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ABSTRACT

An \evaluation" approach devised for an inductive reasoning system called Logic-based Discrete-event Inductive
Reasoner is the focus of this paper. The underlying inductive reasoning methodology utilizes abstractions as its
primary means to deal with lack of knowledge. Based on abstractions and their treatments as assumptions, the
Logic-based Discrete-event Inductive Reasoning system allows non-monotonic predictions. The evaluation approach
takes into account explicitly the role of abstractions employed in non-monotonically derived multiple predictions.
These predictions are ranked according to the type and number of abstractions used. The proposed evaluation
approach is also discussed in relation to the dichotomy of model validation and simulation correctness.

Keywords: Abstraction, Arti�cial Intelligence, Inductive Reasoning, Model/Simulation Evaluation, Model Valida-
tion, Non-monotonic Reasoning, Simulation Correctness.

1. INTRODUCTION

Modeling and simulation practioners have a genuine need to understand the artifacts of their discipline | namely
models and simulations. Every useful model and/or simulation must satisfy some objectives | e.g., does the model
represent the part of the reality we are interested in? Indeed, modeling and simulation (M&S) methodologies and
more widely M&S tools provide some means by which models and simulations can be evaluated.

Due to the underlying fundamental di�erences in modeling and simulation methodologies (e.g., deductive vs.
inductive), various evaluation techniques have been proposed and implemented. Furthermore, within each category
of modeling and simulation such as deductive reasoning, there exists no consensus on any \single" evaluation approach
to be universally applicable. Indeed, given the many facets of modeling and simulation, it is necessary to devise
model validation and simulation correctness techniques for each M&S methodology. For example, in deductive
reasoning, various techniques are employed for evaluating the validity of models represented in it and consequently
the correctness of their simulations.1{5

2. INDUCTIVE REASONING

In Systems Theory, a system is represented in terms of its inputs, outputs, states, state transition and output
functions.6,7 We refer collectively to states and functions of a system as its structure. Based on inputs, outputs, and
structure of a system, three distinct reasoning approaches have been identi�ed. Depending on which two of the three
are known and which other one is to be predicted, a reasoning mechanism is called abductive, deductive or inductive.

When the output is to be predicted given input and structure, then the reasoning method is referred to as
deductive. Abductive reasoning is concerned with determining the input set as opposed to the output set. Deductive
and abductive reasoning generally have a \closed-form" solution with the implication that once the structure of a
system is identi�ed, it is applicable to all inputs. In inductive reasoning, we call inputs and outputs of a system
its data set. From this vantage point, the goal of an inductive reasoning approach is to provide a way to obtain a
system's structure given some relevant data | a data set. In inductive reasoning, since only a subset of in�nitely
many possible input and output pairs may be available, a system's structure can only be partially determined for a
�nite set of input/output pairs. An input and output form a \pair" if the former causes the latter.
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Given the distinct characteristics of inductive reasoning as opposed to deductive (abductive) reasoning, the
evaluation of a system's behavior requires distinct treatment depending on the particular reasoning mechanism. We
continue with a brief description of the inductive reasoning methodology underlying the evaluation approach being
discussed here.

2.1. Inductive Prediction

Inductive reasoning has to rely on incomplete data set.8,2,3 Therefore to overcome the lack of complete data, it is
necessary to extend the data set in a way to allow making predictions. A compelling strategy is to augment the
data set with hypothesized data based on some \assumptions.9 " These assumptions provide the basis to derive the
unavailable data. However, since assumptions are used in obtaining the hypothesized data, the derivation is said to
be non-monotonic. The word non-monotonic is used to indicate that the derived data holds as long as its underlying
assumptions hold. Once knowledge contrary to the supporting assumptions becomes available, the hypothesized data
must be discarded.

The enabling means for inductive (or non-monotonic) prediction are assumptions that directly relate to abstrac-
tions. We use the term abstraction to refer to \generalization" of knowledge. Suppose, we have two input segments:
!
1
and !

0

1
where the latter is an abstraction of the former. An input segment !

1
can be speci�ed in terms of its input

event, duration, and state. Using abstraction, an input segment may be represented and used in terms of either its
input event or state. Two abstraction types for an input segment are input and state. For example, we can make an
abstraction !

0

1
from !

1
that has associated with it an assumption (e.g., input abstraction.)

Based on the Iterative Input/Output Function Observation (IOFO) speci�cation (see Section 2.1) and non-
monotonic reasoning, an inductive reasoning approach called Logic-based Discrete-event Inductive Reasoning (LDIR)
has been proposed to make predictions in the absence of complete knowledge.9,10 An implementation of the proposed
approach has been developed using a Logic-based Truth Maintenance System (LTMS).11 The LDIR stores two types
of input/output segment pairs: observed and hypothesized. The observed input/output segments are recorded as
\assertions." The remaining input/output segments are recorded as \hypotheses" and are associated with their
assumptions.

2.2. Iterative IO Function Observation Structure

In this section, we briey discuss a mathematical structure that represents a system in terms of its data set and
structure.9 This structure underlies the Logic-based Discrete-event Inductive Reasoner. A system's input/output
trajectories (i.e., IOspace = f(!;  ) j (!;  ) 2 (X;T ) � (Y; T ); dom(!) = dom( ):g) can be partitioned into in-
put/output generator segment pairs | (


G
,	

G
). By partitioning input/output trajectories into input/output gen-

erator segments, the IOspace can be constructed by concatenation. In this way not only the original input/output
trajectories can be recreated, but also others. The collection of all input/output generator segments of a system is
de�ned as
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Each input segment has an input event and a duration. Similarly, the output segment has an output event and a
duration. In order to represent a system explicitly in terms of its states, we associate input and output segments with
states. In LDIR, an input/output generator segment is represented as ((s

i
; (xval; dt)); (sf ; (yval; dt))) where initial

and �nal states are denoted as s
i
and s

f
.

For a given system, if the set of all IO generator segments are available, then the system's input/output trajectories
of arbitrary length can be constructed. Given IOspace

G
, an Iterative Input Output Function Observation speci�cation

for a causal, time-invariant IO function observation structure can be de�ned as:
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T time base
X input value set
Y output value set
S
i

set of initial states
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G
causal, time-invariant input/output
segment generator set
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IO function generator set

G

�nal state hypothesizer
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The free Iterative IOFO speci�cation allows nonempty �nite concatenations of elements of IOspace
G
as well as

F
G
. That is, predicted input/output trajectories can be composed of generator input/output segments. Hence, given

a data set containing I/O segments and an input trajectory, the goal is to predict an output trajectory. However,
if F

G
does not represent a system's complete IO behavior, then it may be necessary to compose trajectories from

segments, some of which have to be predicted based on some belief set that we denote as an assumption set. As a case
in point, consider the composition of two segments !

1
and !

2
(!

2
� !

1
.) However, unless the �nal state of !

2
is the

same as the initial state of the !
1
, we have no choice but to make the composite trajectory a hypothesis. By ignoring

a mismatch between the �nal state of !
2
and the initial state of the !

1
, we would have a hypothesized trajectory.

That is, we need to make either an abstraction of !
1
(!

0

1
) or !

2
(!

0

2
) in order to make a composite trajectory such

as !
0

2
� !

1
or !

2
� !

0

1
.

An input trajectory may be partitioned into segments based on the duration of the input segments that are in
a data set. Each partitioned input segment can have a duration equal to an input segment in the data set. Also,
the duration of a partitioned input segment can be equal to the duration of an input segment having the longest
duration. Similarly, a partitioned input segment's duration can be neither exact nor longest (i.e., somewhere between
exact and longest.) We call matching of an input segment's length against one in the data set as either exact, longest,
or all. For example, if we specify an \exact" match, then the input trajectory will be partitioned as to match the
data set input segments that have the exact duration as the partitioned input segment. That is, an assumption set
can be identi�ed to have elements from flongest; exact; allg and finput; stateg. Hence, the G

F
can be reformulated

as an assumption-based iterative IOFO structure using assumption sets.

2.3. Example

We describe an example for the remainder of this paper. We suppose there exists a shipyard that has two Repair
Stations called RS-1 and RS-2 where the former adheres to a First-In-First-Out (FIFO) discipline and the latter to
a Priority Ranking (PR) discipline.9 The shipyard receives di�erent types of vessels in need of repair with di�erent
priorities. For example, vessels of type \A" have the highest priority of all and vessels of type \B" are given priority
over those of type \C."

Only one of the two repair stations is assumed to be in operation for any given period. As a scenario, we suppose
vessels in need of repair enter the shipyard at stochastically chosen time points, wait for their turn, and depart the
shipyard after being repaired. Each vessel type has an assigned I.D. number indicating how much time is required
for it to be �xed. In this simple example, there are three types of vessels | \A," \B," and \C" | that require one
unit, two units, and three units of time, respectively, for repair. We exclude the condition where multiple vessels can
be repaired in parallel.

An observer may keep an ordered record of the vessels entering the repair station, while removing from the list
any vessel departing from it. In order to completely specify the state of a repair station, it is necessary not only to
have an ordered record of the vessels entering the repair station, but also to specify how much time is necessary for
each vessel until it is able to depart again, given that some vessels are already waiting for repair. The \state" of each
repair station can be described by:



(� � � ; (idj ; tj); � � �)

where idj denotes the identity of the vessel \J," and tj denotes the remaining time before vessel \J" will de-
part from the repair station. We choose the input/output trajectories for the shipyard to have as their states
(num of vessels; (� � � ; idj; � � �)) to make the problem non-trivial. Even though num of vessels can be computed
from (� � � ; idj ; � � �), for convenience, we make this information explicit. Each IO trajectory has as its input events
the identities of arriving vessels. Likewise, the identities of leaving vessels are the output events of an IO trajectory.

We can represent an observed input/output trajectory (IO Trajectory I) for the shipyard example as:

io-traj-1: ((si-0 ()) (in a 1) (out a 1))

((si-0 ()) (in nil 1) (out nil 1))

((si-0 ()) (in b 2) (out b 2))

((si-0 ()) (in nil 1) (out nil 1))

((si-0 ()) (in c 3) (out c 3))

((si-0 ()) (in nil 1) (out nil 1)).

An input trajectory such as io-traj-1 is simply a list of records, each containing an initial state, an input segment,
and an output segment, in the order given. The �nal state associated with each record is the initial state of the
record following it, except for the last one. The arrival or departure of no vessel at either the beginning or the end
of a segment is indicated as nil. For instance, (in nil 1) speci�es that no new vessel arrived for this segment.
(Figure 1 depicts the above trajectory and IO Trajectory II which satis�es a FIFO discipline only. The second
IO trajectory, which satis�es a FIFO discipline only, is shown in the bottom graph of Figure 1. Its pseudo-code
representation is:

io-traj-2: ((si-0 ()) (in b 1) (out nil 1))

((si-1 (b)) (in a 1) (out b 1))

((si-1 (a)) (in nil 1) (out a 1))

((si-0 ()) (in nil 3) (out nil 3))

((si-0 ()) (in a 1) (out a 1))

((si-0 ()) (in nil 1) (out nil 1))

((si-0 ()) (in c 2) (out nil 2))

((si-1 (c)) (in b 1) (out c 1))

((si-1 (b)) (in nil 2) (out b 2))

((si-0 ()) (in nil 1) (out nil 1)):

Consequently, the �rst record of io-traj-1 says that there were no vessels in the repair station initially, and that
a vessel with identity a arrived at that time, which departed again one time unit later. The second record, ((si-0
()) (in nil 1) (out nil 1)), says that no vessel arrived or departed during the second time unit and that no
vessels were in the repair station during this time period, etc.

Let us suppose the following input trajectory for which LDIR is supposed to predict its output trajectory with a
given initial state and an assumption set:

in-traj-3: (in c 0)

(in a 1)

(in b 6))

(in nil 8))

Since we know the internal structure of the system, we can of course perform a quantitative and completely
deductive reasoning, to determine the true IO trajectory for this system, given in-traj-3 as its input trajectory.
Note that we use the knowledge about the shipyard's internal structure as a baseline to measure the predictions of
LDIR against it.



We assume that the shipyard is initially empty and that it follows a FIFO discipline. The pseudo-code represen-
tation of the correct IO trajectory is as follows:

io-traj-3-fifo: ((si-0 ()) (in c 1) (out nil 1))

((si-1 (c)) (in a 2) (out c 2))

((si-1 (a)) (in nil 1) (out a 1))

((si-0 ()) (in nil 3) (out nil 3))

((si-0 ()) (in b 2) (out b 2))

((si-0 ()) (in nil 1) (out nil 1))

Using LDIR, we can predict a set of logically consistent IO trajectories for this input trajectory assuming no
other knowledge about the system except for io-traj-1 and io-traj-2. The predicted output trajectory for in-traj-3,
initial state (si-0 ()), and assumption set (exact abs-input) is shown in Figure 1. The assumption set speci�es
that a candidate input segment as a result of partitioning must have equal duration to one available in the data
set. Furthermore, it speci�es that the input event can be excluded (abstracted) in �nding a match for the candidate
input segment. In Section 3.1, we assess the �delity of these hypothesized IO trajectories relative to the correct one.

3. QUANTITATIVE EVALUATION OF PREDICTED IO TRAJECTORIES

Obviously, the predictions made by the Logic-based Discrete-event Inductive Reasoner (LDIR) would need to be
evaluated, especially when multiple predictions are possible. As we indicated earlier, LDIR interacts with a data
set containing observed and hypothesized I/O segments. Therefore, the evaluation of the LDIR would have to be
carried out in terms of its data set maintained by the LTMS. We can assess the quality of the database maintained
by LTMS, and the e�ectiveness of LDIR in using the available knowledge for predicting IO trajectories. We can say
that the database maintained by LTMS constitutes the model of the system, whereas predicting an IO trajectory
represents a qualitative simulation. Loosely speaking, evaluating the quality of the database is synonymous with
validating the model, whereas evaluating the quality of a prediction corresponds to verifying the simulation.

More traditional modeling/simulation systems use goodness-of-�t measures to assess the quality of a simulation.
Also, since the model usually remains static during the simulation, it is possible to separate the task of validating the
model from that of verifying the simulation. However, in LDIR, and in other qualitative modeling/simulation systems
(e.g., SAPS12), these tasks are more intricate. In LDIR, the model does not remain static during the simulation (new
hypotheses are added on the y, and the available knowledge is constantly revised to maintain consistency among
all available facts and hypotheses).

Before we can de�ne precisely what is the quality of the LTMS database (the model), we need to describe what
the term \quality" entails. The quality of a knowledge maintenance system can be speci�ed in terms of its reliability
and completeness. The following illustrates these two properties.

The warehouse of a large company stores many parts that it must sell when they are needed. The warehouse
manager keeps a book in which all parts are listed with their part numbers, location in the warehouse, and prices.
Unfortunately, the knowledge is incomplete. There are many parts for which no prices are listed, and other parts
are missing altogether. The warehouse manager now has two choices. He can work with the book as is. In this case,
the reliability of the available knowledge is excellent, yet the completeness is not. If the apprentice is to sell a part
for which no price is listed, he must always look for the warehouse manager to �nd out how much to charge. The
other possibility is for the apprentice to estimate the cost of the incomplete entries as best as the manager can within
the limitations of available time. As missing entries are added to the book, the knowledge becomes more complete.
Unfortunately, the reliability will su�er in the process.

The same is true for any database maintained by the LTMS. The more hypotheses are added to the database, the
more complete the knowledge becomes. However, the increase in completeness goes hand-in-hand with a reduction
in reliability. Thus, when evaluating the quality of the database, we shall de�ne two separate quality measures |
one measuring the reliability of the database, and the other measuring its completeness.

The completeness of an LTMS data set may be speci�ed, in part, by the cardinality of the spaces of hypothesized
IO segments. For a given set of input segments, hypothesized IO segments can be those that are non-monotonically
derived based on some observed IO segments and an assumption set. For example, using abstraction abs-length
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Figure 1. FIFO Discipline Example



with some observed IO segments leads to a space of hypothesized IO segments for a set of input segments. Other
spaces of hypothesized IO segments for the same set of input segments and observed IO segments can be non-
monotonicallyderived using abs-input, abs-state, and their combinations (e.g., (abs-length, abs-input).) Each
of the abstraction types usually leads to di�erent hypothesized IO segments. Hence, the completeness measure is
related to the cardinality of observed and hypothesizable IO segments.

The reliability of hypothesized IO segments is related to the type of abstraction employed since each abstraction
enforces a certain degree of predictability. We can rank the three types of abstraction in order of increasing compliance
as: (1) length, (2) input event, and (3) state. We are using the term \compliance" to indicate how forgiving an
abstraction is. The more compliant an abstraction is, the less reliable a hypothesis will be, and the smaller the �delity
of a predicted IO segment that is based on this hypothesis. State abstractions impose much stronger compliance
in generating hypothesized IO segments than either input event or length abstractions. Having the abstraction
de�ned as given above, it is straightforward to order their combinations as well. If length, input event, and state
are abstracted simultaneously, then the so hypothesized IO segments are based on the most compliant assumptions,
allowing prediction of anything as long as consistency is not violated!

The compliance of an abstraction type o�sets the �delity of IO segments hypothesized based on it. In the
most restrictive sense, the term \�delity" might refer to whether a hypothesized IO segment will eventually be
con�rmed or rejected. However, instead of postulating a dichotomy, we use the term �delity to indicate to what
extent a hypothesized IO segment is consistent with the available IO segments. The stronger the compliance of an
abstraction, the worse the �delity of hypothesized IO segments generated based on it | the �delity of IO segments
degrades as abstractions with higher compliance are used. Thus, we use the terms compliance and �delity in relation
to each other.

How does the predictability of LDIR relate to the number of observed IO segments? The answer to this question
depends on the candidate input trajectory. The more useful IO segments have been observed for a system in relation
to a candidate input trajectory, the fewer IO segments would need to be hypothesized. Also, more observed IO
segments place more restrictions on what IO segments can be hypothesized.

Hence the size of the space of the hypothesized IO segments is related to both the number of observed IO seg-
ments and the types of abstractions used. The cardinality of the space of hypothesizable IO segments based on
(abs-length, abs-state), (abs-length, abs-input), or (abs-length) decreases in the order given. Further-
more, while the number of hypothesizable IO segments decreases as less compliant types of abstractions are employed,
their �delity improves.

Having di�erent types of IO segments (some asserted, others hypothesized), it is possible to de�ne two heuris-
tic quality measures relating to: (1) the quality of all available IO segments in the database, i.e., the quality of
the model, and (2) the quality of a predicted IO trajectory given an input trajectory, i.e., the quality of a simula-
tion. A quality measure is a real-valued number in the range 0.0 to 1.0, where larger values denote improved quality.3

We introduce the term IO segment �delity in terms of a Figure of Merit (FoM) assigned to it. Let Fabsi denote the
absolute �delity of the ith IO segment. Asserted IO segments have the highest �gure of merit, whereas hypothesized
IO segments using the abstraction mechanism with the largest compliance have the lowest �gure of merit. Here, we
consider the possibilities from the �rst two elements of elm-1 2 flongest, exact, allg together with elm-2 2
fabs-input, abs-stateg with some (arbitrarily) assigned �gures of merit for each abstraction (assumption) type.
Table 1 suggests some assigned FoM for each combination of abstraction types. In the chosen scale, the maximum
and minimum absolute �delity values are Fmax = 4:0 and Fmin = 0:0, respectively.

Now, the relative �delity of each IO segment can be de�ned as:

Freli =
Fabsi
Fmax

Assertions have the highest relative �delity (1.0), whereas hypotheses that are based on the abstractions with
the highest compliance have the lowest relative �delity (0.0). Given all currently available IO segments in the LTMS
database, we can de�ne the average relative �delity as:



Assumption used FoM

| 4.0
exact 3.5
longest 3.0

(exact, abs-input) 2.5
(longest, abs-input) 2.0
(exact, abs-state) 1.5
(longest, abs-state) 1.0

(exact, abs-input, abs-state) 0.5
(longest, abs-input, abs-state) 0.0

Table 1. Figures of merit assigned to some types of assumptions.

Favg =
1

n
�

nX

i=1

Freli

where n denotes the number of IO segments currently stored in the database. Favg can also be used as a quality
measure.

Given that we have a �nite set of input segments, each either being a hypothesis or an assertion, we call the number
of all possible combinations of initial states and input events Np. Similarly, we call the set of all combinations of
di�erent initial states and input events that are currently present among the (asserted and hypothesized) IO segments
Na, where Na � Np.

We can introduce the evidence ratio measure:

ER =
Na

Np

; 0:0 < ER � 1:0

We shall use this measure as the completeness measure of our model. The interpretation of ER is that, the greater
the value of ER, the fewer IO segments will need to be hypothesized in relation to a �xed set of initial states and
input events. Smaller values of ER indicate the converse. A value of ER = 1:0 indicates that LDIR will never have to
resort to either input or state abstractions in hypothesizing IO segments. We have not included length abstractions
since they generally do not contribute greatly to the evidence ratio measure. Now, given Favg and ER, we can de�ne
QModel, which is the prediction quality of the model (i.e., the overall quality of all available IO segments in the
LTMS:)

QModel = Favg �ER:

The two inuencing factors of the prediction quality QModel are always in competition with each other. Evidently,
if the cardinality of all possible IO segments is exhausted through observations, QModel = 1:0. A useful feature of
quality measures, as they were de�ned in,3 is that multiple (usually competing) quality measures can be simply
multiplied with each other, leading to a multidimensional new quality measure that takes into consideration all the
inuencing factors assessed through the individual quality measures contributing to it.

Hence, if no hypotheses have been made, Favg shows a perfect score of 1.0. When only few IO segments are
observed or hypothesized, ER will be poor. On the other hand, if everything has been hypothesized that can be, ER

shows a perfect score of 1.0, but this time around, Favg will be poor.

If we don't know yet what we wish to use the model for, i.e., which input trajectory we are going to use to predict
an output trajectory, this is the best we can do. However, given an input trajectory, we can evaluate the quality of
the IO trajectory predicted by LDIR in more direct ways, i.e., we can predict the quality of a simulation.



Favg ER QModel QSimul

IO-Trajectory-I(asm-1) 0.90 0.63 0.56 0.14
asm-1: flongest, abs-inputg
IO-Trajectory-II(asm-2) 0.96 0.56 0.54 0.54
asm-2: fexact, abs-inputg
IO-Trajectory-III(asm-3) 0.94 0.56 0.53 0.32
asm-3: flongest, abs-stateg

Table 2. Quality measures for predicted Scenarios 1 through 3.

Since we already know the input segments we shall have to work with, the evidence ratio is of no concern any
longer. We only deal with the relative �delities of individual predicted IO segments. Making the supposition of
statistical independence of neighboring predicted IO segments, we can postulate the following quality measure:

QSimul =
mY

j=1

Frelj

where m denotes the number of predicted IO segments. The supposition of statistical independence is obviously
a preposterous one. Simulation output is never statistically independent (unless we try to predict the next value
of a noise generator13). However, we don't have anything better to go by, and so we shall have to live with this
supposition. Most qualitative simulation systems do. For example, SAPS does exactly the same, except that Frelj is
replaced by a measure of likelihood of the prediction made.14

3.1. Evaluation of the Shipyard Example

Based on QModel and QSimul, we can analyze three predicted output trajectories for the candidate input trajectory
shown in Figure 1. We use three assumptions sets | asm-1: flongest, abs-inputg, asm-2: fexact, abs-inputg,
and asm-3: flongest, abs-stateg. Based on these, LDIR predicts three scenarios: IO-Trajectory-I(asm-1),
IO-trajectory-II(asm-2), and IO-trajectory-III(asm-3).

The evidence ratio can be computed given Np | that is the set of all combinations of states and inputs. Neither
of these are bounded in the shipyard example. Consequently, we need to replace the theoretical cardinality by a
much smaller subset: the power set of all initial states and input events that have ever been observed.

Unfortunately (or fortunately), we can't know what we don't know. We have to live with this fact, and make
the best of it. LDIR can compute the powerset of all ever observed states. In the case of RS-1, LTMS contains 4
di�erent initial states and 4 input event types. The power set of these two (independent) quantities is 16. Note that
we have only a few observed IO trajectories and therefore the tables given below are based on few data points.

The �delity measure and evidence ratio for repair-station-1 are 1.0 and 0.5, respectively. The perfect score for
the �delity measure is due to having no hypotheses in the data set. Given that there are 4 distinct initial states and
4 input events for RS-1, the total number of combinations of initial states and input segments is 16. The observed
IO segments contain 8 di�erent cases with ER = 8=16.

Given the respective predicted output trajectories 1 through 3, the quality measures for each can be computed
(refer to Table 3). (The quality measures of the model change since the model itself is updated to include some
hypotheses.)

The quality of the model for the IO-trajectory-I indicates that it is best suited for predictions. However, the
quality of the predicted trajectory using this model is worse than the other two despite having a superior model
quality. The quality of prediction can be adjusted by using a third quality measure, the assertion ratio measure:

AR =
NA

NA + NH



Favg ER AR QModel QSimul

IO-Trajectory-I(asm-1) 0.90 0.63 0.73 0.41 0.14
asm-1: flongest, abs-inputg
IO-Trajectory-II(asm-2) 0.96 0.56 0.84 0.46 0.55
asm-2: fexact, abs-inputg
IO-Trajectory-III(asm-3) 0.94 0.56 0.84 0.45 0.33
asm-3: flongest, abs-stateg

Table 3. Revised quality measures for predicted Scenarios 1 through 3.

where NA denotes the number of assertions in the database, and NH represents the number of hypotheses. The
modi�ed model quality would then be evaluated as:

QModel = Favg �ER �AR

Using the modi�ed model quality measure, the predicted IO trajectories show simulation quality as expected (see
Table 3.) Now, there is a good correspondence between what the model quality stipulates and what the simulation
quality con�rms. The original de�nition is left in the text to show that there is a fairly high degree of heuristicism
in the detailed de�nitions of these quality measures, and more �ne tuning may be needed down the road; for now,
however the modi�ed quality measures look rather promising.

Note that the evidence ratio has gone up in all cases (as it must), yet the �delity measure and the assertion
ratio have both gone down, and the overall model quality has in fact decreased, i.e., we didn't do a very smart thing
by augmenting the LTMS with these hypotheses. In all likelihood, at least some of them will have to be revoked
(negated) in the future.

Among the three cases, both the model qualitymeasure and the simulation qualitymeasure suggest that Scenario 2
is the best. Scenario 1 added so many spooky hypotheses to the LTMS that its results are the most doubtful ones,
although the abstraction mechanism is valued more reliably, in general, than that used by Scenario 3. The model
and simulation quality measures agree in their relative assessments of the three scenarios.

Now, we examine each of the predicted scenarios in terms of their behaviors. We begin with IO-Trajectory-I

(Refer to Figure 1.) The predicted IO trajectory satis�es the FIFO discipline, ignoring incorrect job identity for
input event \A". This is accidental however, since inside the shipyard two major \remodeling jobs" have taken place
that were not visible from the outside. The amount of time predicted for vessels \C" and \A" to be serviced is
incorrect. Moreover, IO segment (((SI-0 ()) (IN NIL 2)) ((SI-0 ()) (OUT NIL 2))) is split into two identical
IO segments (((SI-0 ()) (IN NIL 1)) ((SI-0 ()) (OUT NIL 1))).9 This is due to asking for exact match
and not having (((SI-0 ()) (IN NIL 2)) ((SI-0 ()) (OUT NIL 2))) in IO-space-g. Evidently, this deviation
is harmless. IO-Trajectory-II looks better than IO-Trajectory-I, but the conclusion may be accidental, since
the internally made abstractions are still rather dubious.

How about IO-Trajectory-II(Refer to Figure 1?) Evidently, the predicted IO trajectory is not the expected
one. Moreover, the order in which vessels are predicted to be repaired is incorrect. Even though the �rst predicted
IO segment is consistent and correct, the remaining part of the predicted IO trajectory is incorrect. LDIR predicted
vessel \C" to take longer than expected to be repaired. Consequently, all the remaining IO segments turn out to be
incorrect. This, obviously, need not be true in general. The reason vessel \C' requires 5 time units for repair is due
to asking for the longest match in the assumption set. Nevertheless, the number of vessels entering and leaving the
repair-station-1 is correct.

(IO-Trajectory-III) shows the least agreement with the desired predicted IO trajectory. We expected this since
the assumption set is (longest, abs-state). The abstraction of initial states is more compliant than that of input
events. In this scenario, vessel \C" disappeared altogether!

The above discussion shows that assessing a qualitative simulation in the same way as one would judge a quanti-
tative simulation, i.e., in terms of a goodness-of-�t measure, is problematic at best. The previously presented quality
measures are much more solid and reliable, in general, than any goodness-of-�t measure we might come up with.



If this is the case, what is the purpose of the simulation? Had we provided the system with more evidence (a
higher evidence ratio) to start with, the quantitative results of the simulation would also have been better. The
problem is simply that if the agreement between reality and prediction is poor, as in the shipyard example, this is
related to the problem of not having enough evidence, and not to a principal aw in the methodology. The proposed
quality measures have a much better chance of assessing the real strengths and weaknesses of such a model than a
simple output-to-output comparison.

However, there is also another implicit bene�t of performing logic-based qualitative simulation runs. It relates
to the possibility of understanding the underlying reasoning processes of the qualitative simulator. A traditional
weakness of simulation is that simulation results are rarely enlightening.3 It is as di�cult to generalize knowledge
from a simulation output as from a lab experiment. Many di�erent simulation runs are usually needed until a human
researcher can discern the general patterns behind the speci�c patterns generated by individual simulation runs. In
this respect, the LDIR methodology exhibits an important advantage. Its reasoning processes are immediately open
to human interpretation. We shall talk more about this facet of the DIR methodology in the following section.

4. OTHER EVALUATION APPROACHES

The average �delity measure, Favg, and the evidence ratio measure, ER, are adaptations of the entropy reduction
measure, HR, and the observation ratio measure, OR, used in SAPS.3 SAPS de�nes the quality of its inductive
model in a similar fashion as QM = HR � OR. It uses QM to distinguish between the relative virtues of di�erent
\masks" (the abstraction mechanism used in SAPS), and chooses as the \optimal mask" the one with the largest QM

value, i.e., it selects the abstraction mechanism that maximizes the predictability power of the qualitative model.
LDIR currently does not need to do so, because there are a small number of choices available in selecting abstraction
mechanisms, and their relative merits w.r.t. predictability power are fairly well understood. In the future, however
LDIR will be expanded to deal with multi-input systems (as SAPS already does); at such time, QModel may be used
by LDIR as QM is currently used in SAPS.

A general evaluation approach for learning systems based on a probabilistic framework has been proposed by
Valiant.15 This approach is devised for systems that learn inductively as opposed to system that learn either by
receiving more factual knowledge (learning by being told) or by becoming more e�cient while not receiving any new
knowledge (speedup learning.) The basic concept for evaluating inductive learning is called probably approximately
correct (PAC), that is to say learning unobserved knowledge (e.g., an input/output segment) with high probability.
More speci�cally, PAC is bounded by con�dence � and accuracy � parameters:

Pr[error(F; F̂) > �] < �

where F is the knowledge to be learned (e.g., observed input/output segments) and F̂ is the knowledge that is
approximately correct (e.g., hypothesized input/output segments) over some universe of objects U .

In PAC learning, it is assumed that some pieces of knowledge are more important than others. The concept
of approximately correct captures the degree to which F̂ matches F . In LDIR, predictions are ranked based on
the type of assumption used. It LDIR, no distinction is made between learning input/output segments that are
more important than others. This is due to the presumption that all elements of the LDIR data set (input/output
segments) have the same degree of importance. The LDIR learning framework can readily be extended to take into
account such knowledge in addition to type of abstractions.

Two extensions of PAC learning are restricted hypothesis bias and preference bias.16{18 Learning with restricted
bias is concerned with the representational syntax. For example, given hypotheses represented in Boolean conjunction
in some universe U , the space of possible hypotheses is 2jUj. Based on the space of hypotheses, �, and �, bounds
on the number of training examples can be obtained. Preference bias learning orders possible hypotheses based on
some preference. For example, based on the Occam's Razor principle, hypotheses that have the simplest form would
be more favorable. In LDIR, hypotheses are ordered based on the abstractions used (e.g., hypothesized segments
having longest duration are less favorable than those having exact duration.)



5. CONCLUSIONS

Given the Logic-based Discrete-event Inductive Reasoning methodology, we discussed an approach that allows eval-
uation of its predictions. The two major measurement metrics are model and simulation qualities. The abstraction
�gures of merit (e.g., FoMfexact;inputg) were the principal artifacts in obtaining QModel and QSimul quality mea-
sures. The �gures of merit ensured that the ranking of predictions are directly related to the compliance of each
abstraction employed. The other contributors to the measurement metrics were the number of observed and hypoth-
esized input/output segments. As it was shown, the quality measures for the shipyard example were as expected in
accordance to the abstraction types used.

In terms of future work, it would be necessary to examine the LDIR evaluation approach with su�ciently large-
scale examples. That is, the training examples should be statistically valid. The LDIR reasoning mechanism appears
to be a suitable learning mechanism to be evaluated using the PAC approach. In particular, for a large data set,
it provides a mechanism to obtain predictions having a desired con�dence and accuracy measure. However, PAC
learning and speci�cally preference learning, need to be extended to account for the use of abstractions as de�ned in
LDIR. The simple assignment of �gure of merits as discussed in this paper may need to be revised to lead to more
appropriate model and simulation quality measures.
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