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Abstract

This study describes the current implementation of an
interface that automatically translates a discontinuous
model described using the Modelica language into
the Discrete Event System Specification (DEVS) for-
malism. More specifically, the interface enables the
automatic simulation of a Modelica model with dis-
continuities in the PowerDEVS environment, where
the Quantized State Systems (QSS) integration meth-
ods are implemented. Providing DEVS-based sim-
ulation algorithms to Modelica users should extend
significantly the tools that are currently available in
order to efficiently simulate several classes of large-
scale real-world problems, e.g. systems with heavy
discontinuities. In this work both the theoretical de-
sign and the implementation of the interface are dis-
cussed. Furthermore, simulation results are provided
that demonstrate the correctness of the proposed im-
plementation as well as the superior performance of
QSS methods when simulating discontinuous sys-
tems.
Keywords: OpenModelica, DASSL, PowerDEVS,
QSS, discontinuous systems

1 Introduction

Modelica [8, 9] is an object-oriented, equation-based
language that allows the representation of continu-
ous as well as hybrid models using a set of non-
causal equations. The Modelica language enables
a standardized way to model complex physical sys-
tems containing, e.g., mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power, or
process-oriented subcomponents.

Commercial environments, such as Dymola and
Scicos, along with open-source implementations,
such as OpenModelica [7], enable modeling and sim-
ulation of models specified in the Modelica language.
All of these tools perform a series of preprocess-
ing steps (model flattening, index reduction, sorting
and optimizing the equations) and convert the model
to a set of explicit Ordinary Differential Equations
(ODEs) of the form ẋ = f(x, t). Efficient C++ code is
then generated to perform the simulation. Numerical
ODE solvers are provided that invoke the right-hand
side evaluation of the ODEs at discrete time steps tk,
in order to compute the next value of the state vector
xk+1. Thus, the commonly used simulation environ-
ments make use of time slicing, i.e., their underlying
simulation algorithms are based on time discretiza-
tion rather than state quantization.

In the end of the nineties, a new class of algorithms
for numerical integration based on state quantiza-
tion and the DEVS formalism was introduced by Zei-
gler [17]. Improving the original approach of Zei-
gler, Kofman developed a first-order non-stiff Quan-
tized State System (QSS) algorithm in 2001 [14], fol-
lowed later by second- and third-order accurate non-
stiff solvers, called QSS2 [10] and QSS3 [13], respec-
tively. Finally, the family of QSS methods has been
further expanded and includes now also stiff system
solvers (LIQSS [15]) as well as solvers for marginally
stable systems (CQSS [3]). QSS methods have been
theoretically analyzed to exhibit nice stability, con-
vergence, and error bound properties, [4, 13, 14], and
in general come with several advantages over classi-
cal approaches.

Most of the classical methods that use discretiza-
tion of time, need to have their variables updated in
a synchronous way. This means that the variables



that show fast changes are driving the selection of
the time steps. In a stiff system with widely-spread
eigenvalues, i.e., with mixed slow and fast subsys-
tems, the slowly changing state variables will have
to be updated much more frequently than necessary,
thus increasing substantially the computation time of
the simulation. On the other hand, the QSS meth-
ods allow for asynchronous variable updates, allow-
ing each state variable to be updated at its own pace,
and specifically when an event triggers its evaluation.
Furthermore, as most systems are sparse, when a state
variable xi changes its value, it suffices to evaluate
only those components of f that depend on xi, al-
lowing for an additional significant reduction of the
computational costs. In [5], comparisons have been
performed between the standard DASSL solver and
QSS3 on synthetically generated sparse linear mod-
els that demonstrate the superiority of QSS methods,
theoretically expected, when simulating sparse sys-
tems.

Another advantage of QSS methods concerns the
simulation of discontinuous systems with frequent
switching behavior, e.g. power electronic circuits.
Standard Dymola and OpenModelica software han-
dle discontinuities by means of zero-crossing func-
tions that need to be evaluated at each step. When
any of them changes its sign, the solver knows that
a discontinuity occurred. Then an iterative process is
initiated to detect the exact time of that event. In con-
trast, QSS algorithms offer dense output, i.e., they
do not need to iterate to detect the discontinuities.
They rather predict them. This feature, besides im-
proving on the overall computational performance of
these solvers, enables real-time simulation. Since in
a real-time simulation the computational load per unit
of real time must be controllable, Newton iterations
are usually not acceptable.

Finally, DEVS methods [12] provide a formal uni-
fied framework for the simulation of hybrid systems,
where continuous-time, discrete-time, and discrete-
event models can coexist as subcomponents of a sin-
gle model.

Therefore, QSS methods and the principle of state
quantization appear promising in the context of sim-
ulating certain classes of real-world problems. How-
ever, in order to simulate a system with QSS methods
in the PowerDEVS environment [2], the user needs
to have a thorough understanding of DEVS systems.
More specifically, the model needs to be manually
converted to an explicit ODE form, dependencies be-
tween subsystems need to be identified, and the corre-

sponding DEVS structure needs to be provided. Even
if a user possesses the required knowledge to do so,
this approach is feasible only for very small systems.

PowerDEVS does not support object-oriented
modeling, whereas Modelica does. For all these rea-
sons, it is much more convenient for a user to formu-
late models in the Modelica language than in Pow-
erDEVS.

This work aims to bridge the gap between the pow-
erful object-oriented modeling platform of Modelica
on the one hand, and the equally powerful simula-
tion platform of PowerDEVS on the other. In [5],
a first version of the interface between OpenModel-
ica and PowerDEVS, for systems without disconti-
nuities, has been presented and analyzed. This study
extends the previously discussed interface to include
discontinuous models and brings us one step closer
to the final goal, enabling a modeler to formulate ar-
bitrary models in the Modelica language, while auto-
matically simulating them in PowerDEVS.

1.1 Relevance of Work

In [5] a first version of an interface between Open-
Modelica and PowerDEVS for non-stiff and non-
discontinuous models has been presented. The cur-
rent article extends upon [5] to enable the simulation
of discontinuous models. To our knowledge there
exist no other approaches that automatically trans-
late Modelica models to the DEVS formalism. Re-
search efforts have been reported that implemented
Modelica libraries allowing DEVS models to be for-
mulated within a Modelica environment [1, 16], but
these approaches require from the users to understand
the DEVS framework, as they would have to model
their system in the DEVS formalism in order to make
use of these libraries.

Furthermore, this is the first work offering a com-
parison of the run-time efficiency and simulation ac-
curacy of various solvers (DASSL, Radau IIa, Do-
pri45) in Dymola and OpenModelica against QSS
methods. In earlier publications describing QSS
methods [10, 11, 12, 14], there can be found exam-
ples that demonstrate the superiority of the run-time
efficiency of QSS methods, but the comparisons were
performed after manual modeling in PowerDEVS di-
rectly, i.e. they did not make use of the same original
models formulated in Modelica.

In contrast, our approach enables a Modelica user
to simulate a Modelica model using QSS solvers
without any explicit manual transformation. Addi-



tionally, it allows for the automatic transformations
of large-scale models to the DEVS formalism, which
is a difficult if not unfeasible task even for experts in
DEVS modeling.

The article is organized as follows: Section 2 pro-
vides a brief introduction of the QSS methods. Sec-
tion 3 describes theoretically what is needed in or-
der to simulate a Modelica model with discontinuities
employing the QSS algorithms. In Section 4, the ac-
tual implementation of the interface between Open-
Modelica and PowerDEVS is presented. Section 5
describes the simulation results comparing the vari-
ous solvers in Dymola and the OpenModelica run-
time environment with the QSS methods as imple-
mented in PowerDEVS. Finally, Section 6 concludes
this study, lists open problems, and offers directions
for future work.

2 QSS Simulation

Consider a time-invariant ODE system:

ẋ(t) = f(x(t)) (1)

where x(t) ∈Rn is the state vector. The QSS method,
[14], approximates the ODE of Eq. 1 as:

ẋ(t) = f(q(t)) (2)

where q(t) is a vector containing the quantized state
variables, which are quantized versions of the state
variables x(t). Each quantized state variable qi(t) fol-
lows a piecewise constant trajectory via the following
quantization function with hysteresis:

qi(t) =
{

xi(t) if |qi(t−)− xi(t)|= ∆Qi,
qi(t−) otherwise.

(3)

where the quantity ∆Qi is called quantum. The quan-
tized state qi(t) only changes when it differs from
xi(t) by more than ∆Qi. In QSS, the quantized states
q(t) follow piecewise constant trajectories, and since
the time derivatives, ẋ(t), are functions of the quan-
tized states, they are also piecewise constant, and
consequently, the states, x(t), are composed of piece-
wise linear trajectories.

Unfortunately, QSS is a first-order accurate
method only, and therefore, in order to keep the simu-
lation error small, the number of steps performed has
to be large.

To circumvent this problem, higher-order methods
have been proposed. In QSS2 [10], the quantized
state variables evolve in a piecewise linear way with

the state variables following piecewise parabolic tra-
jectories. In the third-order accurate extension, QSS3
[13], the quantized states follow piecewise parabolic
trajectories, while the states themselves exhibit piece-
wise cubic trajectories.

3 Simulation of Discontinuous Mod-
elica Models with QSS Methods

In this section we shall describe a potential way to
simulate a Modelica model using QSS methods. For
simplicity, we shall assume that the model is de-
scribed by an ODE system, but we note that the in-
terface successfully handles DAE systems as well.
Let us write Eq. 2 expanded to its individual com-
ponent equations, forgetting for a while the discon-
tinuous part:

ẋ1 = f1(q1, . . . ,qn, t)
...

ẋn = fn(q1, . . . ,qn, t)

(4)

If we consider a single component of Eq. 4, we can
split it into two equations:

qi = Q(xi) = Q(
∫

ẋi dt) (5)

ẋi = fi(q1, . . . ,qn, t) (6)

3.1 Accounting for Discontinuities

Discontinuities in dynamical systems are closely re-
lated to the notion of events. We can distinguish two
types of events, time events and state events.

3.1.1 Time Events

Time events correspond to changes of states as a
function of the built-in continuously evolving vari-
able time. Such events can be scheduled in advance,
since it is possible to predict the point in time when
they occur. Time events in Modelica are specified ba-
sically in two ways [6]:

• With a conditional discrete-time expression
that contains the variable time (e.g. in a when-
statement) of the form:
time >= discrete-time expression, e.g. t >= te



• With a periodic sample statement of the form:
sample(first, interval) that triggers events at pre-
defined time instants.

The first case can be taken care of by formulating
a zero-crossing function of the form:

g(t) = t− te

When g(t) crosses through zero, an event should be
produced. We shall see later, which DEVS blocks
need to be defined to generate the events. The sam-
ple() statement can be handled easily by adding a
dedicated DEVS atomic model that provokes events
at the predefined time points.

3.1.2 State Events

State events are related to discrete changes in the state
variables during the simulation as a function of other
state variables reaching some threshold value. There-
fore, they cannot be scheduled in advance. A state
event can be specified by means of when or if-then-
else statements involving one or more state variables.
When a model is compiled by either OpenModel-
ica or Dymola, state events are translated into zero-
crossing functions of the form gi(x, t). During the
execution of the simulation the zero-crossing func-
tions are being constantly monitored and when func-
tion gi(·) crosses through zero, a discontinuity is de-
tected and handled accordingly. Therefore, we can
directly exploit the zero-crossing functions generated
by OpenModelica to identify state events in an iden-
tical fashion as with time events. All we need is a
Static Function block evaluating the zero-crossing
function and a Zero-Cross Detection block that de-
tects when a zero-crossing takes place.

3.2 DEVS structure

The DEVS formalism [17] allows to describe both
the continuous and discontinuous parts of the model
via a coupling of simpler DEVS atomic models.
More specifically, we need to define:

• A Quantized Integrator block (Eq. 5) that
takes as input the derivative ẋi and outputs qi.

• A Static Function block that receives the se-
quence of events, q1, . . . ,qn, and calculates the
sequence of state derivative values, ẋi (Eq. 6).
The same block can be used for the evaluation
of the zero-crossing functions gi(·)

• A Cross-Detection block that receives as input
the evaluated zero-crossing function and gen-
erates an output event when its input crosses
throught zero.

x1
q1

x2

x1

q2

x2

f1

f2

g
1

g
2

Figure 1: Coupled DEVS model for QSS simulation
of a discontinuous model with 2 states and 2 zero-
crossing functions g1(·) and g2(·).

Therefore, we can simulate a Modelica discontin-
uous model using a coupled DEVS model consisting
of the blocks described above. A block diagram rep-
resenting the final DEVS model for an example sys-
tem with 2 state variables and 2 zero-crossing func-
tions is shown in Fig. 1.

4 OpenModelica to PowerDEVS
(OMPD) Interface

This section describes the work done to enable the
simulation of Modelica models in PowerDEVS using
QSS algorithms. The current version of the interface
does not yet support when clauses and sample state-
ments.

4.1 What is Needed by PowerDEVS

Let us first concentrate on what PowerDEVS requires
in order to perform the simulation of a Modelica
model. As depicted in Fig. 1, an essential component
of a PowerDEVS simulation is the graphical struc-
ture. In PowerDEVS, the structure is provided in the



form of a dedicated .pds structure file that contains
information about the blocks (nodes) of the graph as
well as the connections (edges) between those blocks.
More specifically, we need to add in the structure:

• A Quantized Integrator block for each state
variable with ẋi as input and qi as output.

• A Static Function block for each state variable
that receives as input the sequence of events,
q1, . . . ,qn, and calculates ẋi = fi(q).

• A Static Function block for each one of
the zero-crossing functions gi(·) generated by
OpenModelica that receives as inputs the depen-
dencies of gi(·) and evaluates the function in the
output port.

• A Cross-Detection Block block after each one
of the zero-crossing static functions. The cross-
detection block outputs an event if a zero-
crossing has been identified.

• A connection (edge) is added between two
blocks if and only if there is a dependence be-
tween them.

Having correctly identified the DEVS structure, we
need to specify what needs to be calculated inside
each of the static function blocks. The different
blocks need to have access to different pieces of in-
formation.

In the current implementation, a .cpp code file is
generated that contains the code and parameters for
all blocks in the structure. The generated code file
contains the following information:

• For each Quantized Integrator block, the ini-
tial condition, error tolerance, and integration
method (QSS, QSS2, QSS3).

• For each Static Function, the equa-
tions/expressions needed in order to calculate
the derivative of each state variable in the sys-
tem. Furthermore, the desired error tolerance
is provided together with a listing of all input
and output variables of the specific block. If the
static function represents a zero-crossing then it
contains the respective function gi(·).

4.2 What is Provided by OpenModelica

In Section 4.1, we described what PowerDEVS ex-
pects in order to perform the simulation. Our work

focuses on an automatic way to simulate Model-
ica models using the QSS methods in PowerDEVS.
Therefore, the PowerDEVS simulation files should
be automatically generated exploiting the informa-
tion contained in the Modelica model supplied as in-
put. Luckily, existing software used to compile Mod-
elica models, such as Dymola or OpenModelica, pro-
duces simulation code that contains all information
needed by PowerDEVS. Thus, we were able to make
use of an existing Modelica environment by modify-
ing the existing code generation modules at the back
end of the compiler to produce the files needed by
PowerDEVS.

This work is based on modifying the OpenModel-
ica Compiler (OMC), since it is open-source and has
a constantly growing contributing community. OMC
takes as input a Modelica source file and translates it
first to a flat model. The flattening consists of parsing,
type-checking, performing all object-oriented oper-
ations such as inheritance, modifications, etc. The
flat model includes a set of equation declarations
and functions with all object-oriented structure re-
moved. Then index reduction is performed on the
set of model equations in order to remove algebraic
dependence structures between state variables. The
resulting equations are then analyzed, sorted in Block
Lower Triangular (BLT) form, and optimized. Fi-
nally, the code generator at the back end of OMC pro-
duces C++ code that is then compiled. The resulting
executable is used for the simulation of the model.

The information needed to be extracted from the
OMC compiler is contained mainly in the DLOW
structure, where the following pieces of information
are defined:

• Equations: E = {e1,e2, . . . ,eN}.

• Variables: V = {v1,v2, . . . ,vN}=VS
⋃

VR

where VS is the set of state variables with |VS|=
NS ≤ N and VR is the set of all other variables in
the model.

• BLT blocks: subsets of equations {ei} needed to
be solved together because they are part of an
algebraic loop.

• Zero-Crossings: G = {g1,g2, . . . ,gK}.

• Incidence matrix: An N ×N adjacency matrix
denoting, which variables are contained in each
equation.

The OMPD interface utilizes the above informa-
tion and implements the following steps:



1. Equation splitting : The interface identifies the
equations needed in order to compute the deriva-
tive ẋi = fi(q) for each state variable. Then the
split equations can be assigned to static function
blocks according to the state derivative evalua-
tion they are involved in.

2. Mapping split equations to BLT blocks : The
equations are mapped back to BLT blocks of
equations in order to be able to generate simula-
tion code for solving linear/non-linear algebraic
loops.

3. Identifying zero-crossing functions : The
zero-crossing functions generated by OMC are
extracted and assigned to separate static func-
tion blocks.

4. Constructing generalized incidence matrix :
The N×N adjacency matrix has to be expanded
to include also the zero-crossing functions and
the variables involved in them. Thus, it has to
be expanded by adding K rows corresponding to
the K zero-crossing functions gi(·). The result is
a generalized K×N adjacency matrix.

5. Generating DEVS structure : In order to cor-
rectly generate the DEVS structure of the model,
the dependencies between the individual DEVS
blocks need to be resolved. This is accom-
plished by employing the generalized incidence
matrix to find the corresponding inputs and out-
puts for each block.

6. Generating the .pds structure file: Having cor-
rectly produced the DEVS structure for Pow-
erDEVS, outputting the respective .pds structure
file is straightforward.

7. Generating static blocks code : In this step, the
functionality of each static block is defined via
the simulation code provided in the .cpp code
file. Each static block needs to know its inputs
and outputs, identified by the DEVS structure,
as well as the BLT blocks needed to compute
the corresponding state derivatives. The static
blocks that are responsible for the discontinu-
ities contain the zero-crossing functions gi(·)
generated by OMC. Then, the existing code gen-
eration module of OMC is employed to provide
the actual simulation code for each static block,
since it has already been optimized to solve lin-
ear and non-linear algebraic loops.

8. Generating the .cpp code file: The code for the
static blocks is output in the .cpp code file along
with other needed information.

5 Simulation Results

5.1 Benchmark Framework

In this section, the simulation results obtained us-
ing the OMPD interface are presented and discussed.
The goal is to compare the run-time efficiency and
accuracy of the QSS methods against other simula-
tion software environments. More specifically, we
want to compare QSS3 and QSS2 methods in Pow-
erDEVS v2.0 against the DASSL, Radau IIa, and Do-
pri45 solvers implemented in Dymola v7.4 and the
DASSL solver of OpenModelica v1.5.1.

DASSL was chosen as it represents the state-of-
the-art multi-purpose stiff DAE solver used by most
commercial simulation environments today. Radau
IIa was included in the comparisons, because a
single-step (Runge-Kutta) algorithm is supposed to
be more efficient than a multi-step (BDF) algorithm
when dealing with heavily discontinuous models, be-
cause step-size control is more expensive for the lat-
ter methods [4]. Finally, Dopri45 was chosen, be-
cause it is an explicit Runge-Kutta method in contrast
to both DASSL and Radau IIa, which are implicit al-
gorithms that may be disadvantaged when simulating
non-stiff systems.

As benchmark problems we focused on two real-
world systems exhibiting heavily discontinuous be-
havior, namely a half-way rectifier circuit, modeled
graphically with standard Modelica components as
depicted in Fig. ??, and the switching power con-
verter circuit provided in Fig. 3.

6. Generating static blocks code : In this step,
the functionality of each static block is defined
via the simulation code provided in the code.cpp
file. Each static block needs to know its inputs
and outputs, identified by the DEVS structure,
as well as the BLT blocks needed to compute
the corresponding state derivatives, described by
the mapped split equations. Then, the existing
code generation module of OMC is employed
to provide the actual simulation code for each
static block, since it has already been optimized
to solve linear and non-linear algebraic loops.

7. Generating the .cpp code file: The code for the
static blocks is output in the .cpp code file along
with other needed information.

5 Simulation Results

5.1 Benchmark Framework

To calculate the reference trajectory we simulate in
Dymola using DASSL with a very low tolerance of
10−12. Then we request a dense output of 105 points.

5.2 Half-Way Rectifier
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R
=50 R2

C
=0.001

+
-

C1

Figure 2: Graphical representation of the HalfWay
Rectifier

5.3 Power Converter

6 Discussion

6.1 Conclusions

6.2 Future Work
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In order to measure the execution time for each
simulation algorithm, the reported simulation time



from each environment was used. Dymola re-
ports CPU-time for integration, OpenModelica re-
ports timeSimulation, and PowerDEVS the elapsed
simulation time. To record pure simulation time, the
generation of output files was suppressed in all cases.
Testing has been carried out on a Dell 32bit desktop
with a quad core processor @ 2.66 GHz and 4 GB
of RAM. The measured CPU time should not be con-
sidered as an absolute ground-truth since it will vary
from one computer system to another, but the relative
ordering of the algorithms is expected to remain the
same.
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Figure 3: Graphical representation of the switching
power converter

Calculating the accuracy of the simulations can
only be performed approximately, since the state tra-
jectories in the two models cannot be computed ana-
lytically. To estimate the accuracy of the simulation
algorithms for a given setting, reference trajectories
(tref,yref) have to be obtained. To this end, Dymola
was employed using the default DASSL solver with a
very tight tolerance of 10−12 and requesting 105 out-
put points. Furthermore, in order to verify the ac-
curacy of the reference solution, a second reference
solution was computed using QSS3 in PowerDEVS
with the tolerance set to 10−12. However, we only re-
port the simulation error against the Dymola solution
since the difference between both reference solutions
is on the order of 10−6.

To calculate the simulation error, each one of the
simulated trajectories was compared against the two
reference solutions. To achieve this goal, we forced
all solvers to output 105 equally spaced points for
obtaining simulation trajectories (tref,ysim) without
changing the integration step. Then, the mean ab-
solute error is calculated as:

error =
1
|tre f |

|tre f |
∑
i=1
|ysim

i − yre f
i | (7)

In the case of more than one state variables, we report
the mean error over all state trajectories.

5.2 Half-Way Rectifier

The half-way rectifier circuit exhibits only one state
variable, namely the voltage across the capacitor C1,
and the model is simulated during 1 sec. In Fig. 4, the
state trajectory calculated with QSS3 and a tolerance
of 10−4 is depicted. Comparing the simulation results
listed in Table 1, the following conclusions can be
reached:
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Figure 4: Simulated state trajectories with QSS3 for
the half-way rectifier circuit.

There is a substantial difference in execution ef-
ficiency between Dymola and OpenModelica us-
ing the DASSL solver, with Dymola being around 10
times faster than OpenModelica in spite of the fact
that both environments make use of the same solver
software and even the same root solver (event detec-
tion) algorithms. We postulate that this difference
is primarily caused by the fact that OMC does not
involve tearing. Thereby the solution of algebraic
loops becomes much less efficient, and also the inte-
gration itself suffers, because the number of iteration
variables in DASSL equals the number of state vari-
ables plus the number of tearing variables. Without
tearing, DASSL needs to include all variables appear-
ing inside algebraic loops among the set of its itera-
tion variables.

On the other hand, even though the QSS3 simu-
lations are based on code generated by OMC, we
observe that QSS3 is slightly more efficient than
DASSL in Dymola. To perform the simulation for an
achieved error of the order of 10−4, QSS3 required
0.014 sec while DASSL 0.022 sec. Therefore, the
use of the OMPD interface and the simulation in
PowerDEVS employing QSS3 speeds up the sim-
ulation by a factor of 20 compared to OpenMod-
elica. It needs to be remarked that it is not fair to
compare QSS3 with the DASSL simulation of Dy-



Table 1: This table depicts the simulation results of various algorithms for the half-way rectifier circuit for a
requested simulation time of 1 sec. The comparison performed includes required CPU time (in sec) as well as
the simulation accuracy relative to the reference trajectory obtained in Dymola.

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.019 1.45E-03
DASSL 10−4 0.022 2.35E-04

Radau IIa 10−7 0.031 2.20E-06
Dopri45 10−4 0.024 4.65E-05

PowerDEVS

QSS3 10−3 0.014 2.59E-04
QSS3 10−4 0.026 2.23E-05
QSS3 10−5 0.041 2.30E-06
QSS2 10−2 0.242 3.02E-03
QSS2 10−3 0.891 3.04E-04
QSS2 10−4 3.063 3.00E-05

OpenModelica DASSL 10−3 0.265 3.80E-03
DASSL 10−4 0.281 5.40E-04

mola because of the fact analyzed earlier, namely the
lack of tearing in OMC. The solution of the algebraic
loops in QSS3 is based on code generated by OMC,
and therefore, the inefficiencies in the compilation of
the OMC are being propagated to the QSS3 simula-
tion as well. For this reason, we need to compare
the results in PowerDEVS with the ones obtained
by OpenModelica and not by Dymola. However, it
is encouraging to see that the improvement achieved
over the standard OMC simulation using QSS-based
solvers is such that we are able to obtain simulation
results that are even more efficient than those ob-
tained using the commercial Dymola environment.
If the QSS methods were implemented in Dymola,
the simulation results obtained by the QSS methods
would once again be considerably faster than the sim-
ulation results that Dymola achieves currently.

Performing an internal comparison between the
QSS methods, it is obvious that QSS3 is much more
efficient that QSS2. This is expected, since the QSS2
solver needs to take smaller steps compared to QSS3
in order to reach the desired accuracy. Thus, we
can conclude that the third-order QSS3 algorithm
should be preferred for practical applications.

For the sake of completeness we included in the
comparison two more solvers included in the Dymola
environment, Radau IIa and Dopri45. Radau IIa
is an implicit variable-step Runge-Kutta method of
order 5, while Dopri45 is an explicit step-size con-
trolled Runge-Kutta algorithm of order 5. For this
specific example, Radau IIa failed to provide cor-
rect results unless the tolerance was lowered to 10−7.

Radau IIa with a less tight tolerance tries to utilize
larger integration steps and, apparently, misses many
of the events, i.e. the event localization employed by
Dymola is not robust (conservative) enough. It needs
to be noted further that the problem got considerably
worse between Dymola 6 and Dymola 7, i.e., whereas
Radau IIa missed a few events in Dymola 6, it misses
many more events in Dymola 7. This is a quite se-
rious issue that the Dynasim company should look
into. The same problem was observed for Dopri45
as well, when the tolerance was set to 10−3. Due
to these problems, both Runge-Kutta algorithms re-
quire CPU times comparable to that needed by the
standard DASSL solver, i.e., the inherent advantages
of the single-step algorithms over a multi-step tech-
nique in dealing with heavily discontinuous models
could not be exploited due to the inability of their
current implementation to detect events reliably.

5.3 Switching Power Converter

The switching power converter exhibits two state
variables, namely the current through the inductor L1
and the voltage across the capacitor C1. From Fig. 3,
we see that there is a square wave source block that,
when implemented directly, would call for use of a
sample block. As the sample block has not yet been
implemented in the interface, we worked around this
problem by replacing the square wave source by a
second-order marginally stable time-invariant system
described by:

model SquareWaveGenerator
Real x1(start=0.0);



Table 2: This table depicts the simulation results of various algorithms for the switching power converter circuit
for a requested simulation time of 0.01 sec. The comparison performed includes required CPU time (in sec) as
well as the simulation accuracy relative to the reference trajectory obtained in Dymola.

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.051 1.82E-04
DASSL 10−4 0.063 7.18E-05

Radau IIa 10−3 0.064 1.11E-07
Radau IIa 10−4 0.062 1.11E-07
Dopri45 10−3 0.049 6.38E-06
Dopri45 10−4 0.047 9.76E-06

PowerDEVS
QSS3 10−3 0.049 1.41E-03
QSS3 10−4 0.062 1.68E-05
QSS3 10−5 0.250 8.96E-06

OpenModelica DASSL 10−3 50.496 -
DASSL 10−4 1.035 2.62E-02

Real x2(start=1.0);
Boolean pulse(start=true);
parameter Real freq=1e4;

equation
der(x1)=freq*4*x2;
der(x2)=if (x1<0) then freq*4 else -freq*4;
pulse=(x1>0);
idealClosingSwitch.control = pulse;

end SquareWaveGenerator;

This is worth noting since it adds two more states
to the model (x1,x2) and increases the computa-
tion time since the solver also has to simulate the
marginally stable system. The chosen solution is by
no means unique. The desired switching behavior
could have been coded in many different ways.

The model was simulated for 0.01 sec, and in Fig.
5, the state trajectories calculated using the QSS3
solver with a tolerance of 10−4 are plotted. The simu-
lation results for all algorithms under comparison are
presented in Table 2.

The conclusions reached in the analysis of the re-
sults of the half-way rectifier circuit also hold for the
switching power converter circuit as depicted in Ta-
ble 2. The QSS3 method performs well compared
to the DASSL solver in Dymola, while it outper-
forms DASSL in OpenModelica and the second-
order QSS2. Radau IIa and Dopri45 simulate cor-
rectly even for large tolerance values in this example,
but their run-time performance is not significantly
better than that of DASSL or QSS3.

For the switching power converter circuit, the sim-
ulation errors estimated for DASSL in OpenModelica
are quite large. This is suspicious, as it should not be

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2

st
at

e 
tr

aj
ec

to
rie

s

3 4 5 6 7 8 9

time (sec)
x10

-3

inductor current

capacitor voltage

0
0.0

Figure 5: Simulated state trajectories with QSS3 for
the switching power converter circuit.

the case. We noticed further that in OpenModelica for
a relaxed tolerance of 10−3, the simulation requires
a substantial CPU time of 50 sec. The output files
generated are also huge, around 500 MB, making it
impossible to check if the simulated trajectories are
correct or not. There seems to be something wrong
with the compilation performed by the OMC in this
example, but we cannot make any definite statements
regarding this behavior yet.

6 Discussion

6.1 Conclusions

In this article, an extension of the interface between
the OpenModelica environment and PowerDEVS
presented in [5] is discussed and analyzed. The im-



plemented OPMD interface successfully handles dis-
continuities and allows to simulate real-world Mod-
elica models with discontinuities using the Pow-
erDEVS simulation software.

Comparisons on two example models were per-
formed, demonstrating the increased efficiency of
QSS3 over the standard DASSL solver. The proposed
OMPD interface utilizes code generated by the Open-
Modelica compiler, therefore comparisons must be
performed between QSS3 and the DASSL solver of
OpenModelica, where we achieve a more than 20-
fold decrease in the required CPU time.

Furthermore, comparisons show that the efficiency
of QSS3 simulations using code generated by the
OMC is comparable to simulations run in Dymola
using the built-in DASSL solver, in spite of the fact
that Dymola offers much more sophisticated model
preprocessing, such as a well-tuned tearing algorithm
for the efficient simulation of models involving al-
gebraic loops. Hence we are very optimistic that
there would result a significant gain in simulation
efficiency if the OMPD interface were to be imple-
mented as part of the back end of the Dymola com-
piler even in a single-processor implementation, i.e.,
without exploiting the fact that QSS-based solvers are
naturally asynchronous and can therefore be much
more easily and elegantly distributed over a multi-
core architecture for efficient real-time simulation.

6.2 Future Work

We have shown that the implemented OMPD inter-
face successfully allows a user to simulate Modelica
models with discontinuities using PowerDEVS and
QSS solvers. However, there still remain open prob-
lems that need to be addressed in the future.

As a next step full support for hybrid models needs
to be incorporated. This requires the implementation
of sample statements and when-clauses. The OMPD
interface does not yet support a stiff-system solver.
There exist already stiff QSS solvers of orders 1 to
3 [15], which, however, are not yet supported by the
interface, because they have not yet been included in
the general release of the PowerDEVS software. For
this reason, we had to be careful to choose example
systems that do not lead to stiff models.

Next, many more models will need to be tested.
In particular, we shall need to run all example codes
of the Modelica Standard Library that the OMC is
able to handle through the interface to verify that
the OMPD is capable of handling all models that are

thrown its way.
Finally, we shall make use of the new platform for

investigating parallel simulation on a multi-processor
architecture. There are many unresolved issues here
to be tackled, such as the load balancing problem, i.e.,
how to optimally distribute the simulation code over
a multi-processor architecture. The fact that QSS-
based solvers can be easily parallelized does not tell
us yet how to optimally make use of that possibility.
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