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Abstract

Reconstruction Analysis (RA), as referred to in this ar-
ticle, denotes an implementation of a subset of algo-
rithms from general Reconstructability Analysis [Cavallo
and Klir, 1981; 1982]. SAPS{II [Cellier, 1991], a Matlab
toolbox [MathWorks, 1992], implements a subset of al-
gorithms from General Systems Problem Solving (GSPS)
[Klir, 1985a], including the Fuzzy Inductive Reasoning
(FIR) tools [de Albornoz, 1996], as well as the Recon-
struction Analysis (RA) tools [de Albornoz, 1996]. This
article discusses the problem of distortions in Crisp Recon-
struction Analysis (CRA), a problem that is inherent in
the methodology, and that has, to our knowledge, never
been reported. An algorithm is presented that corrects
these distortions. Also, the article points out that Fuzzy
Reconstruction Analysis (FRA) is distortion{free.

1 Introduction

The main idea behind Reconstruction Analysis is quite
simple. Given an object in an n{dimensional space. It
is always possible to make projections of that object onto
lower{dimensional subspaces. If a number of these projec-
tions together preserve complete knowledge of the original
object, then it should be possible to reconstruct the orig-
inal object from these projections.

It is a legitimate and interesting question to ask, what
is the smallest number of dimensions that are needed to
preserve, in a suitable number of projections, total, or at
least su�ciently complete, knowledge about the original
object.

In Reconstruction Analysis (RA), as implemented in
SAPS{II, a special case of the above general problem is
discussed. Given a set of observations of variables pertain-
ing to a system, is it possible to decompose this set of n ob-
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servations (variables) into smaller subsets, such that the
accumulated knowledge that can be obtained about the
system from analyzing these subsets separately is equal to
the knowledge that can be obtained from analyzing the
single set of all observations together?

Why is this question relevant? If n observations are
available, why would anybody want to analyze subsets
of observations separately? The answer to this question
is related to the problem of e�ciency in analyzing data.
Analysis of data for the purpose of knowledge generaliza-
tion is always equivalent to solving an optimization prob-
lem. It is usually much cheaper to solve k optimization
problems in n�r variables, than to solve one optimization
problem in n variables.

One of these optimization problems is presented in [de
Albornoz, 1996]. It is well known that human operators of
industrial plants start making mistakes if they are asked
to monitor too many variables at a time. This is referred
to as the human overload problem. However, the same
problem also applies to automated monitoring systems, if
these systems have to reach decisions within limited time.
In [de Albornoz, 1996], Reconstruction Analysis has been
used to determine, in a large{scale system environment,
what is the smallest number of variables that an auto-
mated fault monitoring system has to take into consider-
ation at any point in time, in order to reach reasonable
decisions about faults and their causes. In this Ph.D. dis-
sertation, the RA methodology has been applied, in com-
bination with the FIR methodology, to the problem of
fault monitoring the behavior of a Boiling Water Nuclear
Reactor (BWR).

2 Projections and Recombina-

tions in CRA

Given a set of observations of �ve variables of a system.
Let us assume that each individual observation is in either
of the categories `high' or `low,' which, for simplicity, shall
be denoted as `1' and `0,' respectively.

Since the system has �ve binary variables, it can be in
any one of 32 legal states. Let us assume that only eight
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of these legal states were ever observed. The basic behav-
ior of the system refers to an alphanumeric enumeration
of all observed states together with their observation fre-
quencies:

b = [ 0 0 0 0 1 p = [ 0:10
0 0 0 1 1 0:20
0 0 1 0 1 0:15
0 1 0 0 0 0:10
0 1 1 0 1 0:22
1 0 0 0 0 0:03
1 0 1 0 1 0:05
1 1 0 0 0 ] 0:15 ]

where b is the behavior matrix, and p is the vector of
relative observation frequencies. Each row denotes one
observed state. The pi value of the ith state can be inter-
preted as the probability of its occurrence. Each column
of the b matrix denotes one observed variable.

Figure 1 shows a hypothesized decomposition of this 5{
variable system, M , into two 4{variable systems, M1 and
M2. The model contains �ve variables, the input vari-
able v1, the output variable v5, and the internal variables
v2, v3, and v4. v1 is also an input variable of submodel
M1, whereas v2, v3, and v4 are output variables of M1.
It is possible that each of the submodels is decomposed
further, but their internal structure is not shown.

Subsystem
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Subsystem
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V VV

V
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Figure 1: System M with subsystems M1 and M2.

In RA, composite structures are denoted by row vectors.
The variables are simply enumerated. Substructures are
separated by zero elements in the vector. Thus, the com-
posite structure of model M would be encoded as:

cs1 = [ 1 2 3 4 0 2 3 4 5 ]

denoting that the model M contains two submodels, the
�rst of which relates the variables v1, v2, v3, and v4 to each
other, whereas the second describes relationships between
the variables v2, v3, v4, and v5. At the chosen abstraction
level, there is no distinction made between inputs and
outputs, i.e., the model structures are temporally acausal.

This may be just as well, since \causality" in physical
system modeling is a dubious concept anyway [Cellier and
L�opez, 1995].

Let us assume that the basic behavior presented ear-
lier represents the behavior of system M . It is possible
to extract the behavior of the submodels M1 and M2 by
projecting the �ve{dimensional behavior space of the vari-
ables v1, v2, v3, v4, and v5 (model M) onto the four{
dimensional behavior spaces of the variables v1, v2, v3,
and v4 (submodel M1), and v2, v3, v4, and v5 (submodel
M2). The composite structure of model M has been de-
�ned as cs1. The composite structure of submodel M1 is
cs2:

cs2 = [ 1 2 3 4 ]

The projection to extract the submodel M1 behavior is
accomplished using the SAPS{II function:

[b2; p2] = extract (b; p; cs2)

The result of this operation will be the four{variable be-
havior matrix b2, and its corresponding probability vector
p2:

b2 = [ 0 0 0 0 p2 = [ 0:10
0 0 0 1 0:20
0 0 1 0 0:15
0 1 0 0 0:10
0 1 1 0 0:22
1 0 0 0 0:03
1 0 1 0 0:05
1 1 0 0 ] 0:15 ]

The projection onto the subspace of submodelM2 is made
similarly by de�ning �rst its composite structure as:

cs3 = [ 2 3 4 5 ]

and then by extracting the behavior of submodel M2:

[b3; p3] = extract (b; p; cs3)

The result of this operation is the four{variable behavior
matrix b3 and its corresponding probability vector p3:

b3 = [ 0 0 0 0 p3 = [ 0:03
0 0 0 1 0:10
0 0 1 1 0:20
0 1 0 1 0:20
1 0 0 0 0:25
1 1 0 1 ] 0:22 ]

This result is more interesting since the number of states
and the probability values are di�erent from those of the
original behavior [b; p] and the previously extracted be-
havior [b2; p2] that correspond to modelM and submodel
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M1, respectively. The behavioral states of submodel M2

were extracted from the set of overall states, they were
then rearranged in numerical order, and because of mul-
tiple occurrences of the same state, their observation fre-
quencies (probabilities) were added.

The two projections can now be recombined, by recon-
structing a model Mr from the two submodels M1 and
M2. Mr , just like M , is an object in the �ve{dimensional
space spanned by the �ve variables v1, v2, v3, v4, and v5.

In SAPS{II, the reconstruction is accomplished using
the function:

[br; pr] = combine (b2; p2; b3; p3; cs1)

The result of this operation will be:

br = [ 0 0 0 0 0 pr = [ 0:0231
0 0 0 0 1 0:0769
0 0 0 1 1 0:2000
0 0 1 0 1 0:1500
0 1 0 0 0 0:1000
0 1 1 0 1 0:2200
1 0 0 0 0 0:0069
1 0 0 0 1 0:0231
1 0 1 0 1 0:0500
1 1 0 0 0 ] 0:1500 ]

The probability of a reconstructed state x consisting of
the substates x1 and x2 is computed as the conditional
probability of x2 given x1 multiplied by the probability of
x1:

p(x) = p(x1; x2) = p(x2jx1) � p(x1)

For example, the state x =< 0; 0; 0; 0; 0 > consists of the
substates x1 =< 0; 0; 0; 0 > of submodel M1, and the
substate x2 =< 0; 0; 0; 0 > of submodelM2. The �rst two
states of M2 are compatible with the �rst state of M1.
Their probabilities were 0.03 and 0.1. Thus:

p(x1) = 0:1

is the probability of the �rst state of M1, and:

p(x2jx1) =
0:03

0:03 + 0:1
= 0:23077

is the conditional probability of state x2 given state x1,
and therefore:

p(x) = 0:023077

is the value of the �rst element of vector pr. The prob-
abilities of the reconstructed model Mr add up to 1.0 as
they should.

The reconstruction is distortion{free, because its pro-
jection onto the same four{dimensional subspaces:

[br2; pr2] = extract (br; pr; cs2)

[br3; pr3] = extract (br; pr; cs3)

are identical to the projections of the original model M :

br2 = b2

pr2 = p2

br3 = b3

pr3 = p3

Unfortunately, this result does not extend to general re-
constructions. If more than two submodels are present
in the model structure, the reconstruction will have to be
done sequentially. This process is illustrated in Figure 2.

Original
Behavior

[b,p]

Subsystem n
[bn,pn]

Subsystem 1
[b1,p1]

Subsystem 2
[b2,p2]

Combined
subsystem 1,2

Reconstructed
Behavior

[br,pr]

. . .

Comparison
[b,p] ; [br,pr]

Information
Distance

(structure)

Reconstruction  Hypothesis

Behavior projections
(extract)

Behavior recombinations
(combine)

Figure 2: The Reconstruction Process.

For example, let us apply the structure cs4:

cs4 = [ 2 4 0 3 5 0 4 5 0 1 2 3 ]

to the same basic behavior [b; p] previously used in this
paper. The projections for the substructures in cs4, called
cs4a, cs4b, cs4c, and cs4d can be obtained by specifying:

cs4a = [ 2 4 ]

[b4a; p4a] = extract (b; p; cs4a)

cs4b = [ 3 5 ]

[b4b; p5b] = extract (b; p; cs4b)

cs4c = [ 4 5 ]

[b4c; p4c] = extract (b; p; cs4c)

cs4d = [ 1 2 3 ]

[b4d; p4d] = extract (b; p; cs4d)
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The behavior recombinations must be done in pairs of
two, i.e., combining behavior [b4a; p4a] with [b4b; p4b] in a
subreconstruction called cs4e:

cs4e = [ 3 5 0 2 4 ]

[b4e; p4e] = combine (b4b; p4b; b4a; p4a; cs4e)

then behavior [b4c; p4c] with [b4e; p4e] in a subreconstruc-
tion called cs4f :

cs4f = [ 4 5 0 2 3 4 5 ]

[b4f; p4f ] = combine (b4c; p4c; b4e; p4e; cs4f)

and �nally, behavior [b4d; p4d] with [b4f ; p4f ] in the recon-
struction called cs4g:

cs4g = [ 1 2 3 0 2 3 4 5 ]

[b4r; p4r] = combine (b4d; p4d; b4f; p4f; cs4g)

The result of the overall reconstruction, i.e., the recon-
structed system, is:

b4r = [ 0 0 0 0 0 p4r = [ 0:1202
0 0 0 0 1 0:0930
0 0 0 1 1 0:0867
0 0 1 0 1 0:0776
0 0 1 1 1 0:0724
0 1 0 0 0 0:0564
0 1 0 0 1 0:0436
0 1 1 0 1 0:2200
1 0 0 0 0 0:0120
1 0 0 0 1 0:0093
1 0 0 1 1 0:0087
1 0 1 0 1 0:0259
1 0 1 1 1 0:0241
1 1 0 0 0 0:0846
1 1 0 0 1 ] 0:0654 ]

Unfortunately, although projections across one level are
always distortion{free, this property is not preserved
across several layers of reconstructions. For example,
comparing the projection [b4a; p4a] of the original model
with the corresponding projection of the reconstructed
model:

[b4ra; p4ra] = extract (b4r; p4r; cs4a)

the following results are obtained:

b4a = b4ra = [ 0 0 p4a = [ 0:33 p4ra = [ 0:338
0 1 0:20 0:192
1 0 ] 0:47 ] 0:470 ]

i.e., although the behavior matrices are the same, the
probability vectors are di�erent.

A reconstruction that is not indistinguishable from the
original when looking at its projections is said to be dis-
torted.

3 The Information Distance

A distance function can be de�ned between the original
and the reconstructed behavior, which is called the In-
formation Distance. If that distance function assumes a
su�ciently small value, then the proposed structure rep-
resents a decent hypothesis for what the true structure of
the physical system might look like. Thus, the informa-
tion distance can be interpreted as a loss of information
measure.

This distance function is computed in the following
way. First, the original behavior is augmented by the
additional reconstructed states. A probability value of
0:0 is assigned to these states in the original probability
vector, since they have never been observed. Then, the
distance function is computed as the L2{norm of the dif-
ference between the original and the reconstructed prob-
ability vectors.

In SAPS{II, the structure function:

err = structure (b; p; cs)

performs all the necessary projections and recombinations
for a proposed composite structure, cs, and then computes
the information distance function, err. Since reconstruc-
tions are not normally distortion{free, the distance will
depend on the sequence of the reconstructions, i.e., the
same behavior applied to the same composite structure,
where the substructures are speci�ed in a di�erent se-
quence, may lead to di�erent values of the distance func-
tion.

For example, the structure function applied to the basic
behavior [b; p] presented earlier in this paper together with
the structure cs4:

err4 = structure (b; p; cs4)

leads to a distance value of err4 = 0:3438. However, if
the substructures are rearranged as shown in cs5:

cs5 = [1 2 3 0 3 5 0 2 4 0 4 5 ]

and the structure function is applied to the same behavior
[b; p] and to the composite structure cs5:

err5 = structure (b; p; cs5)

a distance value of err5 = 0:3557 is obtained. We had
to search for quite some time to �nd an example with
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a di�erence in distance as large as in this example, due
just to the sequence in which the di�erent substructures
are speci�ed. Usually, the distortions obtained are fairly
small.

4 Correction of Distortions

Let us obtain the reconstructed behavior of the previous
two examples cs4 and cs5 supposing that both structures
are applied to the same basic behavior [b; p] that had been
used throughout this article. The results are [b4r ; p4r ] and
[b5r; p5r ]. Since b4r = b5r , they can be expressed by a
single matrix:

b4r = b5r = [ 0 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1 ]

p4r = [ 0:1202 p5r = [ 0:1148
0:0930 0:0866
0:0867 0:0837
0:0776 0:0837
0:0724 0:0809
0:0564 0:0615
0:0436 0:0464
0:2200 0:1972
0:0120 0:0115
0:0093 0:0087
0:0087 0:0084
0:0259 0:0279
0:0241 0:0270
0:0846 0:0922
0:0654 ] 0:0695 ]

Seven additional states have been added in comparison
with the original behavior [b; p]. The reconstructed states
do not depend on the sequence of the reconstruction, only
on the structure itself. However, the probability vectors
depend slightly on the sequence in which the substruc-
tures were speci�ed in the composite structure.

It may be useful to be able to guarantee a distortion{
free reconstruction. Neither of the above reconstruc-
tions is distortion{free. In the above example, the re-
constructed states are known. What is unknown are the
correct values of the 15 probabilities associated with the
reconstructed states. Let these probabilities be called q1

to q15.

What is known in addition is that, for a distortion{
free reconstruction, the projections of the reconstructed

states are supposed to have the same probabilities as the
projections of the original states. For example, the �rst
substructure in cs4, namely < v2; v4 > is equal to the
state < 0; 0 > (< v2; v4 >=< 0; 0 >) in the �rst, second,
fourth, ninth, tenth, and twelfth reconstructed states of
b4r . It is also known that, in the original behavior [b; p],
this is true for the �rst, third, sixth, and seventh states.
Adding up the corresponding probabilities from the origi-
nal behavior, a value of 0:33 is obtained. Thus, it is known
that the sum should be:

q1 + q2 + q4 + q9 + q10 + q12 = 0:33

One can proceed similarly for all the other states of the
same substructure, and for all the other substructures. In
this way, 16 equations in 15 unknowns are obtained that
can be written in a matrix form as:

M � q = y

where M and y are known, and q is unknown:

M = [ 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 1 1 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ]

y = [ 0:33
0:20
0:47
0:28
0:30
0:42
0:28
0:52
0:20
0:30
0:15
0:10
0:22
0:03
0:05
0:15 ]

Since the rank of M is nine, there are six degrees of
freedom. Consequently, there are many ways for getting
distortion{free reconstructions. What can be done is to
�nd a distortion{free reconstruction, the probabilities of
which are as close as possible to the ones found by the
recombination algorithm. In Matlab, this is done by aug-
menting the set of equations in the following way:
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MM = [ M ; eye(15) ]

yy = [ y ; p4r ]

where eye is the Matlab function used to obtain the iden-
tity matrix, and p4r is the vector of probabilities found
using the recombination algorithm, and solve the overde-
termined set of 31 equations in a least square sense:

q = MMnyy

The remaining distortion can now be computed as:

err = MM � q � yy

err = norm(err(1 : 16); 0inf 0)

Clearly, the error is still not zero, i.e., the reconstruction
is still not distortion{free. However, the so obtained q

vector can be used as the new improved p4r vector, and
the same algorithm can be repeated iteratively:

while err > 1:0e-6;
p4r = q;
yy = [ y ; p4r ];
q =MMnyy;
err =MM � q � yy;
err = norm(err(1 : 16); 0inf 0);

end

until the error has decreased below the desired thresh-
old. In the above example, nine iterations are required
for convergence. The same procedure was repeated with
p5r instead of p4r . The resulting probability vectors were:

p4rcorr = [ 0:1215 p5rcorr = [ 0:1206
0:0901 0:0898
0:0884 0:0895
0:0753 0:0751
0:0747 0:0749
0:0585 0:0589
0:0415 0:0411
0:2200 0:2200
0:0133 0:0128
0:0063 0:0074
0:0104 0:0097
0:0236 0:0242
0:0264 0:0258
0:0867 0:0877
0:0633 ] 0:0623 ]

The two reconstructions are still not identical. However,
they are now both distortion{free.

A reconstruction of any composite structure cs, with
correction for the distortion can be obtained using the
reconstruct function of SAPS{II in the following way:

[brec; prec] = reconstruct (b; p; cs)

where brec is the behavior of the reconstructed system
and prec its probability vector. However, since the cor-
rection is not always needed, and since it reduces the over-
all e�ciency of the algorithm, the previously introduced
structure command does not correct for distortions.

5 Fuzzy Reconstruction

Rather than interpreting the frequency vector p as a prob-
ability vector in the classical probabilistic sense, it can
also be interpreted as a con�dence vector in a possibilistic
sense. The total con�dences don't have to add up to 1.0,
but it is acceptable if they do, i.e., con�dence vectors can-
not usually be interpreted as probability vectors without
prior normalization, but probability values can always be
re{interpreted as con�dence values.

Let us make use of the same example, Model M with
behavior [b; p], as before, now interpreting the frequency
vector p as the vector of con�dences c:

b = [ 0 0 0 0 1 c = [ 0:10
0 0 0 1 1 0:20
0 0 1 0 1 0:15
0 1 0 0 0 0:10
0 1 1 0 1 0:22
1 0 0 0 0 0:03
1 0 1 0 1 0:05
1 1 0 0 0 ] 0:15 ]

The functions fextract, fcombine, and fstructure are the
SAPS{II fuzzy functions that correspond to the previ-
ously introduced crisp functions extract, combine, and
structure. Hence projecting model M onto the four{
dimensional space spanned by the variables v1, v2, v3,
and v4, i.e., extracting the behavior of submodel M1:

[b2; c2] = fextract (b; c; cs2)

the following submodel is obtained:

b2 = [ 0 0 0 0 c2 = [ 0:10
0 0 0 1 0:20
0 0 1 0 0:15
0 1 0 0 0:10
0 1 1 0 0:22
1 0 0 0 0:03
1 0 1 0 0:05
1 1 0 0 ] 0:15 ]

Similarly, a projection of model M onto the subspace
spanned by the variables v2, v3, v4, and v5, i.e., extracting
the behavior of submodel M2:

[b3; c3] = fextract (b; c; cs3)
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results in the following submodel:

b3 = [ 0 0 0 0 c3 = [ 0:03
0 0 0 1 0:10
0 0 1 1 0:20
0 1 0 1 0:15
1 0 0 0 0:15
1 1 0 1 ] 0:22 ]

The behavior matrices are exactly the same as in the crisp
case, but the con�dence vectors are computed di�erently.
In accordance with [Cavallo and Klir, 1982], the accu-
mulated con�dence value of a projected state is de�ned
as the largest among all the con�dence values associated
with previous observations of that state. Contrary to the
probabilistic case, the sum of con�dence values of all pro-
jected states no longer necessarily adds up to 1.0.

A recombination (or \join") of two projections is ac-
complished by combining the states in the same manner
as was done in the crisp case. However, the con�dence in
the join is computed as the smallest among the individ-
ual con�dence values. Recombining the projections of the
fuzzy models M1 and M2:

[b4; c4] = fcombine (b2; c2; b3; c3; cs4)

the following result is obtained:

b4 = [ 0 0 0 0 0 c4 = [ 0:03
0 0 0 0 1 0:10
0 0 0 1 1 0:20
0 0 1 0 1 0:15
0 1 0 0 0 0:10
0 1 1 0 1 0:22
1 0 0 0 0 0:03
1 0 0 0 1 0:03
1 0 1 0 1 0:05
1 1 0 0 0 ] 0:15 ]

However, and contrary to the crisp reconstructions, fuzzy
reconstructions are always distortion{free even across
multiple sequential reconstructions. Thus, no distortion
correction algorithm is needed as was true for the crisp
case.

In accordance with the suggestions of [Cavallo and Klir,
1982], a di�erent distance measure was used to deter-
mine the fuzzy reconstruction error, namely the Ambi-
guity Measure.

The ambiguity of the basic behavior [b; c] is computed
as:

a = 1:0�

�
0:03

8
+

0:02

7
+

0:05

6
+

0:05

4
+

0:05

2
+

0:02

1

�

= 0:9276

0:03 is the smallest con�dence value found in the con�-
dence vector. All eight observed states have a con�dence

larger or equal than 0:03. This is how the �rst term be-
tween the parentheses is computed. The next higher con-
�dence is 0:05. The di�erence to the previous one is 0:02.
There are seven con�dence values in the vector that are
larger or equal to 0:05. This determines the next term,
etc. It is easier to explain how the ambiguity is computed
by means of an example than through a general formula.
So, this way was chosen here. The ambiguity of the re-
constructed behavior is computed as:

a4 = 1:0�

�
0:03

10
+

0:02

7
+

0:05

6
+

0:05

4
+

0:05

2
+

0:02

1

�

= 0:9283

The distance function then is the di�erence between the
ambiguities of the reconstructed and original behaviors:

err4 = a4� a = 0:00075

This same error can be obtained directly using the SAPS{
II function fstructure that performs all the necessary pro-
jections and recombinations for the composite structure
cs4, and then computes the distance function error err4:

err4 = fstructure (b; c; cs4)

In general, crisp and fuzzy reconstructions generate quite
similar recommendations, i.e., structures that lead to a
small reconstruction error with crisp reconstruction, usu-
ally also exhibit a small reconstruction error when the
fuzzy reconstruction algorithms are applied, and vice{
versa. However, fuzzy reconstruction is cheaper in its
computation, and also, it o�ers always distortion{free re-
constructions, which makes this approach more attractive
than its crisp counterpart.

6 Conclusions

In this article, a new implementation of a subset of Klir's
Reconstructability Analysis [Klir, 1985a] in the form of a
Matlab toolbox called SAPS{II [Cellier and Yandell, 1987;
Cellier, 1991] has been presented. Two di�erent classes of
reconstruction algorithms are implemented in SAPS{II,
the original (crisp) algorithms proposed in [Klir, 1985a;
1985b; Cavallo and Klir, 1981], and the modi�ed (fuzzy)
algorithms proposed in [Cavallo and Klir, 1982]. It was
demonstrated that crisp reconstruction is not distortion{
free across several layers of extractions and recombina-
tions, whereas the fuzzy reconstruction algorithms remain
always distortion{free. A new algorithm for removing the
distortion inherent in a crisp reconstruction was also pre-
sented.
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