WATCHDOG MONITOR PREVENTS
MARTIAN OXYGEN PRODUCTION PLANT
FROM SHUTTING ITSELF DOWN
DURING STORM

F.E. CELLIER, L.C. SCHOOLEY, B.P. ZEIGLER
A. DOSER, G. FARRENKOPF, J. KIM, Y. PAN
and B. WILLIAMS

Dept. of Elect. & Comp. Engr., University of Arizona
Tucson, Arizona 85721, U.5.A. :

E_mail; Cellier@ECE.Arizona.Edu

ABSTRACT

A distributed intelligent controller was built for high—autonomy oper-
ation of a prototype of a Martian Oxygen Production Plant. During
a 100 hour test run conducted to verify the reliability of the high-
autonomy centrol architecture, the controller broke down in the con-
sequence of a lightning stroke. The intelligent controller was able to
recognize that a fault had occurred, isolate the fault by recognizing
that the fault was not to be found in the plant but had to be in the
controller itself, and was able to take corrective action. The con-
troller was able to correct this fault, although the type of fault that
had occurred was not previously foreseen. This paper outlines the in-
telligent control architecture, describes the incident, and summarizes
the lessons learned.

INTRODUCTION

The University of Arizona / NASA Space Engineering Research Center for
Utilization of Local Planetary Resources (NASA/UA SERC/CULPR) is in-
vestigating means to generate oxygen from lunar and/or asteroidal rocks as
well as from the Martian atmosphere. In particular, the Martian oxygen pro-
duction plant has progressed beyond mere simulation to the status of rapid
prototyping. Figure 1 shows diagrammatically the Martian oxygen production
prototype.

The Martian atmosphere (90% CO; at a pressure of 6 mbar and at a
temperature of 200 K) is condensed (and thereby heated) in a compressor to
a pressure of 1 atm. It is then heated further to a temperature of roughly 900
K. At that temperature, carbon dioxide (CO3) decomposes through thermal
dissociation into carbon monoxide (CO) and oxygen (0O3). Unfortunately,
these two gases have similar molecular weights and are therefore difficult to
separate. The heart of the system is an array of zirconia tubes. These tubes

separate the {wo gases in an electrocatalytic reaction. The oxygen is lquefied
697

698

for storage, whereas the components of the CO/CO; gas mixture are separated
in a membrane separator. The COj3 is then rerouted, whereas the CO is further
processed by a Sabatier process to generate methane (not shown on Fig.1).

HEAT EXCHANGER

2 0000CE T Y

G
¥

NN

/ CRYC YACUUM
g CHAMBER
2 Z

W

N
RS
-

e
e
" / RADIATOR
‘ Tttt
_ : 4
SEPARATOR [I]
o, r : %Qg X
2 . CELL, “
. .-: .: HEATE,
EXHAUST }" RO~ = DA J
T Aémuxb WATER 7

Figure 1: Martian Oxygen Production Plant

In space exploration, large amounts of oxygen are used for propulsion. In any
chemically propelled spacecraft, a fuel reacts with an ozidizer. Together they
constitute the propellant. The simplest chemical reaction that can be used for
propulsion is:

2H, + Oy — 2H;30 (1)

During the reaction, energy is freed that can be used to propel the spacecraft.
In this propellant, the fuel (liquid hydrogen) makes up only 11% of the weight
whereas the oxidizer (liquid oxygen) occupies 89%. While many different com-
binations of fuels and oxidizers can be employed for propulsion, oxygen is the
most commonly used oxidizer. In all such reactions, the oxidizer is consider-
ably more heavy than the fuel. For these reasons, it is economically interesting
to generate oxygen on other planets.

The 16-tube breadboard generates roughly 1 kg of oxygen per day. The
methane that is generated by the Sabatier process can be used as fuel. The
current testbed could lead to a flight—rated plant before the turn of the century
to be launched to planet Mars by NASA in an unmanned mission. A later
manned mission could then use the oxygen that would meanwhile have been
produced as oxidizer for the return flight to Earth. In this way, the manned
mission could arrive on planet Mars with empty tanks, and the propellant for
the return flight would not have to be lifted out of the gravity well of planet
Earth. A manned mission to Mars could take place as early as 2014.

699

CONTROL ARCHITECTURE FOR HIGH-AUTONOMY OPER-
ATION

According to NASA [4], automation is defined as “the ability to carry out
a pre—designated function or series of actions after being initiated by an exter-
nal stimulus without the necessity of further human intervention.” In contrast,
autonomy is defined as “the ability to function as an independent unit or ele-
ment over an extended period of time performing a variety of actions necessary
to achieve pre—designated objectives while responding to stimuli produced by
integrally contained sensors.” ‘

Automation of a process is usually viewed as designing a {feedback) con-
troller that reduces the plant sensitivity to parameter variations and/or the
influence of disturbances. Parameter variations may be due to minor vari-
ations in the manufacturing process that is used to generate the plant, due
to thermal effects, or to the influence of external environmental variations.
Mostly, these variations are minor (a few percent). Feedback control architec-
tures have helped to make plant operation more robust (less sensitive) to such
types of variations in comparison with open-loop command architectures.

Traditional control engineers hardly ever concern themselves with abnor-
mal situations such as failures that occur within a subsystem of the plant to
be controlled or —even worse— within the controller itself. Reliability of a con-
trolled system over long periods of time is rarely mentioned among the items
on the desired performance parameter list of a control engineer. He (or she)
is concerned with such properties as stability, steady-state accuracy, percent
overshoot, and settling time, not failure rate, down time, or repair activities.

Such factors must be considered, however, for high—autonomy system oper-
ation. They add a new dimension of complexity to the overall system design.
A high—autonomy system contains an additional hierarchy layer about the
control architecture. It usually contains several alternative control architec-
tures. It knows which of them to choose at any particular moment and when
to switch between different controllers. It contains a task planning module .
that computes the set points for active controllers, and sequences the tasks
to be executed. It reasons about both plant and controller integrity, detects
faults (symptoms) as they occur, localizes faults within the system (discovers
failures), and thinks about means of recovery from such faults (initiates re-
pair activities). It furthermore collects statistics on symptoms, failures, and
successful (as well as unsuccessful) repair activities, i.e., it learns from past
experience. ‘

An architecture for high~autonomy systems was recently proposed by Zei-
gler et al. [7] and Chi [1]. The oxygen production plant prototype, while
still fairly primitive, contains all elements of a high-autonomy system. In
the sequel, these elements will be described, and it will be shown how they
cooperated during the incident.

700

Task Planning

Task planning refers to the activilty of sequencing commands issued at task
level to the control architecture. The task planner does not concern itself with
the details of task execution. All it does is to determine which tasks should
be executed, when, and in what sequence; it concerns itself with resource
management, i.e., it knows which resources are required by each task, and
makes sure that those resources are available during task execution; and finally,
it concerns itself with time management, i.e., it knows how much time each
task is supposed to consume and makes sure that real-time constraints are
satisfied.

In this testbed, the task planner was fairly rudimentary. Since only one
type of experiment was planned (the 100 hour test of continuous oxygen pro-
duction without human intervention), an elaborate task planner was not re-
quired. The currently used task planner is still very simple. This part of the
program will need to be drastically expanded before the full-scale plant can
be launched. Task planning is not only responsible for setting the pace for
normal operation, but also for recovering the plant after a fault has occurred.
The Martian task planner must be able to deal with sand storms, contami-
nated membranes and tubes, leakage of seals, and tripped circuit breakers, to
mention just a few of the types of failures that are ezpected to occur during
long-term operation of this high—-autonomy control system.

Chi et al. [2] and Chi [1] have proposed an intricate hierarchical task
planning architecture that should suffice for controlling such an expedition.

Command Execution

The command executor accepts the next command to be executed from the
task planner and prepares the control architecture for its execution. The com-
mand executor selects the appropriate low—level control algorithm from a set
of precoded algorithms, downloads the selected controller into the smart sen-
sor that physically houses the low—level control loop, and initiates the control
activity.

The command executor is also responsible for receiving and processing
sensory events that signal task completion. It is responsible for maintaining
the appropriate time—window information that allows it to judge success or
failure of task execution. Consequently, the command executor is responsible
for fault detection during transient operational phases, such as the start—up
and shut—down phases. In case of a failure (the sensory event has arrived too-
early or too-late), it triggers the fault diagnoser, which starts to reason about
the nature of the observed fault so as to relate the observed symptom to the
failure that caused it.

Time windows are intimately linked to event—based control logic. They en-
sure early detection of faults during transient operational phases, and thereby
provide the high-autonomy system with sufficient reliability to allow the sys-
tem to operate adequately over an extended period of time. The time-window
mechanism has been described in detail by Wang and Cellier [6].

701

Plant Operation

The actual low-level control is implemented in a microcontroller called a smart
sensor. Once the command executor has downloaded a control program to the
smart sensor, the low-level controller is activated. This can be a classical
controller of any vintage. In this testbed, all control activity was strictly
event~based, but there is nothing in the advocated methodology that would
dictate such a solution. It should be noticed that the control programs are
indeed different during different phases. For example, the voltage is carefully
ramped up in the start-up phase by one control program (to avoid overshoot),
- whereas the voltage control program operates quite differently during steady-—
state operation. '

Watchdog Monitors

Watchdog monitors are independent intelligent agents that monitor the high—
autonomy system during steady-state operation. They have knowledge of
some components of nominal system behavior during steady-state, and com-
pare their expectations with the actually observed behavior. If a significant
discrepancy is found, the “disquieted” watchdog alerts a fault diagnoser to
come up with an explanation for the observed anomaly.

The watchdog monitor philosophy has been advocated by Kury [3]. In the
described incident, it was one of the watchdogs that finally —and unnecessarily
late~ got aroused and triggered off the event chain that ultimately led to the
restoration of the “distressed” temperature controller.

Fault Diagnosis

Contrary to the watchdog monitors that are active daemons throughout the
steady—state operational phase, fault diagnosers are dormant sequential rou-
tines. They are activated only after an anomaly has been detected. The
purpose of a fault diagnoser is to relate an observed symptom back to the
failure most likely to have caused it.

In this testbed, only an extremely simple global rule-based fault diagnoser
was employed. Those failures from which the high—autonomy architecture can
recover are indicated by clear symptoms, and therefore, no complex fault di-
agnosers are needed. However, before an actual plant can be launched, it must
be asserted that the hlgh—autonomy system can recover from ol foreseeable
sorts of mlshap It will then become essential that the prec1se nature of any
observed failure is well understood before an automated repair activity is ini-
tiated. For that purpose, a multi-level hierarchical model-based diagnoser is
needed. Such an architecture was first proposed by Sarjoughian et al. [5]. It
has meanwhile been elaborated upon by Chi [1].

Fault Recovery

The findings of the fault diagnoser will invariably be forwarded to a fault
recovery agent. It is the task of that agent to decide whether something can
be done about the failure or not.

702

If recovery is possible, it is the job of the recovery agent to compute a new
goal state. It then provides the task planner with the current state and the
desired goal state, and requests that a new command sequence be computed
that moves the high-autonomy system from the current state to the desired
goal state.

If no recovery is possible, the recovery agent will provide the task planner
with the current state only and request computation of a command sequence
for graceful shut-down.

THE INCIDENT

The following section uses actual data from a portion of the 100 hour test to
illustrate the operation of the agents described above.

Figure 2 shows the zirconia cell temperature between 43,000 seconds and
107,000 seconds from start of the test. This is a portion of the steady—state
operation. :

Temperature
920.00

910.00

son oo [MHAAT VAR AL ANIM LIS AN el Vi 14 AN

890.00

880.00

50.00 60.00 70.00 80.00 90.00 100.00
' time (x 10°)

Figure 2: ZrO; Temperature Plotted over Time

It is immediately visible that around 71,000 seconds, something strange hap-
pened. The system recovered from the anomaly roughly 2,000 seconds later.

The anomaly started while a heavy thunderstorm took place. This was.
during the evening, and no human observer was at the plant site. From other
curves, it can be concluded that, at that time, a short power failure (less than
2 seconds) occurred. The backup power supply took over, but there are signs
of a temporary power surge. This transient upset the smart—sensor—based
temperature controller; more precisely, the real-time clock of the smart sensor
stopped operating,

It should have been easy to detect this anomaly immediately. However,
the software being used did not require that the value of the real-time clock of

703

the smart sensor be reported back to the PC, and thus, no watchdog monitor
suspected any trouble. After a long time, a watchdog responsible for check-
ing temperature values got suspicious, but this happened unnecessarily late.
Since temperature change is normally such a slow phenomenon, that particular
watchdog was executed only once every 30 minutes to save computing cycles
on the PC. This is a serious drawback of the watchdog monitor philosophy per
se: since watchdogs are daemons, they must be executed repetitively even if
nothing is wrong. If they are executed rarely, they aren’t very effective, but if
they are executed frequently, they consume lots of computing power. Fortu-
nately, since they are daemons, they run asynchronously and could be installed
on separate CPUs, even though that was not done in this implementation.

Fault diagnosers are harmless. They are sequential routines and don’
consume any computing cycles unless an anomaly has been observed. In the
reported incident, the fault diagnoser, once invoked, worked beautifully. It
concluded that the failure had to be in the smart—sensor program. It did not
conclude that the bug was in the real-time clock, but this wasn’t necessary.
As an analogy: if a computer is down, the repair person will identify the fault
only up to the board level and exchange the entire board. The faulty board
can then be taken back to the lab where it can be further analyzed down to
the chip level. There is no need to perform the second type of fault diagnosis
on-line and in real time.

The recovery agent then decided to reload the control program once more
into the smart sensor memory. It would have sufficed to restart the smart
sensor without replacing any programs, but the additional action performed
was harmless and didn’t consume much time anyway.

LESSONS LEARNED

The lessons learned from this incident are enumerated in the sequel:

1. Proper functioning of the real-time clock is crucial to any event—based
controller. Consequently, the smart sensor should report the value of its
real-time clock back to the PC, and an additional watchdog should be
installed that compares the two real-time clocks with each other and gets
aroused when they start to diverge.

2. Some of the events that do not normally occur during steady—state oper-
ation can be declared as anomalous events. While no separate immediate
recovery action may be needed, all anomalous events should nevertheless
trigger a fault diagnoser.

3. While either of the two previous lessons could have improved results in
the given situation, the watchdog that finally caught on should have been
executed a little more frequently.

4. Event—based control is well suited for post—fault analysis. However, to this
end it is necessary to remember which rules were fired when, why, and by
whom. This was omitted in order to save computing cycles. Due to this
oversight, it wasn’t possible to conclude without a grain of a doubt what
really had happened during the incident.

704

5.

Similarly, while the smart sensor is equipped with means to download
into it programs on the fly, nobody ever thought of the need to upload a
program from the smart sensor back into the PC to save it for post—fault
analysis. ' _

The lessons learned from this incident should ensure that the same incident
will never happen again. These sorts of experiments will help increase the
reliability of the high—autonomy operation until a system results that is
reliable enough for long-term operation on planet Mars. However, a good
amount of research is still needed before this ultimate goal can be reached.

SUMMARY AND CONCLUSIONS

This paper outlined an intelligent high-autonomy control architecture useful

for

robots and manufacturing plants. The advocated methodology, once con-

solidated, will prove particularly valuable for space exploration in the early
days of the next century, but it will also be useful for other applications where
human presence at the plant location may be either undesirable, or hazardous,
or impossible. Of particular interest was the fact that the architecture was
able to detect. and counter an anomaly in the controller itself, the potential
occurrence of which had not been anticipated.

REFERENCES

1.

Chi, 8., (1991). Modelling and Simulation for High Autonomy Systems, Ph.D,
Dissertation, Department of Electrical and Computer Engineering, University of
Arizona, Tucson, Ariz.

. Chi, S., B.P. Zeigler, and F.E. Cellier, (1990). “Model-Based Task Planning

System for a Space Laboratory Environment,” Proceedings SPIE Conference on
Cooperative Intelligent Robotics in Space, Boston, Mass.

. Kury, P.M., (1990). An Intelligent Fault Diagnoser for Distributed Processing

in Telescience Applications, MS Thesis, Department of Electrical and Computer
Engineering, University of Arizona, Tucson, Ariz.

. NASA, (1985). The Space Station Project.
. Sarjoughian, H.S., F.E. Cellier, and B.P. Zeigler, (1990). “Hierarchical Controllers

and_Diagnostic Units for Semi—-Autonomous Teleoperation of a Fluid Handling
Laboratory,” Proceedings IEEE Phoeniz Conference on Computers and Commu-
nication, Scottsdale, Ariz., pp. 795-802.

. Wang, Q. and F.E. Cellier, (1991). “Time Windows: An Approach to Automated

Abstraction of Continuous—Time Models into Discrete~Event Models,” Interna-
tional Journal of General Systems, 19(3), pp. 241-262.

. Zeigler, B.P., S. Chi, and F.E. Cellier, (1991). “Model-Based Architecture for

High Autonomy Systems,” Proceedings EURISCON’91 — European Robotics and
Intelligent Systems Conference, Corfu, Greece, June 23-28.

