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Overview

An optimization problem is to find a maximizer or minimizer of a given function subject
to a given set of constraints that must be satisfied by any solution. Mathematically, it can
be written in the form:

maximize (or minimize) f(x)
subject to x ∈ Ω,

where f is a given function from a general multidimensional space Rd to the set of reals
R, and Ω is a subset of Rd defined by various conditions. For example, the following is an
instance of the optimization problem:

maximize f((x1, x2)) := 3x2
1 + x2

2

subject to x1 ≥ 0
x2 ≥ 0

x1 + x2 ≤ 7
3

x1 is integer.

In this example, the dimension d of the underlying space is 2, and the region of all “feasible”
solutions is

Ω = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤
7

3
, x1 is integer}.

One of the main goals is to find algorithms to find an optimal solution, that is, a vector x ∈ Ω
maximizing (or minimizing) the objective function f . Furthermore, whenever possible, we
look for an “efficient” algorithm. Efficiency can be defined in many different ways but for
the users of optimization techniques, the most important one is (loosely defined) practical
efficiency that allows a computer implementation to return a (correct) optimal solution in
a practically acceptable time. We will study a theoretical efficiency in this lecture that
provides excellent guidelines for practical efficiency.

The optimization problem itself is a very general problem which cannot be treated uni-
formly. We must consider various classes of special subproblems, defined by function types
that can appear in the formulation, or restricted by whether some variables take only inte-
ger values, etc. The optimization problem contains many “easy” classes of problems that
admit efficient algorithms. Among them are the linear programming problem, network flow
problems and convex programming problems. On the other hand there are many “hard”
classes of problems, such as the integer programming problem and non-convex optimization
problems, that demand much more sophisticated techniques and require much more time
than the easy problems of the same size.

One important emphasis is to understand certificates for optimality. When an algo-
rithm correctly solves an optimization problem, it finds not only an optimal solution but a
certificate that guarantees the optimality. In general, easy optimization problems admit a
simple (“succinct”) certificate so that the verification of optimality is easy. We shall study
various types of certificates for efficiently solvable optimization problems. On the other hand,
for hard problems that do not seem to admit a succinct certificate, we shall study algorithms
that search for optimal or approximative solutions using exhaustive search, heuristic search
and other techniques.
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Three Main Themes of Optimization

1. Linear Programming or Linear Optimization (LP)

maximize cTx (x ∈ Rn)
subject to Ax ≤ b

x ≥ 0.

Solvable by highly efficient algorithms. Practically no size limit. The duality theorem
plays a central role.

2. Combinatorial Optimization

maximize cTx
subject to x ∈ Ω.

Here Ω is a “discrete” set, e.g.

Ω = {x ∈ Rn : Ax ≤ b, xj = 0 or 1 for all j}.

Includes both easy and hard problems, i.e. P (polynomially solvable) and NP-Complete.
Must learn how to recognize the hardness of a given problem, and how to select ap-
propriate techniques.

3. Nonlinear Programming or Nonlinear Optimization (NLP)

maximize f(x)
subject to gi(x)≤ 0 for i = 1, . . . , m,

where f(x) and gi(x) are real-valued functions: Rn → R.

Convexity plays an important role. Interior-point algorithms solve “convex” NLP
efficiently, including LP.
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Chapter 1

Introduction to Linear Programming

1.1 Importance of Linear Programming

• Many applications

Optimum allocation of resources
– optimum production/allocation of resources, production scheduling, diet planning

Transportation problems
– Transshipment problems, minimum cost flows, maximum flows, shortest path prob-
lems

Work force planning
– Optimal assignment of jobs, scheduling of classes

• Large-scale problems solvable

Solution methods
– Simplex method Dantzig 1947
– Interior-point methods Karmarkar et al. 1984 –
– Combinatorial methods Bland et al. 1977 –

One can solve LP’s with a large number (up to millions) of variables and constraints,
and there are many reliable LP codes:

– CPLEX, IMSL, LINDO, MINOS, MPSX, XPRESS-MP, etc.

• LP techniques can be used to solve much harder problems:

– combinatorial optimization, integer programming problems, etc.

• Beautiful theory behind it!
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1.2 Examples

Example 1.1 Optimum allocation of resources

Chateau ETH produces three different types of wines, Red, Rose and White, using three
different types of grapes planted in its own vineyard. The amount of each grape necessary
to produce a unit amount of each wine, the daily production of each grape, and the profit of
selling a unit of each wine is given below. How much of each wines should one produce to
maximize the profit? We assume that all wines produced can be sold.

wines
Red White Rose

grapes supply
Pinot Noir 2 0 0 4

Gamay 1 0 2 8

Chasselas 0 3 1 6
(ton/unit) (ton/day)

3 4 2
profit (K sf/unit)

• Trying to produce the most profitable wine as much as possible.

Limit of 2 units of white.

• The remaining resources allows 2 units of red. So,

2 units of red, 2 units of white.

• By reducing 1 unit of white, one can produce

2 units of red, 1 unit of white, 3 units of rose.

Question 1 Is this the best production? A proof?
Question 2 Maybe we should sell the resources to wine producers?
Question 3 How does the profitability affect the decision?

the production quantities · · · ?
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Vineyard’s Primal LP (Optimize Production)

x1: Red, x2: White, x3: Rose (units).

max 3x1 + 4x2 + 2x3 ⇐ Profit
subject to 2x1 ≤ 4 ⇐ Pinot

x1 + 2x3 ≤ 8 ⇐ Gamay
3x2 + x3 ≤ 6 ⇐ Chasselas

x1≥ 0, x2≥ 0, x3 ≥ 0

Remark 1.1 When any of the variable(s) above is restricted to take only integer values 0,
1, 2, . . ., the resulting problem is called an integer linear program (IP or ILP) and much
harder to solve in general because it belongs to the class NP-complete, the notion discussed
in Chapter 5. There are some exceptions, such as the assignment problem and the maximum
flow problem, that can be solved very efficiently.

Remark 1.2 It is uncommon to mix red and white grapes to produce a rose wine. A typical
way is by using only red grapes and removing skins at an early fermentation stage. Thus,
our wine production problem (Example 1.1) does not reflect the usual practice. Nevertheless,
mixing different types of grapes, in particular for red wines, is extremely common in France,
Italy and Switzerland.

Example 1.2 Optimum allocation of jobs

ETH Watch Co. has P workers who are assigned to carry out Q tasks. Suppose the
worker i can accomplish mij times the work load of task j in one hour (mij > 0). Also it is
required that the total time for the worker i cannot exceed Ci hours. How can one allocate
the tasks to the workers in order to minimize the total amount of working time?

Mathematical Modeling

Let xij be the time assigned to worker i for task j.

min
∑

i,j

xij

subject to
Q
∑

j=1

xij ≤ Ci (i = 1, . . . P ),

P
∑

i=1

mijxij = 1 (j = 1, . . . , Q),

xij ≥ 0 (i = 1, . . . P ; j = 1, . . . , Q).
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1.3 Linear Programming Problems

linear function
f(x1, x2, · · · , xn) = c1x1 + c2x2 + · · ·+ cnxn

where c1, c2, · · · , cn are given real numbers and x1, x2, · · · , xn are variables.

linear equality
f(x1, x2, · · · , xn) = b

where f is a linear function and b is a given real number.

linear inequality

f(x1, x2, · · · , xn) ≥ b

f(x1, x2, · · · , xn) ≤ b

A linear constraint means either a linear equality or inequality.

Linear Programming Problem or LP

It is a problem to maximize or minimize a linear function over a finite set of linear
constraints:

max c1x1 + c2x2 + · · ·+ cnxn

subject to ai1x1 + ai2x2 + · · ·+ ainxn = bi (i = 1, · · · , k)
ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi (i = k + 1, · · · , k′)
ai1x1 + ai2x2 + · · ·+ ainxn ≥ bi (i = k′ + 1, · · · , m)

Here, c1x1 + c2x2 + · · ·+ cnxn is called the objective function.
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Quiz Decide for each of the following problems whether it is an LP or not.

1.

max 2x + 4y
subject to x − 3y = 5

y ≤ 0

2.

max 2x + 4y
subject to x − 3y = 5

x ≥ 0 or y ≤ 0

3.

max x + y + z
subject to x + 3y − 3z < 5

x − 5y ≥ 3

4.

min x2 + 4y2 + 4xy
subject to x + 2y ≤ 4

x − 5y ≥ 3
x ≥ 0, y ≥ 0

5.

min x1 + 2x2 − x3

s. t. x1 ≥ 0 x2 ≥ 0
x1 + 4x2 ≤ 4

x2 + x3 ≤ 4
x1, x2, x3 are integers.

6.

min 2x1 − x2 − 3x3

s. t. x1 + 4x2 ≤ 4
x2 + x3 ≤ 4

x1 ≥ 0 x2 ≥ 0
x1 is integer.

7.

min x1 + 2x2 − x3

s. t. x1 + 4x2 + x3 ≤ 4
3x1 x2 + x3 ≤ 4
x1, x2, x3 are either 0 or 1.
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1.4 Solving an LP: What does it mean?

Key words
optimal, unbounded, infeasible

Optimal Production Problem of Chateau ETH

x1: Red, x2: White, x3: Rose (units).

max 3x1 + 4x2 + 2x3 ⇐ Profit
subject to 2x1 ≤ 4 ⇐ Pinot

x1 + 2x3 ≤ 8 ⇐ Gamay
3x2 + x3 ≤ 6 ⇐ Chasselas

x1≥ 0, x2≥ 0, x3 ≥ 0

• Feasible solution
a vector that satisfies all constraints:

(x1, x2, x3) = (0, 0, 0) yes

(x1, x2, x3) = (1, 1, 1) yes

(x1, x2, x3) = (2, 1, 3) yes

(x1, x2, x3) = (3, 0, 0) no

(x1, x2, x3) = (2,−1, 0) no

• Feasible region
the set Ω of all feasible solutions x = (x1, x2, x3)T . Figure 1.1 shows this region.
Geometrically the feasible region is a convex polyhedron.

x3

x1

x2

2 x1 ≤ 4

x1 + 2 x3 ≤ 8

3 x2 + x3 ≤ 6

Figure 1.1: Feasible Region Ω
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• Optimal solution
a feasible solution that optimizes (maximizes or minimizes) the objective function
among all the feasible solutions.

• LP may not admit an optimal solution. There are two such cases:

(1) Infeasible case

max x1 + 5x2

subject to x1 + x2 ≥ 6 ← conflicting
−x1 − x2 ≥ −4 ← constraints

This LP has no feasible solution. =⇒ It is said to be infeasible.

(2) Unbounded case

max 2x1 − x2

subject to −x1 + x2 ≤ 6
−x1 − 3x2 ≤ −4

The objective function is not bounded (above for maximization, below for minimiza-
tion) in the feasible region. More formally it means that for any real number k there ex-
ists a feasible solution whose objective value is better (larger for maximization, smaller
for minimization) than k.

=⇒ An LP is said to be unbounded

• Fundamental Theorem

Theorem 1.3 Every LP satisfies exactly one of the three conditions:

(1) it is infeasible;

(2) it is unbounded;

(3) it has an optimal solution.

• Solving an LP means

Derive the conclusion 1, 2 or 3, and exhibit its certificate.

For example, the simplex method is a method solving an LP. A certificate is an extra
information with which one can prove the correctness of the conclusion easily. We shall
see certificates for 1, 2 and 3 in Chapter 2.
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1.5 History of Linear Programming

Military Economy/Industry Linear Programming Mathematics

Military
20th Century

Input-Output Model
Leontief (1936)

Inequality Theory
Fourier (1923)
Gordan (1873)
Farkas (1902)
Motzkin (1936)
Game Theory
von Neumann &
Morgenstern (1944)

Linear Programming
(1947)

Simplex Method
Danzig (1947)

Economic Model
Koopmans (1948)

Duality Theory
von Neumann (1947)

(Nobel Prize
Koopmans
Kantorovich
(1975)

Combinatorial Algo.
Bland etc. (1977 )
Polynomial Algo.
Khachian (1979)

Opt. resourse alloc.)
New Polynomial Algo.
Karmarkar (1984)

Note: A polynomial or polynomial-time algorithm means a theoretically efficient algo-
rithm. Roughly speaking, it is defined as an algorithm which terminates in time polynomial
in the binary size of input. This measure is justified by the fact that any polynomial time
algorithm runs faster than any exponential algorithm for problems of sufficiently large input
size. Yet, the polynomiality merely guarantees that such an algorithm runs not too badly
for the worst case. The simplex method is not a polynomial algorithm but it is known to be
very efficient method in practice.



Chapter 2

LP Basics I

2.1 Recognition of Optimality

max 3x1 + 4x2 + 2x3

subject to
E1: 2x1 ≤ 4
E2: x1 + 2x3 ≤ 8
E3: 3x2 + x3 ≤ 6
E4: x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

How can one convince someone (yourself, for example) that the production (Red 2, White
1 and Rose 3 units) is optimal?

(x1, x2, x3) = (2, 1, 3)

profit = 3× 2 + 4× 1 + 2× 3 = 16

• Because we have checked many (say 100,000) feasible solutions and the production
above is the best among them...

• Because CPLEX returns this solution and CPLEX is a famous (and very expensive)
software, it cannot be wrong.

• We exhausted all the resources and thus we cannot do better.

Are these reasonings correct?

• An inequality that is satisfied by any feasible solution.

Every feasible solution (x1, x2, x3) satisfies E1 ∼ E4, and thus in particular it must
satisfy any positive combinations of E1 and E3:

2× E1: 4x1 ≤ 8
2× E3: 6x2 + 2x3 ≤ 12
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whose sum gives:

2× E1 + 2× E3: 4x1 + 6x2 + 2x3 ≤ 20(2.1)

The LHS of this inequality can be related to the objective function.

profit = 3x1 + 4x2 + 2x3(2.2)

In fact, it OVERESTIMATEs the objective value for any feasible solution, since the
coefficients of x1, x2, x3 in (2.1) are greater than or equal to the corresponding terms
in the objective function, and all variables are restricted to be nonnegative.

Therefore, we know

profit = 3x1 + 4x2 + 2x3 ≤ 4x1 + 6x2 + 2x3 ≤ 20

is valid for any feasible solution (x1, x2, x3). More precisely,

By taking a linear combination of the constraints, we concluded that the
objective value cannot exceed 20.

Can we do better than this to lower the upper bound to 16? This would prove the
optimality of (x1, x2, x3) = (2, 1, 3). In fact this is possible. Add the inequalities E1,
E2, E3 with coefficients 4/3, 1/3, 4/3:

4

3
× E1 +

1

3
× E2 +

4

3
× E3 : 3x1 + 4x2 + 2x3 ≤ 16.

Finding such coefficients is a mystery (for the moment). Nevertheless, we could prove
the optimality of the production (x1, x2, x3) = (2, 1, 3).

By solving an LP by the simplex algorithm or by any reasonable algorithm, we obtain
a vector of these mysterious coefficients as well as an optimal solution. This vector is
called the dual price.

2.2 Dual Problem

In the previous section, we showed how one can prove the optimality of our small LP by
taking a proper linear combination of the constraints.

The DUAL problem of an LP is in fact an LP of finding mysterious coefficients of the
original constraints to get the best upper bound of the objective function.

We use nonnegative variables y1, y2 and y3 as the (unknown) coefficients of E1, E2 and
E3, respectively, to obtain a general inequality.
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y1 × E1 + y2 × E2 + y3 × E3 :
(2y1 + y2)x1 + (3y3)x2 + (2y2 + y3)x3 ≤ 4y1 + 8y2 + 6y3

where y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

For the RHS of the inequality to be an upper bound of the objective value (and thus for
the LHS to become an overestimate of the objective function), the following conditions are
sufficient:

2y1 + y2 ≥ 3
3y3 ≥ 4

2y2 + y3 ≥ 2
.

Therefore, the problem of finding the best (smallest) upper bound is again an LP:

Example 2.1 (The Dual of Chateau ETH Problem:)

min 4y1 + 8y2 + 6y3
subject to 2y1 + y2 ≥ 3

3y3 ≥ 4
2y2 + y3 ≥ 2

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

This problem is defined as the dual problem of the LP.

For any LP in canonical form:

max c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn ≤ b1
...

...
...

...
am1x1 + am2x2 + · · · + amnxn ≤ bm

x1 ≥ 0, x2 ≥ 0, . . . xn ≥ 0,

(2.3)

we define the dual problem as the LP:

min b1y1 + b2y2 + · · · + bmym
subject to a11y1 + a21y2 + · · · + am1ym ≥ c1

...
...

...
...

a1ny1 + a2ny2 + · · · + amnym ≥ cn
y1 ≥ 0, y2 ≥ 0, . . . ym ≥ 0.

(2.4)
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The original LP is sometimes called the primal problem to distinguish it from the dual
problem. Using matrices, one can write these LPs as:

max cTx
subject to Ax ≤ b

x ≥ 0,
(2.5)

min bTy
subject to ATy ≥ c

y ≥ 0.
(2.6)

Here b and c are the column vectors (b1, b2, . . . , bm)T and (c1, c2, . . . , cn)T , and A is the m×n
matrix having aij in the (i, j) position. 0 denotes a column vector of all 0’s of appropriate
size. A vector inequality (or equality) means the component-wise simultaneous inequalities
(equalities), for example, u ≥ v means uj ≥ vj for all j.

The canonical form of an LP (2.3) is a special form of the general LP problem: it is a
maximization problem with no equality constraints, all variables restricted to be nonnegative
and all other inequalities in one form LHS ≤ RHS.

The dual LP is not in canonical form as it is. However, there is a trivial transformation to
a canonical form LP. Simply replace the objective function with its negative, minimization
with maximization, and replace the reversely oriented inequalities with their −1 multiplica-
tions. One can transform any LP problem to an equivalent LP in canonical form.

Quiz Show that the dual problem of the dual LP is equivalent to the primal problem.

The following theorem is quite easy to prove. In fact, we proved it for our small LP and
the same argument works for the general case.

Theorem 2.1 (Weak Duality) For any pair of primal and dual feasible solutions x =
(x1, x2, · · · , xn)T and y = (y1, y2, · · · , ym)T

n
∑

j=1

cjxj ≤
m
∑

i=1

biyi (cTx ≤ bT y).(2.7)

One important consequence of the weak duality is:

If the equality is satisfied in (2.7) by some primal and dual feasible solutions x
and y, then they are both optimal.

Prove it by using the definition of optimality.

The following theorem shows that the equality is always satisfied by some pair of feasible
solutions if they exist. This means that the optimality of a solution to an LP can be ALWAYS
verified by exhibiting a dual optimal solution (certificate for optimality).
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Theorem 2.2 (Strong Duality) If an LP has an optimal solution x = (x1, x2, · · · , xn)T

then the dual problem has an optimal solution y = (y1, y2, · · · , ym)
T and their optimal values

are equal:

n∑

j=1

cjxj =
m∑

i=1

biyi (cTx = bTy).(2.8)

This is considered as the most important theorem in LP theory. Unlike the weak duality
theorem, the strong duality is not easy to prove. We leave the proof to the Advanced Part
(Chapter 4) of the lecture note.

There is an alternative way to write the optimality criterion for a dual pair of feasible
solutions: cTx = bT y, which is sometimes more useful.

Theorem 2.3 (Complementary Slackness Conditions) For a dual pair of feasible so-
lutions x and y the following conditions are equivalent:

(a) both x and y are optimal solutions;

(b) cTx = bTy;

(c) yT (b−Ax) = 0 and xT (ATy − c) = 0.

(c’) yi(b− Ax)i = 0 for all i and xj(ATy − c)j = 0 for all j.

(c”) yi > 0 implies (b− Ax)i = 0, for all i and
xj > 0 implies (ATy − c)j = 0, for all j.

2.3 Recognition of Infeasibility

Consider the following LP:

Example 2.2
max 3x1 + 4x2 + 2x3

subject to
E1: 2x1 ≤ 4
E2: −x1 − 2x3 ≤ −15
E3: 3x2 + x3 ≤ 6
E4: x1 ≥ 0, x2 ≥ 0 x3 ≥ 0

How can one prove the infeasibility of this LP? Clearly

• I have checked 100, 000, 000 candidates for feasibility and none is feasible. Thus the
LP is infeasible.
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has no sense!

Actually we can use essentially the same technique as for the optimality. That is to use
linear combinations.

Taking the combination of E1, E2, E3 with coefficient 1/2, 1 and 2, we obtain an in-
equality 6x2 ≤ −1 which must be satisfied by any feasible solution. Now this inequality
contradicts with x2 ≥ 0. Therefore there is no feasible solution. This kind of proof is in fact
always possible by the following theorem:

Theorem 2.4 (Farkas’ Lemma) A system of linear inequalities {Ax ≤ b and x ≥ 0} has
no solution if and only if the system {y ≥ 0, ATy ≥ 0 and bTy < 0} has a solution.

One can easily verify: if there exists y ∈ Rm such that y ≥ 0, ATy ≥ 0 and bTy < 0,
then there is no solution to the system Ax ≤ b and x ≥ 0. The hard part of the proof is the
converse.

2.4 Recognition of Unboundedness

Consider the LPs:

Example 2.3
max 3x1 + 4x2 + 2x3

subject to
E1: 2x1 ≤ 4
E2: x1 + 2x3 ≤ 8
E3: −3x2 + x3 ≤ 6
E4: x1 ≥ 0, x2 ≥ 0 x3 ≥ 0

Example 2.4
max 3x1 − 4x2 + 2x3

subject to
E1: −2x1 ≤ 4
E2: x1 − 2x3 ≤ 8
E3: −3x2 + x3 ≤ 6
E4: x1 ≥ 0, x2 ≥ 0 x3 ≥ 0

It is easy to see that these two problems are feasible. For example, the origin x = (0, 0, 0)T

is feasible for both. What about unboundedness?

By a little observation, one can see the objective function is not bounded above for the
first problem. One can increase the value of x2 by any positive α at any feasible solution,
e.g. (0,α, 0)T , we obtain a feasible solution whose objective value is increased by 4α. Since α
can take any positive value, the objective function is unbounded above in the feasible region.
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Thus we have a certificate of unboundedness, namely, one feasible solution together with a
“direction” (0, 1, 0)T which can be added to the feasible solution with any positive multiple
to stay feasible and to increase the objective value.

For the second problem, one has to be a little bit more careful to find such an unbounded
direction. Consider the direction (1, 1, 1)T . If any positive (α) multiple of this direction is
added to any feasible solution, the objective value increases by α (= (3− 4 + 2)α). On the
other hand the feasibility will be preserved as well (why?).

It turns out that for any unbounded LP, the same certificate exists and thus one can
easily verify the unboundedness.

Theorem 2.5 (Unboundedness Certificate) An LP

max cTx subject to Ax ≤ b and x ≥ 0

is unbounded if and only if it has a feasible solution x and there exists (a direction) z such
that z ≥ 0, Az ≤ 0 and cT z > 0.

Quiz Solve the above LPs, Example 2.3 and Example 2.4 by an LP code and study the
results. Does it give a certificate for infeasibility/unboundedness?
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2.5 Dual LP in Various Forms

In Section 2.2, we defined the dual problem of an LP in canonical form. In this section, we
present the dual problems of LPs in other forms, that can be obtained by first converting
them to canonical form, applying the definition of the dual problem, and then doing some
simple equivalence transformations. These allow a direct application of the duality theorems
to LPs in different forms.

First of all, we remark two equivalences of linear constraints:

(Equality) aTx = b⇐⇒ aTx ≤ b and − aTx ≤ −b(2.9)

(Free variable) xj free⇐⇒ xj = x′
j − x′′

j , x
′
j ≥ 0 and x′′

j ≥ 0.(2.10)

Proposition 2.6 For each (P*) of the LPs in LHS, its dual LP is given by the corresponding
LP (D*) in RHS below:

(P1) max cTx (D1) min bT y
s.t. Ax = b s.t. y free

x ≥ 0 ATy ≥ c

(P2) max cTx (D2) min bT y
s.t. Ax ≤ b s.t. y ≥ 0

x free ATy = c

(P3) max (c1)Tx1 + (c2)Tx2 (D3) min (b1)Ty1 + (b2)Ty2

s.t. A11x1 + A12x2 = b1 s.t. y1 free
A21x1 + A22x2 ≤ b2 y2 ≥ 0

x1 free (A11)Ty1 + (A21)Ty2 = c1

x2 ≥ 0 (A12)Ty1 + (A22)Ty2 ≥ c2

Proof. Consider the form (P1). By (2.9), it is equivalent to an LP in canonical form:

(P1’) max cTx
s.t. Ax ≤ b

−Ax ≤ −b
x ≥ 0.

By the definition (2.4) of the dual, we obtain

(D1’) max bTy′ − bT y′′ [ ⇐⇒ max bT (y′ − y′′) ]
s.t. ATy′ + (−AT )y′′ ≥ c [ ⇐⇒ AT (y′ − y′′) ≥ c ]

y′, y′′ ≥ 0. [ ⇐⇒ y′, y′′ ≥ 0. ]

By (2.10), the problem (D1’) is equivalent to (D1). Proofs for the rest are left for exercise.



Chapter 3

LP Basics II

3.1 Interpretation of Dual LP

Chateau EPFL is interested in purchasing high quality grapes produced at Chateau ETH.

In order for Chateau EPFL to buy the grapes from Chateau ETH, how should
they decide the prices?

wines
Red White Rose

grapes supply
Pinot Noir 2 0 0 4

Gamay 1 0 2 8

Chasselas 0 3 1 6
(ton/unit) (ton/day)

3 4 2
profit (K sf/unit)

First of all, we set the prices as variables:

Pinot y1 (K sf/ton)
Gamay y2 (K sf/ton)
Chasselas y3 (K sf/ton).

Chateau ETH can generate 3K francs profit by production of one unit of red wine, the
total sale price of the grapes for the production (Pinot 2 tons and Gamay 1 ton) should not
be lower than that.

2y1 + 1y2 ≥ 3 Red wine constraint(3.1)



24 LP Basics II

Similarly, we must have

3y3 ≥ 4 White wine constraint(3.2)

2y2 + 1y3 ≥ 2 Rose wine constraint.(3.3)

Clearly Chateau EPFL’s main interest is to minimize the purchase cost of the grapes,
and so the pricing problem is the LP:

min 4y1 + 8y2 + 6y3 (Minimizing the total cost)
subject to 2y1 + y2 ≥ 3

3y3 ≥ 4
2y2 + y3 ≥ 2

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

This problem is somewhat familiar, isn’t it? In fact it is precisely the dual problem we
defined in the previous section.

Chateau ETH’s problem:
max 3x1 + 4x2 + 2x3 opt. sol. x = (2, 1, 3)T

subject to 2x1 ≤ 4
x1 + 2x3 ≤ 8

3x2 + x3 ≤ 6
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Its dual = Chateau EPFL’s problem:

min 4y1 + 8y2 + 6y3 opt. sol. y = (4/3, 1/3, 4/3)T

subject to 2y1 + y2 ≥ 3
3y3 ≥ 4

2y2 + y3 ≥ 2
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

The weak duality theorem says:

• The total purchase cost of Chateau EPFL cannot be less than the total profit of
production at Chateau ETH.

The strong duality theorem says:

• If both parties behave optimally, the total purchase cost for Chateau EPFL is equal
to the total profit of wine production at Chateau ETH.

• Thus, for Chateau ETH it does not make any difference in profit by producing wines
or selling the grapes.
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3.2 Exercise(Pre-sensitivity Analysis)

Since Chateau ETH has a long relation with their neighbor Chateau EPFL, they have decided
to sell Gamay grape to Ch. EPFL who has a very little grape harvest this year. The selling
price is fixed to theoretically sound 1/3 (K sf/ton), but Ch. ETH wants to maintain the
same total profit. Can they sell any amount of Gamay with this price?

Change the amount of Gamay sold to EPFL gradually, solve the resulting LP’s with an
LP code and graph in Firgure 3.1 the total profit (sum of wine production profit and grape
selling profit) to check the critical point(s).

total amount of
Gamay sold
                     (ton)

1 2

8

4 5 6 7 8

total profit
grape selling profit
wine prod. profit

profit (K sf)

12

16

3

4

Figure 3.1: Profit Analysis on Gamay Selling with the Fixed Price 1/3


