prove this by an
elementary argument similar to that for the assignment problem (Theorem 6.3). In
fact, all extreme solutions are integral, and thus the simplex method finds an integral
optimal solution.

• There are simple direct methods for the maximum flow problem that are more efficient
than the simplex method.

• Certificate for Optimality

A partition (S, S = V \S) of the node set V is called an (s, t)-cut if s ∈ S and t ∈ S.
The value w(S, S) of an (s, t)-cut (S, S) is defined as the sum of capacities of the edges
directed from S to its complement.

(6.10) w(S, S) =
∑

i ∈ S, j ∈ S
(i, j) ∈ E

bij .

It is easy to show that for any feasible flow of value v and any (s, t)-cut of value w,
v ≤ w. The following theorem shows the equality for max-flow and min-cut pairs.

6.6 Minimum Cost Flow Problem 97

Theorem 6.10 A feasible flow x∗ = (x∗
ij) with value v∗ is optimal if and only if there

exists an (s, t)-cut with the same value.

6.6 Minimum Cost Flow Problem

Given a graph with edge weight (e.g. cost) and demands for each nodes, find a flow satisfying
all demands that minimizes the total cost.

Node Demand

si demand of node i

(If si < 0, we consider that i is a supply node and its supply quantity is −si.)

Edge Cost

cij cost of running a unit flow on edge (i, j)

max
∑

(i,j)∈E

cijxij

subject to
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij = si ∀i ∈ V

0 ≤ xij ≤ bij ∀(i, j) ∈ E

• This problem is more general than the maximum flow problem. (Why?)

• When bij and si are integers and the problem has an optimal solution then there exists
an integral optimal solution. Prove this by an elementary argument similar to that for
the assignment problem (Theorem 6.3). In fact all extreme solutions are integral, and
thus any pivot methods for LP find an integral optimal solution.

• Certificate of Optimality

The minimum cost flow problem is an LP with a special structure. Thus the certificate
of optimality using the dual optimal solution (Theorem 2.2) applies here.

• There are direct polynomial methods for the minimum cost flow problem that are
more efficient than the simplex method. There are even strongly polynomial algorithms
for this problem as well, for which the number of arithmetic operations to solve any
instance is bounded above by a polynomial in the number of nodes and edges only (i.e.
independent of the sizes of bij ’s, cij’s and si’s. Such methods are not yet known to be
practical, but the existence is in great contrast to the general LP case for which no
strong polynomial algorithms are known.

98 Polynomially Solvable Problems

6.6.1 Exercise (Toy Network Flow Problems)

Six cities a, b, c, d, e, f are linked by pipelines. Capacities (kl/second) and costs (francs/kl)
are given below.

b c

d e

fa

(8,20)

(15,8)

(6,12)

(5,10)

(8,2)

(3,8)

(9,15)

Here a label (p, q) indicates cost p and capacity q.

Modelling by the Max Flow Problem

Using the network of pipelines, how can one maximize the flow from the city a to the
city f? We assume flows satisfy the conservation law at each cities other than a and f .

Modelling by the Minimum Cost Flow

Assuming that the demands of each cities are given below, how can one find a minimum
cost flow satisfying the demands.

city a b c d e f
demand -20 -4 0 6 8 10

Chapter 7

Exhaustive Search and
Branch-and-Bound Algorithms

7.1 Branch-and-Bound Technique

NP-complete optimization problems, such as TSP, the knapsack problem and the three-
dimensional assignment problem, are all alike in the sense that there is no known succinct
certificate for optimality. This implies at least in practice (quite likely in theory as well) that
in order to verify the optimality of a feasible solution x∗, we must depend on a proof that
has no polynomial bound in the input size. Typically such a proof is the direct verification
of optimality by enumeration of all feasible solutions.

The Branch-and-Bound (B&B) algorithm is a general scheme of algorithms to solve hard
(mainly NPC or harder) optimization problems that avoids unnecessary enumeration of
certain feasible solutions using previously computed solutions and simple logics. The best
way to illustrate the idea is to look at a simple example of the knapsack problem.

• Knapsack Problem
From n items with given positive values c1, c2, . . . , cn and positive weights w1, w2, . . . , wn,
select items with total weight at most b (a given constant) so as to maximize the total
value.

• Example
j 1 2 3 4 5
cj 10 80 40 30 22
wj 1 9 5 4 3 (≤ b = 13)

• IP Formulation

(P) max f(x) := 10x1+80x2+40x3+30x4+22x5

subject to
E : x1+ 9x2+ 5x3+ 4x4+ 3x5 ≤ 13
EI : x1, x2, x3, x4, x5 = 0 or 1

100 Exhaustive Search and Branch-and-Bound Algorithms

• Two Basic Conditions for the B&B

To define a B&B algorithm for an optimization problem P , the following two conditions
are necessary (and sufficient):

(a) Problem Decomposability: A given problem P can be easily decomposed into
two or more subproblems P1,. . . , Pk so that the optimal solution of P can be
found by solving the subproblems and selecting the best solution. In particular,

ov(P) = max{ov(P1), ov(P2), . . . , ov(Pk)},

where ov denotes the optimal value.

(b) Upper and Lower Bounds Easily Computable: It is easy to compute some
lower bound LB(P) and upper bound UB(P) of the optimal value ov(P). (This
should apply to all subproblems as well.)

Knapsack case

(a) One can easily decompose the problem into two subproblems P1 = P |x3=0 and
P2 = P |x3=1 by fixing one variable, say x3, to 0 and 1 respectively.

(b) For lower bound computation, for example, we can use the trivial bound 0. A
better bound can be found by a heuristic search. For example, add items one
by one until one cannot add any more, and good heuristics on a priority order of
items can help to improve this bound.

For upper bound computation, one can use the LP relaxation. The optimal value
of the LP relaxation is an upper bound of ov(P).

• LP Relaxation

(LP − P) max f(x) := 10x1+80x2+40x3+30x4+22x5

subject to
E : x1+ 9x2+ 5x3+ 4x4+ 3x5 ≤ 13
E1 : x1 ≤ 1
E2 : x2 ≤ 1
E3 : x3 ≤ 1
E4 : x4 ≤ 1
E5 : x5 ≤ 1
E0 : x1, x2, x3, x4, x5 ≥ 0

• If the LP has an integral optimal solution, then it solves the original problem. This is
not the case in general.

The variables are already sorted by the efficiency
cj
wj

:

10

1
>

80

9
>

40

5
>

30

4
>

22

3

7.1 Branch-and-Bound Technique 101

By filling the knapsack with items 1, 2, . . . consecutively as much as one can, we obtain
an integral feasible solution

xI(P) = (1, 1, 0, 0, 0), value = 10 + 80 = 90(7.1)

Moreover, by filling the best unused item 3 with the maximum fraction, we obtain a
solution

xL(P) = (1, 1, 3/5, 0, 0), value= 90 + 40× 3/5 = 114(7.2)

which can be shown to be optimal for the LP relaxation (LP-P).

Proposition 7.1 The solution xL(P) obtained by the above algorithm is an optimal
solution to (LP-P).

For the rest of discussion, we fix the upper bound and the lower bound functions as:

LB(P) = f(xI(P))(7.3)

UB(P) = f(xL(P))(7.4)

• B&B Tree

The B&B algorithm starts with the original problem P as the root node of its dynam-
ically constructed tree T . If LB(P) = UB(P), we have solved the problem. Otherwise
(the case for our example) we set the currently best value CurrBestVal := LB(P) = 90.
Then decompose P into two problems. The natural choice is by using x3, since xL

3 is
not integer. See Fig. 7.1.

 P1 P2

 P

x3 = 0 x3 = 1

xL
3 = 3/5

CurrBestValue=90 UB=114
LB= 90

Figure 7.1: Initial Branch-and-Bound Tree

Then we compute the bounds for both P1 = P |x3=0 and P2 = P |x3=1. Both problems
have slightly smaller upper bounds but they do not generate any better integral so-
lution. We must decompose again one of P1 or P2. Take the one with better upper
bound, hoping that we obtain a better solution.

In particular, for P11, we obtain an integral solution

xL(P) = (1, 1, 0, 0, 1), value= 112(7.5)

102 Exhaustive Search and Branch-and-Bound Algorithms

Here we can update the currently best value with 112.

 P1 P2

 P

x3 = 0 x3 = 1

xL
3 = 3/5CurrBestValue=90

UB=114
LB= 90

 P11 P12

UB=112.5
LB= 90

UB=112.2
LB= 50

x4 = 0 x4 = 1

xL
4 = 3/4

UB=112
LB=112CurrBestValue=112

update

UB=111.1
LB= 40

integral optimal
solution found

Figure 7.2: Intermediate Branch-and-Bound Tree

j 1 2 3 4 5
cj 10 80 40 30 22
wj 1 9 5 4 3

P1 xI 1 1 0 0 0 LB = 10 + 80 = 90
xL 1 1 0 3/4 0 UB = 90 + 30× (3/4) = 112.5

P2 xI 1 0 1 0 0 LB = 10 + 40 = 50
xL 1 7/9 1 0 0 UB = 50 + 80× (7/9) = 112.2

P11 xI 1 1 0 0 1 LB = 10 + 80 + 22 = 112
xL 1 1 0 0 1 UB = 112

P12 xI 1 0 0 1 0 LB = 10 + 30 = 40
xL 1 8/9 0 1 0 UB = 40 + 80× (8/9) = 111.1

Table 7.1: Computation of lower and upper bounds

By evaluating the bounds for P12, we obtain an upper bound 111.1 which is smaller
than CurrBestVal. This means there is no hope to find a better solution to P , and we
can terminate the investigation of this node.

Now we are left with the node P2 whose upper bound is 112.2 which is still larger than
CurrBestVal= 112. Thus we decompose1 it by using x2 which takes a fractional value
at the LP solution. This creates two nodes P21 and P22. Calculation shows that the
upper bounds are 61 and −∞, respectively. −∞ means that the LP is infeasible. Since
both bounds are smaller than CurrBestVal, there is no hope to find a solution whose
value is better (larger) than CurrBestVal.

1In our particular example in which all cj ’s are integer, we do not need to decompose the node P2.

7.1 Branch-and-Bound Technique 103

 P1 P2

 P

x3 = 0 x3 = 1

xL
3 = 3/5

UB=114
LB= 90

 P11 P12

UB=112.5
LB= 90

UB=112.2
LB= 50

x4 = 0 x4 = 1

xL
4 = 3/4

UB=112
LB=112

CurrBestValue=112

UB=111.1
LB= 40

 P21 P22

x2 = 0 x2 = 1

xL
2 = 7/9

UB=61
LB=61

UB =−∞

all UBs are smaller than

Figure 7.3: Final Branch-and-Bound Tree

• General Description

procedure Branch&Bound(P);
begin

ProblemQueue := {P};
CurrBestVal := LB(P);
while ProblemQueue $= ∅ do

select and remove one problem P ′ from ProblemQueue;
if (UB(P ′) > CurrBestVal) then

if (LB(P ′) > CurrBestVal) then
CurrBestVal := LB(P ′);

endif;
if (UB(P ′) > LB(P ′)) then

Decompose P ′ into P1, P2, . . . , Pk;
Compute bounds for P1, P2, . . . , Pk;
Add P1, P2, . . . , Pk to ProblemQueue;

endif;
endif;

endwhile;
output CurrBestVal; /* CurrBestVal is the optimal value. */

end.

• Certificate of Optimality
The certificate of optimality generated by a B&B algorithm is the final B&B tree. In
this tree, one of the leaf nodes (i.e. degree 1 nodes) contains a feasible solution that

104 Exhaustive Search and Branch-and-Bound Algorithms

realizes the optimal value (= final CurrBestVal). And all other leaf nodes have upper
bounds smaller or equal to this value.

This certificate might be very large since the complete enumeration tree with all leaf
nodes decomposed into trivial subproblems (with all variables fixed) is exponential in
size. For the knapsack case, this is of order 2n.

• Strategies for Reducing the B&B tree size

There is much flexibility in B&B algorithms that one can exploit for reducing the size
of the final B&B tree. One should experiment with different strategies to see what is
best for any specific problem and problem instances.

Decomposition For the knapsack problem, there is always a unique fractional com-
ponent in the LP solution for natural decomposition. In general, there are many
different natural variables for decomposition. Also one might be able to decom-
pose the problem by a completely different logic.

Priority Which problem in the ProblemQueue should one investigate? The most
important objective is to recognize problem nodes that contain better feasible
solutions.

One should use some heuristics when selecting a most hopeful branch. This
varies from problem to problem. Selecting a node with the largest upper bound
is one natural choice. However one must be very careful to fix any strategy, since
intuitively sound rules might fail very badly.

Upper Bounding In general, computing a better upper bound means more time.
“When should one use more sophisticated bounds?” is an important question
that is hard to answer. Yet, an accurate upper bound becomes critical in the
following situation.

Suppose the algorithm already found an (almost) optimal value at some stage, and
there are still many problems in the queue. The remaining task is to eliminate as
quickly as possible those “hopeless” problems in the queue by the logic UB(P ′) ≤
CurrBestVal.

In this situation, one might be able to speed up by a better (but more time
consuming) upper bounding algorithm. This is typically done by the cutting
plane technique described at the end of Section 6.4. In particular, the cutting
plane technique has been heavily used to solve large-scale TSPs, and it appears
to be essential for successful termination of the B&B algorithm. The technique
combining B&B and the cutting plane technique is called the Branch-and-Cut
technique.

Lower Bounding This is where heuristics can help enourmously. Finding a reason-
able solution in the earlier stage usually reduces the size of the B&B tree drasti-
cally. The typical techniques are local search algorithms with different strategies,
such as, simulated annealing, tabu search and genetic algorithms.

Chapter 8

Cutting-Stock Problem and Column
Generation

In this chapter, we present a technique to solve a certain type of large scale linear program-
ming problems, known as the column generation technique. We shall present this general
technique through its application to the Cutting-Stock Problem, an NP-hard combinatorial
optimization problem.

8.1 Cutting-Stock Problem

The cutting-stock problem arises often in industries that need to cut basic raws (e.g. wood
or metal sheets, paper rolls, textiles) of unit length into various pieces (called finals) of
demanded lengths. The main goal is to find the most economical way of cutting-out the
finals requiring the smallest number of raws.

More formally, the cutting-stock problem is the following: Given raws of unit length L,
and given demands of bi finals of lengths Li for i = 1, 2, . . . , m, find a most economical way
to satisfy the demands.

L

L1
L2

Lm

L

 : b1 pieces

 : b2 pieces

 : bm pieces

Raws
(unlimitted)

Finals

 (= unit length)

106 Cutting-Stock Problem and Column Generation

A key obstacle in finding an optimal solution for the cutting-stock problem is that in
general there are exponentially many patterns to cut a raw.

L1

Lm

L

L1

L2

L1 L1

L2

L1 L2

waste

Let us first formulate the optimization problem as an integer programming problem. A
cutting pattern is given by specifying how many of pieces of length Li for each i = 1, 2, . . . , m
is cut out (so that the total length does not exceed L). Let E be the set of all cut patterns
and let A be the (m×E) pattern matrix where aij represents the number of pieces of length
Li in pattern j ∈ E.

L1

L

L1 L1 L1

L1

wastePattern p

Pattern q L2L2

1
2
3
.
.
.
m

4
0
0
.
.

0

p

1
2
0
.
.
.
0

q

A :=
(m x E)-maxtix

 E := the set of all patterns

An IP formulation of the cutting-stock problem is thus to find an optimal combination
of frequency xj of using pattern j so that the demand is met.

minimize eT x (eT = (1, 1, . . . 1))
subject to

A x = b
x ≥ 0
xj is integer (∀j ∈ E).

The LP relaxation is the LP obtained from this by removing the integrality condition on
xj ’s. It is important to note that the LP relaxation itself is already challenging as the number
of columns of A can be very large and one cannot expect the matrix A to be explicitly given.

The column generation technique to be described below is to solve the LP relaxation, of
course, it may generate a fractional solution. How to get around with this problem depends
very much on specific applications.

8.2 The Simplex Method Review 107

8.2 The Simplex Method Review

• Linear Programming:

minimize f = cT x
subject to

A x = b
x ≥ 0.

• Basis (A·B: nonsingular, B ⊆ E):

A·BxB + A·NxN = b

A = A·B A·N

=⇒
xB = A−1

·B b−A−1
·B A·NxN

f = cTBA
−1
·B b+ (cTN − cTBA

−1
·B A·N)xN

• Basic solution (x):

xN = 0, xB = A−1
·B b

f = cTBA
−1
·B b

Simplex Method

• Start with a feasible basic solution x:

xN = 0, xB = A−1
·B b ≥ 0.

• The current solution is optimal if

(cTN − cTBA
−1
·B A·N) ≥ 0

or equivalently

(cj − cTBA
−1
·B A·j) ≥ 0 for all j ∈ N.

• If the optimality is violated for some s ∈ N :

(cs − cTBA
−1
·B A·s) < 0,

then the column s enters the basis and some basic r ∈ B leaves to produce a new
feasible basis (=pivot operation). If no proper r exists, then the LP is unbounded.

108 Cutting-Stock Problem and Column Generation

8.3 Column Generation Technique

Assume A (and c) is very wide and implicitly given.

• If the optimality:

(cj − cTBA
−1
·B A·j) ≥ 0 for all j ∈ N.(∗)

can be checked quickly without direct reference to cN , A·N , each simplex iteration
is simple.

• In practice, the number of simplex pivots depends mainly on m, roughly O(m).
Thus, the resulting algorithm is expected to perform efficiently.

Example: Cutting-Stock Case

• cT = eT ≡ (1, 1, . . . 1). By setting p = cTBA
−1
·B ,

(∗) ⇐⇒ (1− pA·j) ≥ 0 for all j ∈ N
⇐⇒ max

j∈N
pA·j ≤ 1

⇐⇒ z ≤ 1 where

z := max
m
∑

i=1

piαi

subject to
m
∑

i=1

Liαi ≤ L

αi is nonneg. integer ∀i = 1, . . . , m.
(= Knapsack Problem)

Exercise

Extend the column generation algorithm to the cutting stock problem with two different
types of raws, L and L′. How can one generalize the algorithm to minimize the total waste?
What happens if there are k different raws?

L

L1
L2

Lm

L’

 : b1 pieces

 : b2 pieces

 : bm pieces

2 Types of Raws
(unlimitted)

Finals

8.3 Column Generation Technique 109

• Generalized Assignment Problem: Find the best assignment of m tasks to n machines
subject to capacity constraints.

• Crew Scheduling for Airlines: Select the best flight pairings to cover a given flight
schedule.

A Little History

• The basic idea of column generation was first used by Dantzig and Wolfe (1960) in a
different setting: solving large-scale structured LP’s by decomposing the constraints.

• The column generation technique discussed in this lecture was due to Gilmore and
Gomory (1961).

• Column generation is sometimes called delayed column generation.

110 Cutting-Stock Problem and Column Generation

Chapter 9

Approximation Algorithms

In this chapter, we present some basic techniques to solve combinatorial optimization prob-
lems approximately. Here the term “approximation algorithm” is used for algorithm that
has certain performance guarantee.

Formally, for any positive number p, when we say a method is a factor p approximation
algorithm for a class of minimization (maxization) problems, it means that the algorithm
generate a feasible solution with objective value at most (at least) p times the optimal value.
Note that this definition makes sense only if the optimal value is positive, but it is usually
quite easy to convert problems so that this condition is satisfied.

There are many different techniques to design approximation algorithms. We shall in-
troduce three basic approaches, namely, the greedy, the primal-dual and the LP-rounding
techniques. We shall present the techniques through the set cover problem, although they
can be applied to many different types of combinatorial optimization problems.

9.1 Set Cover Problem

The set cover problem is a NP-hard optimization problem. Let U be a finite set of cardinality
n and let S be a set of subsets of U . A set cover problem is to find a minimum-cardinality
subset C of S that covers the ground set U , i.e. the union of all sets in C is U .

S4

S1

S3

S2

S5

U

Figure 9.1: Set Cover Problem

Clearly, such a cover exists if and only if the union of all sets in S is U , and we assume

112 Approximation Algorithms

this for the sequel of the chapter.

It is not hard to imagine applications of the set cover problem. For example, when a
company needs to set up client service centers to cover all clients, a problem of this kind
arises. In particular, in the case that there are finite candidate locations for centers and the
set of clients that can be serviced by a given location is known, the problem of selecting a
smallest number of locations to service all clients is exactly a set cover problem.

Naturally, one might want to extend the set cover problem to the weighted set cover
problem where each set S ∈ S is associated with positive cost w(S) and the objective is to
find a cover with minimum total cost. For simplicity of discussion, we shall not deal with
the general problem, but many techniques, such as the greedy algorithm in the next section,
can be generalized naturally.

Let us first formulate the set cover problem as an IP. By setting a binary variable xS for
each S ∈ S, the problem is equivalent to the 0/1 IP:

minimize
∑

S∈S xS

subject to
∑

e∈S∈S xS ≥ 1, ∀e ∈ U
xS ∈ {0, 1}, ∀S ∈ S.

(9.1)

The LP relaxation is obtained from this by replacing the integrality condition with nonneg-
ativity.

minimize
∑

S∈S xS

subject to
∑

e∈S∈S xS ≥ 1, ∀e ∈ U
xS ≥ 0, ∀S ∈ S.

(9.2)

It is easy to see that every optimal solution x to the LP relaxation satisfies x ≤ 1.

There is a specialization of the set cover problem to graphs, known as the vertex cover
problem. For a given graph G = (E, V), a vertex cover problem is to find a smallest number
of vertices to cover all edges, equivalently, it is the set cover problem where U := E and

S :=
{

{e ∈ E : i ∈ e}
︸ ︷︷ ︸

Si

: i ∈ V
}

.

21 3

4 5

7 86

Figure 9.2: Vertex Cover Problem

9.2 Greedy Algorithm 113

The integer programming formulation is

minimize
∑

j∈V xj

subject to
xi + xj ≥ 1, ∀{i, j} ∈ E

xj ∈ {0, 1}, ∀j ∈ V.

(9.3)

One can classify the set cover problem in a way that the vertex cover is the easiest among
its nontrivial specializations. he frequency of an element e ∈ U in S is the number of subsets
in S containing e. Denote by f = f(S) the frequency of a most frequent element. It is easy
to see that f(S) = 2 for the vertex cover, and the set cover becomes trivial if f(S) = 1.

The greedy algorithm in Section 9.2 achieves the approximation factor of 1 + lnn, while
both the primal-dual algorithm in Section 9.3 and the LP-rounding Section 9.4 attains the
factor of f = f(S). It is worthwhile to remark that none of these is superior to the other.

9.2 Greedy Algorithm

Here we consider a greedy algorithm for the set cover. The key idea is quite simple. The
algorithm selects a most efficient set at each step, and stops as soon as all elements of U
is covered. The natural definition of efficiency e(S,C) of a set S when a subset C of U is
already covered is the cardinality of uncovered part in S:

(9.4) e(S,C) := |S\C|.

The algorithm can be written as follows.

procedure GreedySetCover(U , S);
begin

C := ∅; C := ∅;
while C $= U do

take a set S ∈ S with largest efficiency e(S,C);
C := C ∪ S;
C := C ∪ {S};

endwhile;
output C;

end.

The following gives an approximation factor of the greedy algorithm.

Theorem 9.1 The greedy algorithm GreedySetCover achieves an approximation factor of
Hn := 1 + 1/2 + 1/3 + · · ·+ 1/n.

Proof. Let C denote the output of the algorithm, C∗ denote a minimum set cover and
let z∗ be the optimum cost |C∗|. We list the elements of U in the order in which they are

114 Approximation Algorithms

covered by the algorithm as e1, e2,..., en. We break ties arbitrarily. Let p(ek) denote the
“shared price” of ek, that is 1/e(Sk, Ck), where Sk is the set chosen to cover ek and Ck is the
part which was previously covered. It follows that

(9.5) |C| =
n
∑

k=1

p(ek).

Consider the stage when ek was first covered by a selected set Sk, for a fixed k = 1, . . . , n. This
means e(S,Ck) attains maximum at S = Sk. Because C∗ covers U\Ck at cost z∗, there must
be a set S ∈ S that has efficiency at least |U\Ck|/z∗. This implies that e(Sk, Ck) ≥ |U\Ck|/z∗

and p(ek) ≤ z∗/|U \Ck|.

On the other hand, |Ck| ≤ k − 1, and thus we have

(9.6) p(ek) ≤
z∗

|U \Ck|
≤

z∗

n− k + 1
.

It follows from (??) and (??) that

|C| =
n
∑

k=1

p(ek) ≤
n
∑

k=1

z∗

n− k + 1

= (1 +
1

2
+ · · ·+

1

n
)z∗ = Hnz

∗.

This proves the theorem.

Note that the Harmonic number Hn is bounded below and above by two log functions as

ln(n+ 1) ≤ Hn ≤ 1 + lnn.

This means the greedy algorithm is a factor (1 + lnn) approximation algorithm.

Can one find a polynomial-time algorithm that has a better approximation factor? It
turns out that there is no approximation algorithm with a constant factor, unless P=NP.
Furthermore, it has been shown that the approximation factor Hn of the greedy algorithm
cannot be improved beyond a constant factor.

There is a deep theorem, known as the PCP theorem (where PCP stands for probabilis-
tically checkable proof systems), in the theory of approximation algorithms that implies the
hardness of various optimizations, including that of the set cover mentioned above. There
are similar results known for the vertex cover, the MAX-3SAT (an optimization version of
the 3SAT) and the MAX CLIQUE problem. To present these results is beyond the scope of
this lecture notes. See Appendix A for further readings on the subject.

9.3 Primal-Dual Algorithm

Consider a dual pair of linear programs:

min cTx
subject to Ax ≥ b

x ≥ 0,
(9.7)

9.3 Primal-Dual Algorithm 115

max bTy
subject to ATy ≤ c

y ≥ 0.
(9.8)

The LP relaxation (9.2) of the set cover problem is a special case of the primal LP (9.5)
where c and b are both vectors of all 1’s and A is a 0/1 matrix.

When we need to solve the primal LP, the dual LP plays a crucial role of certifying the
optimality though the complementarity slackness condition, Theorem 2.3. Note that our
primal LP here is minimization and in the form of dual in the theorem.

When we need to find a “good” integer solution to the primal LP, we can still make use
of a relaxed complementarity slackness condition as follows.

Theorem 9.2 (Relaxed Complementary Slackness Conditions) Suppose a primal and
dual feasible solutions x and y satisfy the following conditions (a) and (b) for some positive
numbers α and β:

(a) xj > 0 implies cj/α ≤ (ATy)j ≤ cj, for all j,

(b) yi > 0 implies bi ≤ (Ax)i ≤ β bi, for all i.

Then we have

bTy ≤ cTx ≤ (αβ) bTy.(9.9)

Proof. Let x and y be feasible vectors satisfying both (a) and (b). The first inequality
bT y ≤ cTx is nothing but the weak duality theorem, Theorem 2.7. The second inequality
follows from simple substitutions and manipulations:

cTx =
∑

j

cjxj ≤ α
∑

j

(ATy)jxj (∵ xj ≥ 0 and (a))

= α
∑

i

(Ax)iyi (rewriting yTAx)

≤ α β
∑

i

biyi (∵ yi ≥ 0 and (b))

≤ (αβ) bTy

The inequalities (9.7) imply that the primal solution x attains the approximation factor
of αβ. Thus, if one manages to design an algorithm that finds a dual pair (x, y) of feasible
solutions satisfying the relaxed complementarity conditions such that x is integral, then it
is a factor (αβ) approximation algorithm for the associated integer programming problem.

116 Approximation Algorithms

A Primal-Dual Algorithm for Set Cover

Based on the ideas above, we shall present a concrete algorithm for the set cover problem.
Consider the LP relaxation (9.2) of the set cover, and its dual LP:

maximize
∑

e∈U ye
subject to

∑

e∈S ye ≤ 1, ∀S ∈ S
ye ≥ 0, ∀e ∈ U.

(9.10)

In our application of Theorem 9.2, we set α = 1 and β = f , where f = f(S) is the
frequency of the most frequent element. With this setting, the relaxed complementarity
slackness conditions (a) and (b) in Theorem 9.2 are reduced to:

(SC-a) xS > 0 implies
∑

e∈S ye = 1, for all S ∈ S,

(SC-b) ye > 0 implies 1 ≤
∑

e∈S∈S xS ≤ f , for all e ∈ U .

The algorithm we present below finds a dual pair of integral feasible solutions satisfying
both (SC-a) and (SC-b).

procedure PrimalDualSetCover(U , S);
begin

x := 0; y := 0; mark all elements of U as uncovered;
while x is infeasible do

take any uncovered element e ∈ U ;
increase ye until some dual constraint(s) become tight;
set xS := 1 for all S’s that have become tight;
mark all elements in those tight sets as covered;

endwhile;
output (x, y);

end.

Theorem 9.3 (Primal-Dual Performance) The algorithm PrimalDualSetCover is a
factor f approximation algorithm for the set cover problem.

Proof. Left to the reader.

9.4 LP-Rounding

The LP-rounding technique is an intuitively appealing method to convert an optimal (frac-
tional) solution of the LP relaxation to a “near-by” integral solution of a combinatorial
optimization problem.

While the rounding technique may not work at all in general (for example, when there
are equality constraints), it does work quite well for the set cover problem.

9.4 LP-Rounding 117

For rounding, we use f = f(S) the largest frequency. Here is an algorithm that relies on
an external LP solver.

procedure LProundingSetCover(U , S);
begin

solve the LP relaxation (9.2) to find an optimal solution x;
select each set S with xS ≥ 1/f ;
output the set C of selected sets;

end.

Theorem 9.4 (LP-Rounding Performance) The algorithm LProundingSetCover is a
factor f approximation algorithm for the set cover problem.

Proof. Let x be the LP optimal solution found and let C be the output of the algorithm.
Because each fixed element e is contained in at most f sets and x is a feasible solution to
the LP, among all xS’s with e ∈ S there is one with value at least 1/f . This means every
element e is covered by C. Clearly, the relative ratio of the resulting objective value and the
LP optimal value is at most f .

118 Approximation Algorithms

