Introd 000	uction DO	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion 000
	Automa	ated Simulatio	on of Modelica M The Discontinuous	lodels with QSS M ^{Case}	ethods
	Xenofo 2 ₁	n Floros ¹ Fede ¹ Departmu {xenofon Laboratorio de Sistemas {fb	rico Bergero ² França ent of Computer Science, ETH floros, francois.celli s Dinámicos, FCEIA, Universid CIFASIS-CONICET ergero, kofman}@fceia.	bis E. Cellier ¹ Ernesto H Zurich, Switzerland .er}@inf.ethz.ch lad Nacional de Rosario, Argentin unr.edu.ar	Kofman ² a
			March 22nd, 2011		

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000 000000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction ●0000	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion

Introductory Material

Goal

Design and implement an interface between OpenModelica and PowerDEVS (**OMPD Interface**)

Enable the simulation of Modelica models with QSS methods

Interfacing OpenModelica and PowerDEVS

ETH Zurich

Introduction 0000	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion
Introductory Material				

Why?

Interfacing OpenModelica and PowerDEVS we take advantage of

The powerful modeling tools and market share offered by Modelica

- Users can still define their models using the Modelica language or their favorite graphical interface.
- ► No prior knowledge of DEVS and QSS methods is needed.

The superior performance of quantization-based techniques in some particular problem instances

- QSS methods allow for asynchronous variable updates, which potentially speeds up the computations for real-world sparse systems.
- QSS methods do not need to iterate backwards to handle discontinuities, they rather predict them, enabling real-time simulation.

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
0000	000000	0000000	0000	000

Introductory Material

Modelica-The next generation modeling language

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion
Introductory Material				

QSS methods

Simulation of continuous systems by a digital computer requires discretization.

- Classical methods (e.g. Euler, Runge-Kutta etc.), that are implemented in Modelica environments, are based on discretization of time.
- On the other hand, the Discrete Event System Specification (DEVS) formalism, introduced by Zeigler in the 90s, enables the discretization of states.
- The Quantized-State Systems (QSS) methods, introduced by Kofman in 2001, improved the original quantized-state approach of Zeigler.
- PowerDEVS is the environment where QSS methods have been implemented for the simulation of systems described in DEVS.

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion 000
	000			

Introductory Material

PowerDEVS

- Specify system structure (using DEVS formalism)
- Block implementation hidden (C++ code)
- Integrators implement the QSS methods
- Simulation using hierarchical master-slave structure and message passing

http://sourceforge.net/projects/powerdevs/

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	00000 000	0000000	0000 000000	000

QSS Definition

Quantized State Systems Method

Definition Given a system

$$\dot{x}(t) = f(x(t), t) \tag{1}$$

with $x \in \mathbb{R}^n$, $t \in \mathbb{R}$ and $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$, the QSS approximation is given by

$$\dot{x}(t) = f(q(t), t) \tag{2}$$

where q(t) and x(t) are related componentwise by hysteretic quantization functions.

Under certain assumptions, the QSS approximation (2) is shown to be equivalent to a legitimate DEVS model.

Introduction	QSS Methods	OMPD Interface	Simulation Results 0000 000000	Discussion
000 D // //				

QSS Method and Perturbed Systems

Defining $\Delta x(t) \triangleq q(t) - x(t)$, the QSS approximation (2) can be rewritten as:

$$\dot{x}(t) = f[x(t) + \Delta x(t), t]$$
(3)

Notice that every component of Δx satisfies

$$|\Delta x_i(t)| = |q_i(t) - x_i(t)| \le \Delta Q_i \tag{4}$$

where ΔQ_i is the quantization width (or quantum) in the *i*-th component.

The effect of the QSS discretization can be studied as a problem of bounded perturbations over the original ODE.

At each step only one (quantized) state variable that changes more than the quantum value ΔQ_i is updated producing a discrete event.

Introduction	QSS Methods	OMPD Interface	Simulation Results 0000 000000	Discussion 000
QSS Definition				

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

$$\dot{x}_{1} = f_{1}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{1} = f_{1}(q_{1}, \dots, q_{n}, t)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (5)$$

$$\dot{x}_{n} = f_{n}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{n} = f_{n}(q_{1}, \dots, q_{n}, t)$$

Considering a single subcomponent we can define the "simple" DEVS models:

Introduction	QSS Methods	OMPD Interface	Simulation Results 0000 000000	Discussion
OSS Definition				

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

$$\dot{x}_{1} = f_{1}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{1} = f_{1}(q_{1}, \dots, q_{n}, t)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (5)$$

$$\dot{x}_{n} = f_{n}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{n} = f_{n}(q_{1}, \dots, q_{n}, t)$$

Considering a single subcomponent we can define the "simple" DEVS models:

Introduction	QSS Methods	OMPD Interface	Simulation Results 0000 000000	Discussion 000
QSS Definition				

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

$$\dot{x}_{1} = f_{1}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{1} = f_{1}(q_{1}, \dots, q_{n}, t)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (5)$$

$$\dot{x}_{n} = f_{n}(x_{1}, \dots, x_{n}, t) \qquad \dot{x}_{n} = f_{n}(q_{1}, \dots, q_{n}, t)$$

Considering a single subcomponent we can define the "simple" DEVS models:

$$q_i = Q(x_i) = Q(\int \dot{x}_i \, dt)$$
Quantized Integrator
$$\dot{x}_i = f_i(q_1, \dots, q_n, t)$$
Static Function

Introduction	QSS Methods OOOOOO OOO	OMPD Interface	Simulation Results 0000 000000	Discussion
QSS Definition				

QSS - Example

Let second order LTI system:

$$\dot{x}_1(t) = x_2(t)$$

 $\dot{x}_2(t) = -x_1(t) - x_2(t) + u(t)$

Introduction 00000	QSS Methods	OMPD Interface	Simulation Results 0000 000000	Discussion

QSS Definition

QSS - Example

Let second order LTI system:

$$\dot{x}_1(t) = x_2(t)$$

 $\dot{x}_2(t) = -x_1(t) - x_2(t) + u(t)$

Introduction 00000	QSS Methods ○○○○● ○○○	OMPD Interface	Simulation Results 0000 000000	Discussion

QSS Definition

QSS - Example

Let second order LTI system:

$$\dot{x}_1(t) = x_2(t)$$

 $\dot{x}_2(t) = -x_1(t) - x_2(t) + u(t)$

Introduction 00000	QSS Methods ○○○○○ ●○○	OMPD Interface	Simulation Results 0000 000000	Discussion 000
Higher-Order QSS Methods				

Cost vs. Accuracy in QSS

In QSS, we know that the quantum is proportional to the global error bound. Thus,

- If we want to increase the global accuracy for a factor of 100, we should divide the quantum by that factor.
- Since the number of steps is inversely proportional to the quantum, that modification would increase the number of computations by a factor of 100.

This problem is due to the fact that QSS is only first order accurate, i.e. it does not use information about the derivatives of f.

00000 000000 00000 0000 0000 0 € 0 0000000 000000000000000000000000	Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
	00000	00000 000	0000000	0000 000000	000

Higher-Order QSS Methods

Second Order QSS (QSS2 Method)

- Same definition and properties as QSS.
- Second order accurate method.
- The number of steps grows with the square root of the accuracy.
- The quantized variables have piecewise linear trajectories thus the state derivatives are also piecewise linear and the state variables piecewise parabolic.

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	00000 00•	0000000	0000	000

Higher-Order QSS Methods

Third Order QSS (QSS3 Method)

- Same definition and properties as QSS.
- Third order accurate method.
- The number of steps grows with the cubic root of the accuracy.
- The method of choice for simulating real-world systems.

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	•0000000	0000 000000	000

OpenModelica Compiler Modifications

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000 000000	000

The Bouncing Ball Model

```
model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=0.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v_new;
Boolean flying(start=true) "true, if ball is flying";
Real dummy;
Boolean dummy2;
equation
der(dummy) = if (dummy>0 and h<=0) then</pre>
```

```
dummy else h*v; // Dummy part 1
when {sample(0,1)} // Dummy part 2
dummy2 = false;
end when
```

```
when (h <= 0.0 and v <= 0.0,impact) then
 v_new = if edge(impact) then -e*v else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
```


end BouncingBall;

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion

Add Static Blocks for State Variables

STATIC FUNCTIONS

QUANTIZED INTEGRATORS

- Extract equations (BLT blocks) needed to compute state derivative variables.
- Place the splitted equations in respective static function blocks.
- Resolve dependencies in the inputs/outputs.

000

Add Zero Crossing Functions

- Add zero-crossing functions and the corresponding zero-cross detectors.
- Resolve dependencies in the inputs/outputs.
- The zero-cross detectors produce events at discontinuities and propagate them to the corresponding static blocks.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion

Add When Blocks

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then
dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
$impact = h \le 0.0; (Eq. 4)$
when {h <= 0.0 and v <= 0.0 , impact} then
<pre>v_new = if edge(impact) then</pre>
-e∗v else 0; (Eq. 5)
flying = $v_new > 0$; (Eq. 6)
<pre>reinit(v, v_new);</pre>
end when;
der(v) = if flying then -g else 0; (Eq. 7)

- Add when-blocks for each generated when-clause and resolve dependencies.
- If a static function depends on a discrete variable calculated in a when-block (e.g. flying) an event is sent to the corresponding static block.
- When a cross detector fires, all the discrete variables are updated via calling the OMC function updateDepend().

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion

Add Sample Blocks

der(h) = v; (Eq. 1)
<pre>der(dummy) = if (dummy>0 and h<=0) then</pre>
dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0, impact} then
<pre>v_new = if edge(impact) then</pre>
-e∗v else 0; (Eq. 5)
$flying = v_new > 0;$ (Eq. 6)
<pre>reinit(v, v_new);</pre>
end when;

- Add one sample block for each sample statement.
- Connect the sample blocks to the dependent when-clauses.

Introduction	QSS Methods 000000 000	OMPD Interface ○○○○○●○	Simulation Results 0000 000000	Discussion

Add Reinit Blocks

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then
dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
$impact = h \le 0.0; (Eq. 4)$
when $\{h \le 0.0 \text{ and } v \le 0.0, \text{impact}\}$ then
<pre>v_new = if edge(impact) then</pre>
-e∗v else 0; (Eq. 5)
$flying = v_new > 0;$ (Eq. 6)
<pre>reinit(v, v_new);</pre>
end when;
der(v) = if flying then $-g$ else 0; (Eq. 7)

Add reinit blocks for the reinit statements and connect them to the corresponding integrators.

Introduction	QSS Methods 000000 000	OMPD Interface ○○○○○○●	Simulation Results 0000 000000	Discussion
OMPD Interface				

Final Structure

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results ●OOO ○○○○○○	Discussion
Benchmark Framework				

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ●○○○ ○○○○○○	Discussion
Benchmark Framework				

- DASSL in OpenModelica v1.5.1 and Dymola v7.4
 - State-of-the-art multi-purpose solver used by most simulation environments today.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ●○○○ ○○○○○○	Discussion
Benchmark Framework				

- DASSL in OpenModelica v1.5.1 and Dymola v7.4
 - State-of-the-art multi-purpose solver used by most simulation environments today.
- Radau IIa in Dymola v7.4
 - A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a multi-step algorithm when dealing with discontinuities (due to step-size control for the latter methods).

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ●○○○ ○○○○○○	Discussion
Benchmark Framework				

- DASSL in OpenModelica v1.5.1 and Dymola v7.4
 - State-of-the-art multi-purpose solver used by most simulation environments today.
- Radau IIa in Dymola v7.4
 - A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a multi-step algorithm when dealing with discontinuities (due to step-size control for the latter methods).
- Dopri45 in Dymola v7.4
 - An explicit Runge-Kutta method which could be more efficient when simulating non-stiff systems.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○●○○ ○○○○○○	Discussion
Benchmark Framework				

Problem

Measuring the execution time of each simulation across different environments could be tricky, e.g. it is not enough just to run the executables and measure the CPU-time elapsed.

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results ○●○○ ○○○○○○	Discussion
Benchmark Framework				

Problem

Measuring the execution time of each simulation across different environments could be tricky, e.g. it is not enough just to run the executables and measure the CPU-time elapsed.

Approach

We resort in using the reported simulation time that each environment provides.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○●○○ ○○○○○○	Discussion
Benchmark Framework				

Problem

Measuring the execution time of each simulation across different environments could be tricky, e.g. it is not enough just to run the executables and measure the CPU-time elapsed.

Approach

- We resort in using the reported simulation time that each environment provides.
- The generation of output files was suppressed in all cases.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○●○○ ○○○○○○	Discussion
Benchmark Framework				

Problem

Measuring the execution time of each simulation across different environments could be tricky, e.g. it is not enough just to run the executables and measure the CPU-time elapsed.

Approach

- We resort in using the reported simulation time that each environment provides.
- The generation of output files was suppressed in all cases.

Reminder

The measured CPU time should not be considered as an absolute ground-truth.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○●○○ ○○○○○○	Discussion
Benchmark Framework				

Problem

Measuring the execution time of each simulation across different environments could be tricky, e.g. it is not enough just to run the executables and measure the CPU-time elapsed.

Approach

- We resort in using the reported simulation time that each environment provides.
- The generation of output files was suppressed in all cases.

Reminder

- The measured CPU time should not be considered as an absolute ground-truth.
- But the relative ordering of the algorithms is expected to remain the same.

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results	Discussion 000
	000		000000	

Benchmark Framework

Simulation Accuracy

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○●○ ○○○○○○	Discussion
Benchmark Framework				

The state trajectories in the benchmark problems cannot be computed analytically.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○●○ ○○○○○○	Discussion
Benchmark Framework				

- The state trajectories in the benchmark problems cannot be computed analytically.
- Therefore, we can only approximate the accuracy of the simulations.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○●○ ○○○○○○	Discussion
Benchmark Framework				

- The state trajectories in the benchmark problems cannot be computed analytically.
- Therefore, we can only approximate the accuracy of the simulations.
- ► To this end we need to obtain reference trajectories (t^{ref}, y^{ref}).

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results	Discussion
Benchmark Framework				

- The state trajectories in the benchmark problems cannot be computed analytically.
- Therefore, we can only approximate the accuracy of the simulations.
- ► To this end we need to obtain reference trajectories (t^{ref}, y^{ref}).

Reference Trajectories

- The default DASSL solver both in Dymola and OpenModelica was used with
 - ► a very tight tolerance of 10⁻¹² and
 - requesting 10⁵ output points.
- The difference between both reference trajectories was on the order of 10⁻⁶ therefore we report only the simulation error against the Dymola solution.

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Benchmark Framework

Simulation Accuracy

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○○● ○○○○○○	Discussion 000
Ropolymork Fromowork				

► For each state a reference trajectory (t^{ref}, y^{ref}) is calculated.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○○● ○○○○○○	Discussion
Benchmark Framework				

- ► For each state a reference trajectory (**t**^{ref}, **y**^{ref}) is calculated.
- Each solver is forced to output 10⁵ equally spaced points to obtain (t^{ref}, y^{sim}) without changing the integration step.
- Then, the mean absolute error is calculated as:

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○○● ○○○○○○	Discussion
Benchmark Framework				

- ► For each state a reference trajectory (**t**^{ref}, **y**^{ref}) is calculated.
- Each solver is forced to output 10⁵ equally spaced points to obtain (t^{ref}, y^{sim}) without changing the integration step.
- Then, the mean absolute error is calculated as:

$$error = \frac{1}{|t^{ref}|} \sum_{i=1}^{|t^{ref}|} |y_i^{sim} - y_i^{ref}|$$
(6)

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results ○○○○ ●○○○○○○	Discussion

Half-Wave Rectifier

Figure: Graphical representation of the half-wave rectifier in Dymola

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000 000	0000000	0000 000000	000

Simulated trajectories for the half-wave rectifier

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000	000

Half-Wave Rectifier (Simulated for 1 sec)

			CPU time	Simulation
			(sec)	Error
	DASSL	10^{-3}	0.019	1.45E-03
Dymola	DASSL	10^{-4}	0.022	2.35E-04
Dymola	Radau IIa	10^{-7}	0.031	2.20E-06
	Dopri45	10^{-4}	0.024	4.65E-05
	QSS3	10^{-3}	0.014	2.59E-04
PowerDEVS	QSS3	10^{-4}	0.026	2.23E-05
	QSS3	10^{-5}	0.041	2.30E-06
	QSS2	10^{-2}	0.242	3.02E-03
	QSS2	10^{-3}	0.891	3.04E-04
	QSS2	10^{-4}	3.063	3.00E-05
OpenModelica	DASSL	10^{-3}	0.265	3.80E-03
	DASSL	10^{-4}	0.281	5.40E-04

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000 000000	000

Switching Power Converter

Figure: Graphical representation of the switching power converter in Dymola

00000 000000 00000 0000 0000 000 000000 0000 0000	Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
	00000	000000	0000000	0000	000

Simulated state trajectories for the switching power converter

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000 00000	000

Switching Power Converter (Simulated for 0.01 sec)

			CPU time	Simulation
			(sec)	Error
	DASSL	10^{-3}	0.051	1.82E-04
	DASSL	10^{-4}	0.063	7.18E-05
Dymola	Radau Ila	10^{-3}	0.064	1.11E-07
Dymola	Radau IIa	10^{-4}	0.062	1.11E-07
	Dopri45	10 ⁻³	0.049	6.38E-06
	Dopri45	10^{-4}	0.047	9.76E-06
	QSS3	10^{-3}	0.049	1.41E-03
PowerDEVS	QSS3	10^{-4}	0.062	1.68E-05
	QSS3	10^{-5}	0.250	8.96E-06
OpenMedalies	DASSL	10^{-3}	50.496	-
Openniouenca	DASSL	10^{-4}	1.035	2.62E-02

Introduction	QSS Methods	OMPD Interface	Simulation Results	Discussion
00000	000000	0000000	0000 000000	000

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion ●○○
Discussion				

Conclusions

- An interface between OpenModelica and PowerDEVS is presented and analyzed.
- The OMPD interface successfully handles discontinuities allowing the simulation of real-world Modelica models using QSS solvers.
- Comparing QSS3 and DASSL in OpenModelica, a 20-fold decrease in the required CPU time was achieved for the example models.
- Furthermore in our discontinuous examples, QSS3 is as efficient as DASSL in Dymola, in spite of the fact that Dymola offers a much more sophisticated model preprocessing than OMC.

Introduction 00000	QSS Methods 000000 000	OMPD Interface	Simulation Results 0000 000000	Discussion ○●○
Discussion				

- Provide support for stiff QSS solvers.
- Perform more extensive simulations of benchmark problems in order to test the correctness of the interface and the performance of QSS methods.
- Incorporate QSS solvers in future official OpenModelica releases.
- Investigate the parallel simulation capabilities of QSS methods.

Introduction	QSS Methods 000000 000	OMPD Interface	Simulation Results	Discussion ○○●

Discussion

Questions?