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Abstract Inductive reasoning attempts to induce future
behavioral patterns of a system or time series from observa-
tion of the behavioral patterns of their past. No assumption
is made about the underlying model structure. Inductive
reasoning represents a paradigm of pure behavioral model-
ing and simulation of systems. Like all other qualitative ap-
proaches to reasoning, inductive reasoning �ghts a constant
battle of generality versus speci�city, a battle against am-
biguity stemming from uncertainty. Causal inductive rea-
soning tries to win this battle by introducing redundancy
into the reasoning process. Causal inductive reasoning can
be compared to the president of a company who works with
multiple independently operating marketing analysts. All
of his or her analysts have to make predictions under un-
certainty. If more than one of them comes to the same
conclusion, the president will be more likely to heed their
advice.
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INTRODUCTION

Research in qualitative reasoning has attracted much interest in the ar-
ti�cial intelligence community. This interest was spurred by the obser-
vation that humans are much more capable of operating appropriately
in an environment of incomplete knowledge than any of the currently
available automatic devices. It was perceived that this capability is
somehow related to our ability to dealing with knowledge in qualitative
terms.

Various qualitative reasoning paradigms have been developed over
the past two decades, including expert systems, inductive reasoning,
neural networks, qualitative physics, discrete{event systems, and fuzzy
systems. Some are purely knowledge{based, others are strictly pattern{
based. Yet others represent a merger between these two philosophies.

What they all have in common is that each one of them tries to
deal with uncertainty in one way or another, that they all try to reach
decisions without being provided with complete information. Qualita-
tive reasoning is thus closely related to the problem of decision making
under uncertainty. If everything is known, then qualitative reasoning
does not o�er any advantage at all over quantitative reasoning. In
fact, if everything is known, then a good qualitative reasoning scheme
should become quantitative. In other words, a good qualitative reason-
ing scheme should adapt itself to the amount of knowledge available to
it.

The less is known about a situation, the more it is open to inter-
pretation. If everything is known, then there is no margin for inter-
pretation. With perfect knowledge, two experts must reach the same
conclusion. However, this is not so in an environment with little knowl-
edge available. Di�erent experts may express di�erent opinions, and
there is a wide margin for interpretation of the few facts available, for
guesswork, and for making mistakes. The signs are ambiguous, and so
will be the conclusions.

If no errors are possible, if the one and only right answer is distinct,
it may su�ce to provide that answer to the one who asks. Yet, if there is
margin for errors, then a decent reasoner should not content itself with
providing an answer to a question. It should attempt at providing a
measure of uncertainty of that answer as well. This is again a modeling



task. This time, the output of the model is not the answer to a question
asked, but the margin of error associated with that answer.

It turns out that this modeling task is the more di�cult among
the two. The reason is that, if the original question was plagued by a
certain amount of uncertainty, then the uncertainty associated with the
new problem is even larger. Since we are interested not in the answer,
but in the error of that answer, the new output is of second order small.
Yet, the uncertainty associated with this new output is the same as that
associated with the original one. Thus, the relative uncertainty of the
new output has grown by an order of magnitude. If a signal is subject
to noise, then its derivative signal is subject to even more noise. If the
original signal was barely discernible in the noise, than the derivative
signal may be lost without a trace.

This is thence our curse: the more ignorant we are, the less likely it
is that we shall be able to assess the magnitude of our own ignorance.

QUALITATIVE REASONING

Any form of reasoning requires the application of knowledge. Without
any knowledge, we cannot reason. If the knowledge is complex, it needs
to be organized in order to be usable. Organization of knowledge is
just another name for modeling.1 The use of such organized knowledge
is another name for simulation.

Qualitative reasoning can thus be viewed as almost synonymous
with a step of qualitative modeling, followed by one of qualitative sim-
ulation. In our everyday reasoning processes, this is how we humans
reach decisions. We organize the facts available about the problem in
question, i.e., we make a mental model of the situation at hand. Then,
we design several scenarios that we play through in our minds, i.e., we
perform several mental experiments on the available facts, or, in other
words, we perform a set of mental simulation runs. We �nally choose
and implement in real life the one mental experiment that produced
the most desirable results in our mental simulations.

Hence, if we wish to gain a deeper understanding of the human
reasoning processes, we must learn how mental models are made and



how these models are being used in mental simulations.

INDUCTIVE REASONING

The inductive reasoning methodology had originally been developed
by Klir2 as a tool for general system analysis, to study the conceptual
modes of behavior of systems. One implementation of this methodology
is SAPS{II.3

Inductive reasoning models the behavior of time{dependent phe-
nomena by a pure pattern{matching approach. In order to limit the
complexity of available patterns, inductive reasoning simpli�es the ob-
served patterns in a process of discretization, called recoding in the
inductive reasoning methodology. Real{valued signals are recoded into
a {usually rather small{ set of discrete classes. For example, instead of
measuring temperature in degrees centigrade, we classify temperature
as being either `cold,' `fresh,' `moderate,' `warm,' or `hot.'

Evidently, some knowledge is lost in the process of recoding. The
sentence: \Today, it was fairly hot." contains less information than
\Today, the temperature peaked out at 27.9 degrees centigrade, the av-
erage afternoon temperature was 25.5 degrees, and now, at 8:15 p.m.,
the temperature is still at 21.3 degrees." The recoded model only con-
tains the information that the afternoon had been `hot,' and that, some-
where around 6:30 p.m., the temperature switched from `hot' to `warm.'

Evidently, any qualitative predictions made on the basis of such a
qualitative model will be limited to the same �ve classes, i.e., we cannot
hope to make predictions that are more precise than the qualitative
model we are working with.

Selecting the number of discrete classes for representing each of the
variables in the system relates to the struggle between generality and
speci�city. The more levels are chosen, the larger will be the expres-
siveness (speci�city) of the qualitative model. However, this goes hand
in hand with an increased di�culty of making predictions, with the
need for more and more data. The smaller the number of levels cho-
sen, the better will be the predictiveness (generality) of the model, but
the less useful will these predictions be. If every variable is recoded



into exactly one level, then the model will be in�nitely predictive, yet
in�nitely useless.4

Inductive reasoning consists of a step of inductive modeling fol-
lowed by a step of deductive simulation.5 In the inductive modeling
step, a qualitative model6 is induced in the form of a �nite state ma-
chine relating qualitative inputs to qualitative outputs. An abstraction
mechanism5 is employed that determines which input variables to look
at when we wish to conclude something about a particular output vari-
able.

A possible relation among the qualitative variables of a �ve{variable
system could be of the form:

y1(t) = ~f(y3(t� 2�t); u2(t� �t); y1(t� �t); u1(t)) (1)

where ~f denotes a qualitative relationship. Notice that ~f does not stand
for any (known or unknown) explicit formula relating the input argu-
ments to the output argument, but only represents a generic causality
relationship that, in the case of the inductive reasoning methodology,
will be encoded in the form of a tabulation of likely input/output pat-
terns, i.e., a state transition table. In SAPS{II (our implementation of
the methodology), Eq.(1) is represented by the following matrix:

0
B@

tnx u1 u2 y1 y2 y3

t� 2�t 0 0 0 0 �1
t� �t 0 �2 �3 0 0
t �4 0 +1 0 0

1
CA (2)

The negative elements in this matrix are referred to as m{inputs. m{
inputs denote input arguments of the qualitative functional relation-
ship. They can be either inputs or outputs of the subsystem to be
modeled, and they can have di�erent time stamps. The above example
contains four m{inputs. The sequence in which they are enumerated is
immaterial. They are usually enumerated from left to right and top to
bottom. The single positive value denotes the m{output. The terms
m{input and m{output are used in order to avoid a potential confu-
sion with the inputs and outputs of the plant. In the above example,
the �rst m{input corresponds to the output variable y3 two sampling



intervals back, y3(t � 2�t), whereas the second m{input refers to the
input variable u2 one sampling interval into the past, u2(t� �t), etc.

In inductive reasoning, such a representation is called a mask. A
mask denotes a dynamic relationship among qualitative variables. A
mask has the same number of columns as the episodical (i.e., recoded)
behavior to which it should be applied, and it has a certain number of
rows, the depth of the mask.

The optimal mask is the one abstraction that leads to the most de-
terministic input/output behavior. The problem of �nding the optimal
mask relates also to the struggle between generality and speci�city. If
more m{inputs are added to the mask, the observed patterns become
more and more speci�c. Yet, chances are that a newly observed input
pattern has never been seen before, making a prediction impossible. Re-
moving m{inputs from the mask leads to bolder, less speci�c, patterns
that are likely to be ambiguous. The so obtained model no longer rep-
resents the true dynamics of the system, leading to non{deterministic
input/output behavior, i.e., to ambiguities in the predictions made.

Once the optimal mask has been found and the corresponding Finite
State Machine (FSM) generated, forecasting future system behavior is
almost trivial. All that needs to be done is compare newly observed
input patterns with those stored in the FSM, and read out the corre-
sponding output patterns. If the FSM is not totally deterministic, i.e.,
if for the same input pattern several di�erent output patterns have been
observed in the past, then we have several choices: (i) we can report
all possible outcomes together with their previous relative observation
frequencies, (ii) we can limit the reporting to the most likely outcome,
or (iii) we can draw a random number and predict any one of the previ-
ous observations with the correct probability of occurrence. The term
\probability" is to be understood in this context in a statistical rather
than theoretical probabilistic sense.

We can use the relative frequency of occurrence of an output pattern
for any given input pattern as a measure of correctness of the prediction
made. Of course, it is not only the prediction that contains an error, but
the quantity that measures the correctness of that prediction contains
itself an error, and as we meanwhile know, the trustworthiness of this
measure is even lower than that of the original prediction. Yet, it is
the best we can do under the given circumstances, and it is certainly



better to provide this measure of correctness than none at all.

In truth, the inductive reasoning methodology works amazingly
well. Two accounts of successful applications of this methodology to
a linear system and a Boeing 747 airplane in high altitude horizontal
cruise ight were reported.7�8

FUZZY INDUCTIVE REASONING

As was mentioned earlier, the problem of the ambiguity of predictions is
intimately linked to the problem of incomplete knowledge. Since we are
living in an imperfect world, we may not be able to avoid the problem
of incomplete knowledge, and hence we must live with the realities
of ambiguous signs and predictions. However, we can minimize the
problem by at least exploiting all the information given to us.

It was mentioned before that, in the process of recoding, a lot of
precious information about the system under study is thrown away.
This is a pity, and means should be sought that would avoid throwing
away this information. One such means is the introduction of fuzzy
measures into the methodology.9�12

In our own dialect of Fuzzy Inductive Reasoning (FIR), real{valued
variables are recoded into qualitative triples, consisting of the previ-
ously introduced class value augmented by a fuzzy membership function
value and a side value. As before, the class value represents a coarse dis-
cretization of the original real{valued variable. The fuzzy membership
value denotes the level of con�dence expressed in the class value chosen
to represent a particular quantitative value. Finally, the side value tells
us whether the quantitative value is to the left or to the right of the peak
value of the associated membership function. The side value, which is
a specialty of our methodology since it is not commonly introduced in
fuzzy logic, is responsible for preserving the complete knowledge in the
qualitative triple that had been contained in the original quantitative
value. Fig. 1 shows the fuzzy recoding of a quantitative variable (the
temperature) into the �ve classes `cold,' `fresh,' `moderate,' `warm,' and
`hot,' using, in the shown example, popular knowledge to determine the
so{called landmarks, i.e., the borders between neighboring classes. A
quantitative value of temperature = 18:0 would in this case be recoded



into a class value of `moderate,' a membership value of 0.938, and a
side value of `left.' Evidently, the qualitative triple contains exactly
the same information as the original quantitative value.
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Figure 1: Fuzzy Recoding of Outside Temperature

In the fuzzy systems literature, the process of converting a quanti-
tative (real{valued) variable into a qualitative (fuzzy) variable is called
fuzzi�cation. Clearly, fuzzy recoding quali�es as a fuzzi�cation method.

The determination of the optimal mask and the process of fore-
casting future behavior remain basically the same as in the original
inductive reasoning methodology. However, instead of measuring the
likelihood of a certain outcome through the frequency of its occurrence,
the fuzzy membership function values are now used to compute a mea-
sure of con�dence in that outcome. Rather than �rst throwing valuable
information away in the process of recoding, information that we shall
have di�culties later on estimating again, the con�dence information
is kept throughout the qualitative analysis. This sharpens the discrimi-
nation power of the methodology, and thereby signi�cantly reduces the
ambiguity of predictions made by it.13

Although it is correct that fuzzy inductive reasoning sometimes
leads to the selection of a di�erent optimal mask than the original
inductive reasoning technique, this fact is not important. What is
however important is that the additional information contained in the
fuzzy membership function values of the past history recordings that
are stored in the FSM leads to a much improved selection of relevant
past observations in determining a new prediction. The �ve{nearest{
neighbors (5NN) method14 is used to select the most relevant similar
patterns as they had been observed in the past.



Equally if not more important is the fact that the enhanced method-
ology enables us to make predictions not only of the class values of an
output variable, but also of its associated membership function and side
values. This in turn makes it possible to make quantitative predictions
of output variables by means of inverting the process of fuzzy recoding.
In the fuzzy systems literature, this process is called defuzzi�cation. It
has been demonstrated that the predictions obtained in this fashion are
good enough for mixed quantitative and qualitative simulations,15�17

as well as for the systematic design of fuzzy controllers.18�19

It should also be mentioned that the additional information avail-
able to the inductive reasoner reduces the uncertainty of the estimation
of the prediction error. If it is decided to pursue only the most likely
estimation, this will increase the con�dence in the correctness of the
prediction made. If it is decided to pursue the envelope of all feasible
predictions, it will reduce the angle of the prediction cone, thereby al-
lowing us to predict over a longer time span into the future before the
prediction becomes pure speculation.

CAUSAL INDUCTIVE REASONING

Although Fuzzy Inductive Reasoning (FIR) makes use of all the infor-
mation available, this does not mean that there is no longer any margin
of uncertainty or risk of making mistakes. There are two causes for this:

1. Although all the information originally available has been pre-
served for use by the inductive reasoner, this does not mean that
complete information had originally been available. One would
need in�nitely long data �les to capture every possible comport-
ment of a system through a collection of behavioral input/output
data alone.

2. Although the inductive reasoner has all originally available in-
formation at its disposal, this does not necessarily mean that it
will make use of the available information in an optimal fashion,
i.e., information can get lost in the process of reasoning. For ex-
ample, why do we propose to use exactly �ve neighbors in the
process of prediction? Why not four or six? Should we not use
all training data points for the prediction? Don't we again throw



potentially valuable information away by restricting ourselves to
precisely �ve neighbors?

There is little than can be done about the former of the two problems.
We must strive to compute an informed estimate of the percentage of
information missing, since this knowledge will certainly inuence the
quality of our estimation of the prediction error. This can be done in
various ways, but we don't have the space here to go into any details.
We shall only mention that the argument can also be turned around.
Our estimation of the prediction error tells us something about the
degree of completeness of the available information. If the estimate of
the prediction error is very large, the software may alert the user to
this fact and suggest to collect more data before proceeding with the
qualitative analysis.

The latter problem is the focus of our concern in this paper. There
is some good reason for not including all the available data points in
the formula for predicting the membership function value of an output
variable. The larger the distance of a previously observed (training)
input pattern is from the current (testing) input pattern for which we
wish to predict an output value, the less relevant will that information
be for the case at hand. We can also say, that the correlation between
past and current patterns decreases with distance (not in time, but in
similarity of input patterns).

The term \correlation" carries the association of statistics. Isn't
what we are doing in inductive reasoning just a very strange way of
performing nonlinear statistics on the available data? The answer to
this question must be an enthusiastic yes. \Performing statistics on
measurement data" is just another expression for \inducing knowledge
from data." The classical (linear) statistical methods are simply the
oldest and best established routes to doing so; thus, if we propose
alternate routes to reaching the same goal, then we should not ignore
previous knowledge, but study it and exploit what is salvageable from
it. Indeed, the inductive reasoning methodology carries many common
threads with nonlinear statistics.

In principle, everything that can be accomplished by a neural net-
work or an inductive reasoner, can also be accomplished by nonlinear
statistics, and vice versa. The question is not, which of the di�erent ap-



proaches can accomplish something, but which of them can accomplish
it most easily. In this respect, inductive reasoning fares quite well in
comparison with the other two approaches in the context of predicting
future behavior of dynamic systems, as our previous publications have
shown.

Yet, the problem of making uncertain predictions remains, and we
must ask ourselves, what can be done to reduce it. Since we already
have preserved all the information originally available, evidently, there
is nothing we can do to gain more information except ask the user to
collect more data. Thus, we must make use of the available knowledge
in optimal ways. The new idea here is to introduce redundancy into
the reasoning process. This is exactly what a human decision maker
would do under the same circumstances: employ the services of several
independently operating advisors and hear them all before reaching a
�nal decision.

We can do precisely the same in SAPS. In a recent paper,20 it was
proposed to make use of three suboptimal masks, and use a voting
scheme in reaching a decision about the �nal prediction. A distance
measure between the three predictions is introduced, the \advisor" with
the largest sum of distances to its two competitors is eliminated, and a
mean value between the survivors is used as the �nal prediction.

It would be easy to improve on this scheme. The \boss" can increase
the \salary" of an advisor who performed well in the past. In terms
of SAPS{II, we could take new incoming data into account to check
how well the three \advisors" did in predicting the correct outcome,
and increase the inuence of the most successful \advisor" by a certain
percentage, whereas that of the least successful one is reduced by the
same amount.

However, we can also introduce redundancy at other places. In
Causal Inductive Reasoning (CIR), it is proposed to recode real{valued
variables into qualitative quadruples. Each quadruple contains the
same three pieces of information that were used in FIR, plus a qual-
itative derivative value that indicates whether the recoded variable is
currently increasing, decreasing, or staying at about the same level. We
can then select the �ve nearest neighbors on the basis of a modi�ed for-
mula for the distance function that includes the additional information
retrieved from similar past derivative patterns as an additional piece of



information.

In FIR, the distance function was computed in the following manner.
Given the class value, classij, the membership value, Membij, and the
side value, sideij, of the ith m{input of the jth training data record, we
can compute a position function as follows:

posij = classij + sideij � (1:0�Membij) (3)

This is possible because, in SAPS{II, variables of enumerated types,
such as the class and side variables, are represented through integers.

The posij values are quantitative (real{valued) variables that can
be used to represent the relative magnitude of a particular qualitative
triple. However, they are not regenerations (defuzzi�cations) of the
original quantitative signals. They are normalized variables. Irrespec-
tive of whether an original signal was very small, ranging from �10�15

to +10�14, or very large, ranging from 106 to 1012, the corresponding
posij signal ranges exactly from 0:5 to 1:5 for values in class `1,' from
1:5 to 2:5 for values in class `2,' etc. Consequently, di�erent posij sig-
nals can be compared to each other or can be summed up, without
weighing them relative to each other, something that would not be
meaningful using the original or regenerated quantitative signals. The
normalization function is a transformation from a qualitative triple to
a quantitative variable, but this variable lives in a di�erent space from
the original quantitative variable.

The posij values corresponding to the di�erent variables of an input
state are then concatenated to form the vector:

posj = [pos1j; pos2j ; : : : ; posnj ] (4)

assuming, the training data record contains n m{inputs. We call the
vector posj the norm image of the jth training data record.

Finally, the distance function disj is computed as the L2 norms of
the di�erences between the pos vector representing the norm image of
the testing data record and the posj vectors representing the training
data records:



disj = kpos� posjk (5)

The �ve training data records with the smallest distance functions are
then chosen as the �ve nearest neighbors of the new testing data record.

In CIR, we take also the qualitative derivative information into con-
sideration in the process of selecting the �ve nearest neighbors. To this
end, we de�ne a qualitative derivative vector:

derj = [der1j; der2j; : : : ; dernj ] (6)

where derij assumes a value of `�1,' if the ith m{input of the jth training
data record has a decreasing tendency, `+1,' is the tendency is increas-
ing, and `0,' if the quantitative value of the variable changes relatively
little.

We then modify Eq.(5) as follows:

disj = kpos� posjk+ k � kder� derjk (7)

The constant k determines how much weight is to be assigned to the
derivative information in the overall computation of the distance func-
tion.

As the qualitative derivative information contains much less corre-
lation (relevance) than the qualitative state information, we must be
cautious when taking this information into consideration. Somehow,
this is similar to allowing more and farther away neighbors to con-
tribute to the equation, or allowing more and more \advisors" (masks
with lower and lower quality) to contribute to the �nal decision. Evi-
dently, this is a sword with two edges. k is a tuning parameter of the
algorithm. At the time of writing this paper, we are still experiment-
ing with di�erent examples to determine the optimal value of k to be
used. Although we could leave k as a user{tunable parameter in the
software, we don't want to do so, unless we can provide the user with
a clear recipe of how to determine, which k value is likely to perform
well in his or her application.



Up to this point, we have made use only of the qualitative deriva-
tives of the m{inputs. What about the derivative information for the
m{outputs? Evidently, we can compute the qualitative derivative of
m{outputs for the training data records. Since this is qualitative in-
formation, we can predict the qualitative derivative of the m{output
of any testing data record from the information contained in its �ve
nearest neighbors. Since we also predict the state values, from which
we can again derive values for the qualitative derivatives, we now have
redundant information. We have estimated the qualitative derivative
of the output of the testing data record in two di�erent ways.

How are we going to use this information? We could reject predic-
tions that lead to inconsistent derivative information. However, this
is dangerous. The derivative information contains implicitly a lot of
assumptions about the continuity of the output signal. Discrepancies
in the predictions will occur precisely at times when the signal changes
fast, whereas the predictions will be consistent when not much happens.
This is like passing the output through a low{pass �lter. Evidently, this
reduces the sensitivity to noise, but it simultaneously reduces the alert-
ness to fast changes in the signal. We can't have it both ways. Either
we are alert, with the risk of receiving many false alarms, or we dull
ourselves, with the greater risk of missing the true action when it takes
place.

However, we can still make use of this information. It was mentioned
earlier how important it is to obtain, together with the output, an esti-
mate of the correctness of that prediction. Evidently, if the redundant
derivative computation is consistent, this will raise our con�dence in
the prediction made. If it is inconsistent, we should be suspicious that
our prediction might be wrong. In the original inductive reasoning al-
gorithm, we had to use the frequency of past occurrences of the same
input/output pattern as an indicator of the correctness of a prediction
made, which is a fairly poor indicator function. In FIR, we were able to
improve the acuteness of estimating the prediction error by using the
con�dence information available through the fuzzy membership func-
tions. In CIR, we can sharpen the resolution further by making use of
the redundancy inherent in the computations.



CONCLUSIONS

In this paper, an enhancement to the fuzzy inductive reasoning method-
ology was presented. This enhancement introduces redundancy into the
process of qualitative computations. This redundancy can then be ex-
ploited to sharpen the resolution of qualitative decision making based
on quantitative observations of dynamic phenomena. This is important
since all reasoning based on incomplete information is plagued by un-
certainty and margins of error. Hence every prediction made should be
accompanied by an estimate of its accuracy. Since this estimate itself is
imprecise, and in fact, even more so than the original prediction made,
one must strive to exploit the limited available knowledge in optimal
ways to minimize the margin of error. Introducing redundancy into the
qualitative computations accomplishes the desired goal.
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