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This paper describes two new suboptimal mask search algorithms for Fuzzy inductive reasoning (FIR), a technique
for modelling dynamic systems from observations of their input/output behaviour. Inductive modelling is by its very
nature an optimisation problem. Modelling large-scale systems in this fashion involves solving a high-dimensional
optimisation problem, a task that invariably carries a high computational cost. Suboptimal search algorithms are
therefore important. One of the two proposed algorithms is a new variant of a directed hill-climbing method. The
other algorithm is a statistical technique based on spectral coherence functions. The utility of the two techniques is
demonstrated by means of an industrial example. A garbage incinerator process is inductively modelled from
observations of 20 variable trajectories. Both suboptimal search algorithms lead to similarly good models. Each of
the algorithms carries a computational cost that is in the order of a few percent of the cost of solving the complete
optimisation problem. Both algorithms can also be used to filter out variables of lesser importance, i.e. they can be
used as variable selection tools.

Keywords: Variable selection; Behavioural modelling; Inductive modelling; Fuzzy inductive reasoning; Suboptimal
mask search; Hill-climbing

1. INTRODUCTION

Modelling and simulating the output or outputs of a system from its inputs has always been

an important task within control engineering. It is of interest to be able to predict, if possible

online, the future behaviour of any one or any subset of the system variables (outputs) given

their own current and past behaviour as well as the current and past behaviour of any set of

additional auxiliary variables (inputs).

Fuzzy inductive reasoning (FIR) (Cellier, 1991) often offers excellent features for dealing

with the aforementioned problem. Whereas deductive modelling approaches function well in

the case of systems whose internal workings are well understood, such as electronic
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circuits, inductive modelling approaches should be used whenever the internal equations

of the system to be modelled are either unavailable, or contain parameters that cannot be

accurately estimated. FIR has been successfully employed to modelling such diverse systems

as the central nervous control of the human heart (Nebot et al., 1998), the growth patterns of

shrimp populations in semi-intensive shrimp farming (Carvajal and Nebot, 1997), the water

demand in the City of Barcelona (López, 1999), and the NOx emission level in a steam boiler

(Mirats i Tur et al., 2002).

As explained in Mirats i Tur et al. (2002), the modelling engine of FIR determines a

so-called optimal mask, that indicates, which variables best explain any given output, and

how much time delay these variables should have relative to the chosen output.

Unfortunately, any algorithm that can find the optimal mask is necessarily of exponential

complexity, i.e. the number of masks to be visited during the search for the optimal mask

grows exponentially with the number of available input variables, and with the allowed

depth of the mask. For this reason, suboptimal search algorithms are necessary for dealing

with large-scale systems.

Most ill-defined systems are unfortunately large-scale systems. It is precisely because, in

these systems, output variables depend on so many different inputs that these systems are ill-

defined. Thus, precisely in those situations where FIR would be most useful, its optimal

mask search algorithm cannot be used, because of the sheer size of the systems to be

analysed.

It may not be necessary to make use of all potential inputs of a system in order to obtain a

decent prediction of the output. Different input variables often contain redundant

information. Moreover, some of the input information may indirectly be captured in the past

history of the output. For example, when predicting the water demand of Barcelona, it may

suffice to propose a model that predicts tomorrow’s water demand on the basis of today’s

water demand and the water demand six days ago. This autoregressive model does not list a

single input variable directly, yet the dependence on the day of the week is indirectly

captured by including the (meanwhile known) water demand six days ago, whereas

including today’s water demand in the model indirectly captures the dependence on the

weather.

Different suboptimal masks may serve almost equally well because of the redundancy

contained in the data. Hence, finding the very best of all possible masks may not be a critical

need. It may suffice to find a suboptimal mask, as long as it has a quality that is not much

lower than that of the optimal mask. Suboptimal mask search strategies have the goal of

searching for masks of acceptable quality, while keeping the search space sufficiently small,

such that the suboptimal search algorithm is of polynomial rather than exponential

complexity.

Suboptimal mask search strategies were studied before. Nebot and Jerez (1997) analyse

several variants of hill-climbing algorithms. Hill-climbing algorithms are of polynomial

complexity, but often may end up with a suboptimal mask of significantly inferior quality.

Jerez and Nebot (1997) analyse the use of genetic algorithms as suboptimal mask search

strategies. Unfortunately, genetic algorithms, while sometimes work surprisingly well,

cannot be guaranteed to coverage in polynomial time. de Albornoz (1996) discusses a

statistical technique based on cross-correlation functions. His algorithm converges in

polynomial time, but only looks at linear relationships between variables, and therefore often

finds a suboptimal mask of highly inferior quality.

This paper describes two new suboptimal mask search algorithm. The first method is

another variant of a hill-climbing technique. It converges more slowly than those algorithms

described in Nebot and Jerez (1997), yet it is more likely to come up with a high-quality

mask while still converging in polynomial time. The second method is a new variant of a
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statistical approach that is based on spectral coherence functions. It also converges in

polynomial time, yet contrary to the technique described in de Albornoz (1996), it avoids the

pitfall on relying on linear relationships only. Thus, it is more likely to find a high-quality

mask.

No suboptimal mask search strategy can be guaranteed to work always and for every

example. Therefore, it is important to offer several techniques that can be used in parallel.

If all of these techniques find a mask of similar quality, it is likely that these suboptimal

masks are good masks with quality values not far different from that of the optimal mask.

2. REDUCING THE MODEL SEARCH SPACE IN FIR

As explained in Mirats i Tur et al. (2002), FIR uses a so-called mask candidate matrix to

define the mask search space. Each “ 2 1” element within the mask candidate matrix denotes

the position of a potential input variable. The optimal mask can be any of the masks

consistent with the mask candidate matrix, i.e. that has inputs only where the mask candidate

matrix has “ 2 1” elements. The index used to compare the masks is an entropy-based

measure called the quality of the mask in the FIR context. The optimality of the mask is

evaluated with respect to the maximisation of its predictive power. Details of how the quality

of each mask is determined can be found in Cellier (1991).

Let us assume the system has n input variables, and the allowed depth of the mask is d.

In this case, a complete mask candidate matrix has ðn·d 2 1Þ potential inputs or “ 2 1”

elements. An exhaustive mask search algorithm thus needs to visit 2n·d21 2 1 masks and

evaluate their qualities. Hence the number of masks to be visited by the algorithm grows

exponentially with the number of input variables and with the allowed depth of the mask.

One way to reduce the search space of the mask search algorithm is to reduce the number

of “ 2 1” elements in the mask candidate matrix by eliminating those elements from the list

of potential input variables that are less likely to be used in masks of high quality. Both of the

suboptimal search strategies described in this paper operate in this fashion. They identify

those potential inputs that are more likely to generate high-quality masks, mark those

elements in the mask candidate matrix by setting them to “ 2 1”, set all other potential inputs

to “0”, and then engage the exhaustive search algorithm to systematically evaluate the

qualities of the remaining masks.

The first of these techniques operates on the already recoded, i.e. qualitative, data. It starts

with a mask depth of 1 and performs an exhaustive search. It subsequently increments the

depth of the mask, while making use of the results of the previous searches to select, which

elements of the mask candidate matrix can be eliminated from the list of potential inputs.

Instead of solving one optimal search with a mask candidate matrix of size d·n; it solves d

separate optimal searches of sizes n; 2n; . . .; d·n; yet with ever more sparsely populated mask

candidate matrices. The maximal mask depth d does not need to be pre-selected. The

algorithm proposes an optimal value for d.

The second technique operates on the original real-valued, i.e. quantitative, data. It

proposes a unique sparse mask candidate matrix by computing the delays of each variable

that are most closely related with the considered output. This operation is based on the cross-

power spectral density of the individual pairs of signals.

2.1. Model Search Space Reduction from Qualitative Data

When using FIR to qualitatively model a system, the maximum depth and complexity of

the mask must be chosen. The maximum mask depth is defined as the number of rows
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of the mask candidate matrix.† It determines the largest time constant of the system to be

captured by the model. However, since only measurement data are available to base the

model upon, it may not always be easy to estimate the largest relevant time constant of the

system. The proposed suboptimal search algorithm will automatically determine a good

value for the mask depth d.

The complexity, c, of the mask is the number of non-zero mask elements used in the

model.‡ The mask complexity represents a compromise between the specificity and the

predictability of the model{ (Cellier, 1991). A low-complexity mask, i.e. a mask with a

small number of m-inputs, makes it easy to make predictions, yet the predictions obtained in

this way are not very specific. On the other hand, a complex model, if applicable, can make

highly specific predictions; however, there may not be enough evidence gathered from the

training data to justify such a prediction. In other words, with growing mask complexity,

more and more possible m-input states exist. Since the total number of observations, nrec,

remains constant, the observation frequencies of the observed m-input states will become

smaller and smaller, until the situation arises that each observed m-input state has been

observed exactly once, whereas many legal m-input states have never been observed at all.

At this point, the model becomes totally deterministic. Yet, the predictiveness of such a

model will be very poor, as already the next predicted state will probably never have been

observed before, which invariably makes further predictions impossible. Based on the

previous experiences gained with use of the FIR methodology (Cellier et al., 1996; de

Albornoz, 1996), a maximum complexity between 5 and 6 offers a good specificity

compromise.

The optimal mask search algorithm employed by FIR starts with evaluating the masks of

lowest complexity, then proceeds by incrementing the complexity, until the maximum

allowed mask complexity, m, has been reached. Even in the exhaustive search algorithm, the

maximum complexity is usually specified in order to limit the search space. This compromise

is justified, because the algorithm that computes the mask quality punishes high mask

complexity sufficiently to make it rather unlikely that a mask of complexity higher than 6

would ever become the optimal mask. Because of this limitation, even the exhaustive search

algorithm is strictly speaking of polynomial complexity. The number of masks to be visited

is of the order of ðn·d 2 1Þm21; i.e. it is polynomial in the number of inputs, n, and the mask

depth, d.

The suboptimal search algorithm reduces this number by reducing the number of “ 2 1”

elements in the mask candidate matrix. It starts with a mask of depth d ¼ 1: Since at this

point in time, no information is known about the system yet, all potential inputs are set to 21

in the mask candidate matrix. The optimal (exhaustive) mask search algorithm is then

employed to evaluate the quality of each mask of complexity c # m: Masks are grouped in

sets of equal complexity. For each complexity, c, the mask of highest quality is found. Its

value is Qbest. The relative quality of any one of these masks is defined as Qrel ¼ Q=Qbest: All

masks with a relative quality of Qrel . x are considered good masks.§ All good masks of a

given complexity are then investigated. If a given input is being used by at least y% of all

good masks of a given complexity, it is considered a significant input.k

†In some earlier publications, the mask depth was defined as the number of time intervals covered by the mask,
which differs from the definition used here by 1.

‡In some earlier publications, the complexity of a mask was defined as the number of non-zero mask inputs,
sometimes referred to as m-inputs, which differs from the definition used here by 1.

{In FIR, both, the specificity and the predictability of a model are dependent of the number of data points gathered
up from the system as well as of the number of classes that the variables are discretized into.

§In the current implementation of the algorithm, x ¼ 0:975:
kIn the current implementation of the algorithm, y ¼ 10%:
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In the next step of the algorithm, all significant inputs of every complexity are marked by

“ 2 1” elements. All insignificant inputs are marked by “0” elements. The depth, d, is now

increased by one. Since nothing is known about the significance of inputs at the new row, all

elements of that row are marked as “ 2 1” elements. The exhaustive search is now repeated

with the new mask candidate matrix.

For each mask candidate matrix, the optimal mask is determined. Its quality is Qopt. It is

the largest quality of all Qbest values of all considered complexities. The algorithm continues,

until the Qopt value no longer increases when d is incremented.

The algorithm that has been described in this section, like all suboptimal search methods,

is a heuristic search technique. There is no guarantee that the truly optimal mask will be

found in this way. However, the algorithm is based on much experience and a lot of common

sense. A significant input indicates that this input is useful in explaining the desired output.

It is very likely that the optimal mask makes use of significant inputs only, or at least makes

use primarily of significant inputs. Hence it is very likely that the algorithm will either find

the optimal mask itself or at least one of insignificantly lower quality.

The proposed termination criterion is also meaningful, but it may sometimes fail. Some

systems exhibit cyclic behaviour. For example, the water demand of the city of Barcelona has

a strong weekly cycle. Cyclic behaviour can easily be detected by looking at the

autocorrelation of each observed variable. If there is a strong cyclic behaviour, the mask

depth should be chosen to cover at least one full cycle, i.e. the termination criterion may need

to be modified accordingly, by specifying that the algorithm may not terminate until the mask

covers at least one full cycle.

2.2. Model Search Space Reduction from Quantitative Data

In this second approach, the original quantitative data rather than its already pre-processed

qualitative counterpart is used to accomplish the target of reducing the model search space of

FIR.

Each observed variable trajectory can be interpreted as a signal, e.g. the fuel flowing

through a pipe, contaminated by a superposed noise, that is composed of measuring noise,

thermal noise, and so on. Hence each of these trajectories can be interpreted as a realisation

of a stochastic process. With this interpretation, the energy of the signals can be computed

and used to determine, at which delays each input variable contributes a significant amount

of energy to the selected output. In this way, the most probable delays of the input variables

relative to the output variable can be determined. These can be used to select the positions of

“ 2 1” elements in the mask candidate matrix to be used by the exhaustive search algorithm

of FIR.

In order to compute the signal power spectra,# it is necessary to work with stationary or at

least quasi-stationary stochastic processes. A random signal x(ti), ti [ Z; is called strictly

stationary if for every integer I, the xðti þ IÞ shifted signal has the same family of

distributions, meaning that every distribution remains invariant under a time shift

(Kalouptsidis, 1997). For purely random processes, it is necessary as well as sufficient to

ensure stationarity that the first-order densities are identical, i.e. that the mean m(ti) and all

moments mk(ti) are constant, independent of ti. This is also necessary but not sufficient for

processes with a non-random component, for which, to ensure strict stationarity, shift-

invariance of the entire family of densities must be accomplished. As strict stationarity of

#When referring to the use of the power spectra the author mean the use of the Fourier spectra.
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such a process is hard to establish, the concept of stationarity has been relaxed somewhat.

A process is called quasi-stationary if its mean value m(ti) is constant and if the family of

second-order densities depends on the time difference ti 2 tj only. Hence a signal x(ti) is

called quasi-stationary if its mean is constant and if its autocorrelation function Rðti; tjÞ

depends only on the difference jti 2 tjj:
Signals observed from physical plants always assume values within a limited range. No

physical signal ever grows beyond all bounds. Hence, whereas signals may exhibit positive or

negative trends temporarily, when averaged over a sufficiently long time span, such signals

can always be assumed to be at least quasi-stationary, and thus, spectral analysis can be

applied.

The proposed algorithm finds a single sparsely populated mask candidate matrix by

computing the delays of each variable that are most relevant to the considered output. This

is accomplished by means of a spectral analysis performed on the observed trajectories.

To this end, Matlab’s spectrum function is applied separately to each input/output pair after

detrending all variables individually. The spectrum function returns the frequency range,

F, over which the power spectra are being sampled. Assuming the time signals were

sampled at time intervals of length ts, the spectra then range from 2f s=2 until þf s=2;
where f s ¼ 1=ts: The spectrum lines are equidistantly spaced over the spectral range. The

number of spectral lines, ns, to be chosen is an input parameter to the spectrum function.

The output parameter F is a vector of length ns providing the frequency values of the

spectral lines.

The system has n observed variables, one of which is the selected output, the remaining

(n 2 1 ) variables are potential inputs. The input variables are called x1; x2; . . .; xn21; and the

output variable is called y. The spectrum function, applied separately to each pair kxi; yl,
returns, beside from the frequency vector, F, the following power spectra: Pxxi, the power

spectral density of the input variable xi; Pyy; the power spectral density of the input variable

xi; Pyy; the power spectral density of the output variable y; and Pxyi, the cross-spectral density

of the input/output pair. It also returns the coherence function, Cxyi, which is defined as

follows (Marple, 1987):

Cxyið f iÞ ¼
jPxyið f iÞj

2

Pxxið f iÞPyyð f iÞ

where fi are the frequency values over which the spectra were sampled. The Cxyi values are

positive real values in the range ½0; 1	: They are relative measures of the cross-energy

density that exists between the input variable xi and the output variable y at different

frequencies fi.

After applying the algorithm, ðn 2 1Þ coherence functions have been calculated, one for

each of the potential inputs. These coherence functions are now used to identify the

significant inputs. A significant input exists, where its corresponding coherence function

exhibits a significant peak. The time delays, ti, associated with these significant peaks are

simply the inverses of the frequency values, fi, at which these peaks occur.

The following heuristic algorithm is proposed to identify the significant peaks and

significant inputs of the coherence functions:

1. Each coherence function is detrended separately. Since the coherence functions are

quasi-stationary, detrending essentially means removing the mean. Matlab’s detrend

function is used to accomplish the task. After detrending the coherence function, the

negative values of the detrended coherence function are set to zero, as those values

correspond to the smallest of the peaks.
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2. If desired, the same process can be repeated several times. Each time, the smallest of the

remaining peaks will be cancelled, and only the larger peaks remain.

3. The significant peaks are defined as those peaks that are larger than 2.5 times** the

standard deviation of the detrended coherence function:

sig
peak ¼ F½findðCxy . 2:5*stdðCxyÞÞ	;

4. The significant inputs are those delays that correspond to the significant peaks:

sig
inp ¼ roundðfs :=sig
peakÞ;

The significant inputs denote the positions within the mask candidate matrix that need to

be filled with “ 2 1” elements. Due to the limited resolution of the method, the smallest

delay obtainable is 2, i.e. no information can be obtained about delays 0 or 1. The algorithm

can be completed by either filling the two bottom rows of the mask candidate matrix with

“ 2 1” elements, since the algorithm does not provide any information for that case, or

alternatively, by using the first two steps of the previously discussed algorithm to obtain the

missing information.

3. QUALITATIVE MODEL OF A GARBAGE INCINERATOR: A MEDIUM-SCALE

EXAMPLE

The two previously described algorithms have been applied to an industrial garbage

incinerator process, the functioning of which is briefly outlined in Appendix A. In such an

incineration system, turbulent combustion with the interaction of fluid mechanics, chemical

kinetics, and heat transfer makes the process highly non-linear. For this reason, linear

statistical techniques cannot be applied to the task of variable selection. In the example

presented here, 19 input variables and one output variable are taken into account. The task

to be accomplished is to derive a qualitative model of this process with high predictive

power.

The process was sampled in 1-min intervals. Around 43,200 data records were obtained,

representing a time period of 30 days. The first 85% of these data records were used to

perform the variable selection with the two previously described suboptimal search

procedures. The remaining 15% of the data records were used to validate the obtained

model.

3.1. Reducing the Mask Search Space Using Qualitative Data

The system under study has 20 variables leading to a large search space of possible

masks when an exhaustive search is applied to all possible combination of input

variables. Following the procedure for selecting variables outlined in “Model search

space reduction from qualitative data”, the first mask candidate matrix proposed is of

depth d ¼ 1; so only static models are being considered. As, at this stage, the number of

**This criterion could be made more stringent or more relaxed by modifying the value of “2.5”. As this value is
lowered more and more energy peaks will be found as significant. On the other hand, as this value is increased fewer
and fewer energy peaks will be found as significants. A deepest study of how this parameter affects the computation
alleviation achieved in the FIR search model task with the given method is planned to be done in a future research.
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masks to be evaluated is still fairly low, the maximum complexity is set to 6. Potential

inputs of the proposed mask are set to 21 except for the output element, which is set to

þ1, so that all the possible masks are being considered. The corresponding mask

candidate matrix is:

ð21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 þ1Þ

The number of 21 elements of the mask is 19. Table I presents for each allowed

complexity, the variables that are used as inputs by the good masks, i.e. the masks with

Q . 0:975Qbest:
None of these masks is particularly good. The best masks are those of complexity 6, but

even they are of relatively low quality. Evidently, none of the static models will do a very

good job predicting the output.

Proceeding to the second step of the algorithm in “Model search space reduction from

qualitative data”, a mask candidate matrix of depth d ¼ 2 is now proposed. Its lower row,

i.e. the row corresponding to time t, that is representing inputs without time delay relative to

the output, obtains “ 2 1” elements only in those positions, where significant inputs were

discovered in the previous step of the algorithm, i.e. in columns 1, 2, 4–7, 9, 12 and 19. Since

no information is available with respect to the upper row, all of its elements are set to 21.

The proposed mask candidate matrix thus takes the form:

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 0 21 21 21 21 0 21 0 0 21 0 0 0 0 0 0 21 þ1

 !

The new mask candidate matrix has 29 “ 2 1” elements. Since there are now more

possible masks, it was decided to reduce the maximum allowed complexity from 6 to 5.

Table II shows the inputs used by the good masks for each of the allowed mask complexities.

Since every mask includes the output variable, the last row shows how many good masks

were found for each of the allowed complexities. There were 25 good masks of complexity 3,

313 good masks of complexity 4 and 2009 good masks of complexity 5. The masks of

complexity 2 were not presented, because they are trivial. The only good mask of complexity

2 is the one that uses yðt 2 dtÞ as its one input. The qualities of the good masks of depth d ¼ 2

are considerably higher than of the good static masks, because now, the output to be

predicted, y(t ), may depend on its own past, i.e. the value of the output one sample back,

yðt 2 dtÞ; which helps a lot with the prediction.

Every single one of the good masks makes use of yðt 2 dtÞ as an input. Therefore, the

values in the “delay-1” columns of the row entitled “y” are the same as the values in the

“delay-0” columns of the same row, which denote the output itself. This search step indicates

that most of the 20 variables one time-step back are of similar usefulness for predicting the

TABLE I Static model search results

Qbest Variables used in masks with Q . 0.975 Qbest Number of masks with Q . 0.975 Qbest

C2 0.0214 19 1
C3 0.0643 5,19 1
C4 0.1185 5,6,19 1
C5 0.1773 2,4,5,6,9,19 3
C6 0.2170 1,4,5,6,7,9,12,19 4
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output, as they are used almost uniformly by the good masks. There exists a much better

discrimination concerning the usefulness of the variables at time t.

For each complexity separately, only those inputs are considered significant inputs that are

present in at least 10% of the good masks of that complexity. Using this heuristic rule, a mask

candidate matrix of depth d ¼ 3 can now be constructed. Since no information is available

about the usefulness of any of the variables two time-steps back, the top row of the new mask

candidate matrix must be filled with “ 2 1” elements.

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 0 21 0 21 21 21 0 0 0 21 21 21 21 21 21 0 21 21

21 21 0 21 0 21 21 0 0 0 0 21 0 0 0 0 0 0 21 þ1

0
BBB@

1
CCCA

The new mask candidate matrix contains 41 out of 59 possible “ 2 1” elements. An

optimal model search is now performed, proposing this mask candidate matrix to FIR.

Table III shows the results of this search. The qualities of the best masks of each complexity

are only slightly higher than in the case of the depth-2 models. 4 good masks of complexity 3,

254 good masks of complexity 4, and 4047 good masks of complexity 5 were found. At this

point, FIR shows preferences for some variables one time-step back over others. The reason

is that FIR now has more choices, and often prefers the same variable two time-steps back.

The way the algorithm is implemented, once an input variable at a certain time delay has

been eliminated from one of the mask candidate matrices, it will never show up again in any

of the subsequent mask candidate matrices. Therefore, the discriminator value (in the

example shown here set to 10%) must be chosen carefully, in order not to eliminate

TABLE II Good masks obtained by a depth-2 model search

Complex 3
(Qbest ¼ 0.5975)
Q . 0.975 Qbest

masks

Complex 4
(Qbest ¼ 0.5915)
Q . 0.975 Qbest

masks

Complex 5
(Qbest ¼ 0.5927)

Q . 0.975 Qbest masks

Delay 0 1 0 1 0 1

x1 1 1 24 24 214 208
x2 1 1 26 26 232 236
x3 – 1 – 21 – 200
x4 1 1 22 22 229 226
x5 1 1 21 21 195 198
x6 1 1 26 26 247 241
x7 1 1 26 26 238 237
x8 – 1 – 26 – 241
x9 – – 11 10 118 123
x10 – – – 11 – 98
x11 – 1 – 20 – 184
x12 1 1 25 27 238 239
x13 – 1 – 24 – 225
x14 – 1 – 24 – 208
x15 – 1 – 24 – 225
x16 – 1 – 23 – 224
x17 – 1 – 22 – 219
x18 – 1 – 16 – 187
x19 1 1 26 26 302 295
y 25 25 313 313 2009 2009
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potentially useful inputs too early. A smaller discriminator might generate a better

suboptimal mask at the end, but this goes at the expense of having to evaluate more masks

in the process. A higher discriminator value leads to a faster search, but may result in a

suboptimal mask of lower quality.

Using the information provided in Table III, a new mask candidate matrix of depth d ¼ 4

can now be proposed.

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

0 21 0 0 0 21 21 0 0 0 0 21 21 0 0 0 0 0 21 21

0 21 0 0 0 21 21 0 0 0 0 21 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 þ1

0
BBBBBB@

1
CCCCCCA

In this new candidate mask only 37 “ 2 1” elements out of 79 possible are used so,

leading to a significant reduction of the model search space. This depth-4 candidate mask

is given as an input to the modelling engine of FIR, which performs an optimal search in

this reduced model search space. Results of this simulation are given in Table IV. Again, a

slight increase in the mask qualities is found with respect to the case of the depth-3

models. Models with complexities 2 and 3 are not reported in Table IV. The reason for

that is because they are trivial autoregressive models. For the complexity 2 model, the

optimal quality was 0.6128 for a mask in which the output depends on itself one time step

in the past, i.e. y ¼ f ð y 2 dtÞ: In the case of complexity 3, Qbest ¼ 0:6230; and 2 masks

are found that accomplishes the condition Q . 0:975Qbest : the first one models the output

TABLE III Good masks obtained by a depth-3 model search

Complex 3
(Qbest ¼ 0.6113)
Q . 0.975 Qbest

masks
Complex 4 (Qbest ¼ 0.5996)

Q . 0.975 Qbest masks
Complex 5 (Qbest ¼ 0.5931)

Q . 0.975 Qbest masks

Delay 0 1 2 0 1 2 0 1 2

x1 – – – 17 17 17 – 307 322
x2 1 1 1 24 24 24 405 418 426
x3 – – – – – 1 – – 148
x4 – – – 1 1 1 225 239 250
x5 – – – – – 1 – – 200
x6 – – – 20 20 20 379 415 409
x7 – – – 22 22 22 417 410 408
x8 – – – – 8 7 – 331 326
x9 – – – – – – – – 58
x10 – – – – – 1 – – 61
x11 – – – – – 1 – – 175
x12 – – – 17 20 20 340 410 415
x13 – – – – 20 20 – 406 408
x14 – – – – 4 4 – 237 232
x15 – – – – 14 14 – 304 324
x16 – – – – 1 1 – 257 266
x17 – – – – 1 1 – 203 210
x18 – – – – – 1 – – 108
x19 – – – 20 20 21 530 530 536
y 4 4 1 254 254 38 4047 4047 154
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variable as yðtÞ ¼ f ð yðt 2 1Þ; yðt 2 3ÞÞ; and the second one uses the input–output model

yðtÞ ¼ f ð yðt 2 2Þ; yðt 2 3ÞÞ:
The information contained in this Table IV is used to derive a new depth-5 candidate

matrix. In this case, the discriminator value (up to now, it has been set to 10%) has to

be changed in order not to eliminate potentially useful inputs. Note that if a value of

10% is used for the discriminator parameter no input variables are selected as possible

m-inputs to the next model search. Hence, for each complexity separately, only those

inputs are considered significant inputs that are present in at least 6% of the good masks

of that complexity. This discriminator value keeps the variables that seem to be more

important in the analysis performed up to this point, yet conserving a reduced search

space model. Using this heuristic rule, a mask candidate matrix of depth d ¼ 5 can now

be constructed.

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 21 0 0 21 21 21 0 0 0 21 21 21 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 21 21 0 0 0 0 21 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 1

0
BBBBBBBBB@

1
CCCCCCCCCA

This new proposed candidate mask has 46 “ 2 1” elements. Results are given in

Table V. The best complexity 2 mask is the same that in the previous computation and it

will be the same all over the next runs to be performed, so it will not be named again.

The models of complexity 3 that satisfies the conditions of the used algorithm explain

TABLE IV Good masks obtained by a depth-4 model search

Complex 4 (Qbest ¼ 0.6127)
Q . 0.975 Qbest masks

Complex 5 (Qbest ¼ 0.6088)
Q . 0.975 Qbest masks

Delay 0 1 2 3 0 1 2 3

x1 – – – 1 – – – 30
x2 2 2 2 2 30 30 30 30
x3 – – – 1 – – – 29
x4 – – – 1 – – – 27
x5 – – – 1 – – – 26
x6 – 1 1 1 – 31 26 29
x7 2 2 2 2 29 30 30 30
x8 – – – 1 – – – 32
x9 – – – – – – – 20
x10 – – – 1 – – – 25
x11 – – – 1 – – – 26
x12 – 1 1 1 – 29 27 29
x13 – 1 1 1 – 29 30 29
x14 – – – 1 – – – 31
x15 – – – 1 – – – 26
x16 – – – 1 – – – 27
x17 – – – 1 – – – 28
x18 – – – 1 – – – 27
x19 1 1 1 1 30 30 30 30
y 41 41 8 33 487 487 – 487
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the output with a maximum found quality of Qbest ¼ 0:6272 as yðtÞ ¼ f ðyðt 2 1Þ; yðt 2 3ÞÞ

and yðtÞ ¼ f ðyðt 2 1Þ; yðt 2 4ÞÞ: Again an slight overall increase in the masks quality is

obtained.

Notice that, as the procedure is going on, the input variable space is decomposed into the

subspaces of most and less related input variables to the output, so allowing a simplification

of the model search. Using the information of Table V, again with the discriminator value

set to the 6%, the following depth-6 candidate mask is proposed for the next model

computation:

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 0 0 0 21 21 21 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 21 21 0 0 0 0 21 0 21 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

This mask has again 46 “ 2 1” elements. Results obtained with this mask are given in

Table VI. The obtained complexity-3 models that accomplishes the imposed conditions are

simple autoregressive models, with Qbest ¼ 0:6384: These models are:

yðtÞ ¼ f ðyðt 2 1Þ; yðt 2 3ÞÞ; yðtÞ ¼ f ðyðt 2 1Þ; yðt 2 4ÞÞ; yðtÞ ¼ f ðyðt 2 1Þ; yðt 2 5ÞÞ

TABLE V Good masks obtained by a depth-5 model search

Complex 4 (Qbest ¼ 0.6257)
Q . 0.975 Qbest masks

Complex 5 (Qbest ¼ 0.6146)
Q . 0.975 Qbest masks

Delay 0 1 2 3 4 0 1 2 3 4

x1 – – – 1 1 – – – 70 73
x2 2 2 2 2 2 73 73 73 74 73
x3 – – – – – – – – 49 44
x4 – – – – – – – – – 45
x5 – – – – – – – – – 57
x6 – 1 – 1 1 – 48 – 73 74
x7 1 1 1 1 1 74 74 74 74 74
x8 – – – – – – – – 70 73
x9 – – – – – – – – – 29
x10 – – – – – – – – – 35
x11 – – – – – – – – – 54
x12 – 1 – 1 1 – 60 – 74 63
x13 – 1 1 1 1 – 73 74 59 75
x14 – – – – – – – – 73 65
x15 – – – – – – – – – 52
x16 – – – – – – – – – 58
x17 – – – – – – – – – 53
x18 – – – – – – – – – 56
x19 1 1 1 1 1 75 – 74 74 74
y 34 34 1 6 29 1228 1228 – 503 729
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In this new simulation a better discrimination of the variables is obtained. For example, the

models satisfying the algorithm conditions have used variables 9 and 10 only once which

says that those variables are not important to model the output. The discriminator value used

is again the 6% (the lowest integer is used when computing the 6% of the total amount

of models accomplishing Q . 0:975Qbest). Therefore, variables used more than twice, in the

case of the complexity 4 models, and more than 64 times, on the complexity 5 models, are

selected to propose the next depth-7 candidate mask. This mask has 44 21 elements. Results

of the optimal search performed when giving this candidate mask to FIR are given in

Table VII.

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

0 21 0 0 0 0 21 21 0 0 0 0 0 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 21 0 0 0 0 0 0 0 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

The discriminator value it has been again the 6%. In this simulation more discrimination

about variables have been obtained, note that variables x3, x4, x5, x9, x10, x11, x17 and x18 only

have been used three times each one in a total of 1060 considered models. This suggests that

TABLE VI Good masks obtained by a depth-6 model search

Complex 4 (Qbest ¼ 0.6301)
Q . 0.975 Qbest masks

Complex 5 (Qbest ¼ 0.6228)
Q . 0.975 Qbest masks

Delay 0 1 2 3 4 5 0 1 2 3 4 5

x1 – – – – 1 1 – – – – 60 59
x2 2 2 2 2 2 2 68 72 69 70 74 73
x3 – – – – – – – – – – – 8
x4 – – – – – – – – – – – 26
x5 – – – – – – – – – – – 20
x6 – – – 1 1 1 – – – 43 48 43
x7 2 2 2 2 2 2 60 60 64 62 62 63
x8 – – – – – – – – – – 41 64
x9 – – – – – – – – – – – 1
x10 – – – – – – – – – – – 1
x11 – – – – – – – – – – – 19
x12 – – – 1 – 1 – – – 64 – 53
x13 – 1 1 – 1 1 – 64 65 – 65 53
x14 – – – – – – – – – 44 – 39
x15 – – – – – – – – – – – 36
x16 – – – – – – – – – – – 43
x17 – – – – – – – – – – – 30
x18 – – – – – – – – – – – 7
x19 1 – 1 1 1 1 60 – 67 63 65 64
y 43 43 – 2 14 30 1080 1080 – 104 419 605
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those variables are not of a big importance in modelling the output of the system. In the light

of the obtained results, a new candidate mask of depth-8 is proposed:

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 21 0 0 0 0 0 0 0 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 0

0 0 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 21

0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

This mask has a total of 47 “ 2 1” elements. Results for this simulation are shown in

Table VIII.

The discriminator value it has been again the 6%. As the depth is increased, more and more

discrimination about variables is obtained, note that variables x3, x4, x5, x9, x10, x11, x14, x16,

x17 and x18 only have been used between three and six times each one in a total of 1478

considered models. This suggests that those variables are not of a big importance in

modelling the output of the system. In the light of the obtained results, a new candidate mask

of depth-9 is proposed:

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 21 21 0 0 0 0 0 0 21

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 21

0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

In this new candidate mask there are 48 elements set to 21 out of 179. The achieved

simplification is considerable; results are shown in Table IX.

The adopted criterion for the discriminator parameter of the algorithm is the same as in the

previous simulations. From Table IX a new depth-10 candidate mask is proposed to the FIR
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TABLE VIII Good masks obtained by a depth-8 model search

Complex 4 (Qbest ¼ 0.6331)
Q . 0.975 Qbest masks

Complex 5 (Qbest ¼ 0.6264)
Q . 0.975 Qbest masks

Delay 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

x1 – – – – – – – – – – – – – – 90 86
x2 3 3 3 3 3 3 3 3 90 92 95 94 94 95 94 93
x3 – – – – – – – – – – – – – – – 4
x4 – – – – – – – – – – – – – – – 4
x5 – – – – – – – – – – – – – – – 4
x6 – – – – – – – – – – – – – – – 70
x7 – 3 3 3 3 3 – 3 – 92 92 92 91 91 – 89
x8 – – – – – – – – – – – – – – – 48
x9 – – – – – – – – – – – – – – – 3
x10 – – – – – – – – – – – – – – – 3
x11 – – – – – – – – – – – – – – – 4
x12 – – – – – – – – – – – 89 – – – 70
x13 – – – – – – – – – – 81 89 – 88 82 79
x14 – – – – – – – – – – – – – – – 6
x15 – – – – – – – – – – – – – – – 34
x16 – – – – – – – – – – – – – – – 6
x17 – – – – – – – – – – – – – – – 4
x18 – – – – – – – – – – – – – – – 6
x19 – – – – – – – – – – 95 1 94 84 94 94
y 52 52 – 4 4 18 18 18 1478 1478 – 122 320 415 410 460

TABLE VII Good masks obtained by a depth-7 model search

Complex 4 (Qbest ¼ 0.6319)
Q . 0.975 Qbest masks

Complex 5 (Qbest ¼ 0.6250)
Q . 0.975 Qbest masks

Delay 0 1 2 3 4 5 6 0 1 2 3 4 5 6

x1 – – – – – – – – – – – – – 75
x2 3 3 3 3 3 3 3 72 73 73 71 77 76 73
x3 – – – – – – – – – – – – – 3
x4 – – – – – – – – – – – – – 3
x5 – – – – – – – – – – – – – 3
x6 – – – – – – – – – – – – – 51
x7 1 3 3 3 3 3 1 61 60 61 64 67 64 62
x8 – – – – – – – – – – – – 54 54
x9 – – – – – – – – – – – – – 3
x10 – – – – – – – – – – – – – 3
x11 – – – – – – – – – – – – – 3
x12 – – – – – – – – – – 65 – – 50
x13 – – – – – – – – 64 67 – 64 – 67
x14 – – – – – – – – – – – – – 25
x15 – – – – – – – – – – – – – 53
x16 – – – – – – – – – – – – – 30
x17 – – – – – – – – – – – – – 3
x18 – – – – – – – – – – – – – 3
x19 – – – – – – – – – 75 – 75 75 75
y 48 48 – – 1 1 1 1060 1060 – 88 288 390 417
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model search engine.

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

21 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 0

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

0 0 0 0 0 0 21 0 0 0 0 21 21 0 0 0 0 0 0 0

0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 21

0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

This new candidate mask contains 48 “ 2 1” elements out of 199 possible. Results of this

new simulation are given in Table X.

Note that in this simulation the overall quality of the complexity 4 masks is not increased

anymore with respect to the qualities obtained in previous simulations. Yet, for the

complexity 5 models a slight increase in the quality of the masks is still obtained. This

suggests performing another iteration, proposing a new depth-11 candidate mask (using,

again, a discriminator value set to the 6%). When doing so, no increase in the quality of either

the complexity-4 models or the complexity-5 models is obtained, so the iteration can be

stopped. At this point, the FIR qualitative models that may best describe, in terms of quality,

the system at hands are those models represented by a depth-10 mask.

This would tell the modeller to use a depth-10 FIR model (the depth-11 model is exactly

the same) in which input variables x3, x4, x5, x6, x8, x9, x10, x11, x14, x15, x16, x17 and x18 have

been discarded. Only variables x1, x2, x7, x12, x13 and x19, and, evidently, past values of the

same output variable, are used to model the output variable. From those used variables, note

that variable x12 only appears in 4 out of 535 possible models, and that, in fact, if another

iteration were performed it would be eliminated from the depth-11 models. The new

depth-11 candidate mask and the obtained results of this simulation are given in Appendix C.

So with the presented procedure not only a FIR model is found but also which is its optimal

depth. Yet, it would be interesting to see how much is the computation alleviation achieved

with this method. The achieved model search space simplification is computed by comparing

the number of models visited when using the presented algorithm to construct depth-10

models, with the number of depth-10 models to compute using the classical FIR search

method.†† Table XI gives the number of models that have been visited in order to construct

the depth-10 models presented in Table X, the number of theoretical models that should be

computed for a full candidate mask of depth-10, and, finally, column three the percent of

computation alleviation. The first column is calculated by adding the number of models

computed, for all the allowed complexities, for depth 1–10 as presented in this section. How

to obtain the number of models that have to be computed for each number of 21 elements of

the candidate mask is given in Appendix B.

††Which moreover implies a prior knowledge, or an heuristic decision, of the mask depth value to use.
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Of course when giving the computation alleviation one must have into account the time

required to study the computed FIR models, to construct the table of variable/delays used

and, from it, propose a new candidate mask. These operations have been made by means of a

function programmed in Matlab code which from the output text file of FIR which contains

all the computed models, generates a table, for each complexity that contains the more used

variables/delays. The computation time of this function is orders of magnitude lower than the

FIR model computation.

3.2. Reducing the Mask Search Space Using Quantitative Data

In this second study of the same system, a spectral analysis was performed on the different

trajectories of the variables. Concretely, the module of the spectral coherence function was

used to find at which delays one input variable (xi) has more energy related to the output

variable (y ). This second approach has been presented in “Model search space reduction

from quantitative data”. Table XII shows the most important delays found between the input

and output variables when applying the proposed method.

With this information a candidate mask up to depth 25 can be proposed. In order to

compare the obtained models with this approach, a candidate mask of depth 10 is to be

proposed to FIR. This energy approach does not give information about delays 0 and 1, so the

first two rows of the candidate mask should be filled with 21 elements. This would lead to a

mask with 105 21 elements out of 199. Although the simplification achieved is significant

there still are lots of models to compute. Yet, a much wiser candidate mask could be proposed

using the information given by the previous presented approach for time delays 0 and 1. So a

depth-10 candidate mask can be proposed as shown below.

Note that in this candidate mask variable 18 has already been discarded. The proposed

mask has 87 “ 2 1” elements so 87 masks of complexity 2; 3,741 of complexity 3; 105,995

of complexity 4 and 2,225,895 of complexity 5 must be computed. If a full candidate mask

had been proposed the number of masks to compute would have been 199, 19,701, 1,293,699

and 63,391,251 for complexities 2, 3, 4 and 5, respectively. For those masks with complexity

2 and 3, the results of this simulation are the same as simulations presented in “Reducing the

mask search space using qualitative data”. Table XIII shows the computation alleviation

TABLE XI Computation alleviation achieved when using the proposed algorithm

Number of visited
models

P10
depth¼1 visited masksdepth

Number of models to visit using
a depth 10 full candidate mask

Percent of computation
alleviation

1.362.501 64,704,850 97.89%

TABLE XII Delays to consider between inputs and output variable

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 y

15 10 7 3 20 4 18 3 15 7 8 5 5 3 5 18 18 – – 24
12 9 6 19 3 17 2 12 6 7 4 4 2 17 7 23
9 6 5 18 2 8 11 3 5 3 4 2 20
4 5 4 12 7 9 2 4 2 3 18
3 4 3 11 5 8 2 2 8
2 3 2 9 3 7 6

2 7 2 3 5
3 2 4
2 3

2
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achieved for the complexity 5 models whereas in Table XIV it is shown the simulation results

for mask complexities 4 and 5.

mcan¼

21 21 0 0 21 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 21 0 21 0 21 0 0 0 0 0 0 0 0 21

0 0 21 0 21 0 21 0 21 21 21 0 0 0 0 0 21 0 0 0

0 21 21 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 21

0 21 21 0 0 0 21 0 0 0 21 21 21 0 21 0 0 0 0 21

21 21 21 0 0 21 0 0 0 0 21 21 21 0 0 21 0 0 0 21

21 21 21 21 21 21 21 21 21 21 0 0 21 21 0 21 0 0 0 21

21 21 21 0 21 21 21 21 21 21 21 0 21 0 21 21 21 0 0 21

21 21 0 0 21 21 21 21 21 0 0 21 21 21 21 0 21 0 21 21

21 21 0 0 21 21 21 0 21 0 0 21 0 0 0 0 0 0 21 1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

From this approach it can be seen that the obtained results are very similar with those

obtained in previous section (Table XI). The mask qualities obtained are quite like to those of

previous simulations. In this study input variables x1, x2, x6, x7, x12, x13 and x19 have been

selected to model the output while all the other input variables are discarded.

3.3. Qualitative Simulation Results

In order to assess that the sub-optimal models found with the proposed algorithms are

suitable to properly model the system under consideration two simulations have been

performed. The first simulation uses one model of complexity 4 from those found with

depth-9 in Table IX. The quality of the best model in this occasion was 0.6340. The model is

used to simulate the last 500 points of the garbage incinerator output variable (NOx gas

emission), Figs. 1 and 2 show in continuous line the real NOx data and in dotted line the

simulated trajectory for this variable.

In this first simulation the used model has been:

yðtÞ ¼ f {yðt 2 1Þ; yðt 2 4Þ; x2ðt 2 8Þ}

For the second simulation a complexity 5 model has been used. In this case the depth of the

model is 10 and is one of the models found in Table X. The maximum quality achieved in this

case was 0.6312. The model used in this simulation is:

yðtÞ ¼ f {yðt 2 1Þ; yðt 2 7Þ; x7ðt 2 3Þ; x2ðt 2 8Þ}

TABLE XIII Computation alleviation achieved when using energy considerations

Number of visited models
(all considered complexities)

Number of models to visit
using a depth 10 full candidate mask

Percent of computation
alleviation

2,335,718 64,704,850 96,39%
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FIGURE 1 Real and simulated NOx. Last 500 points.

FIGURE 2 First 100 NOx FIR simulated points.

J.M. MIRATS I TUR et al.490



FIGURE 3 Real and simulated NOx. Last 500 points.

FIGURE 4 First 100 NOx FIR simulated points.
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Results of this simulation are given in Figs. 3 and 4, where, again, the continuous line is for

the real data and the dotted line for the simulated trajectory.

As can be stated from the figures, both simulations give quite good results in following the

original NOx trajectory. In the first performed simulation the percent average error is 1.25%;

in the second case the percent average error is 3.64% (average computed with all the 500

points simulated).

4. CONCLUSIONS

Two approaches have been presented to tackle the problem of modelling a large-scale system

with the FIR methodology, a previous unmanageable task. Both approaches reduce the model

search space of the Fuzzy Inductive Reasoning Qualitative Modelling Engine.

The first of these approaches makes use of the qualitative data of the system to achieve

computation alleviation. So the presented algorithm may be viewed as an intermediate

module between the Fuzzification Module and the Qualitative Modelling Engine of FIR

which receives feedback from the QME. At each step of the algorithm a new deeper

candidate mask is proposed to FIR which only has some of its elements equal to 21. How

these elements are set to 0 or 21 depends on information about the best qualitative models

found in the previous model search. Using this procedure, a good computation

reduction/model quality compromise is obtained.

The second approach deals directly with the real variable trajectories gathered up from the

system, i.e. their real episodes. It can be viewed as a pre-processing unit, previous to the

fuzzyfication module, which allows to gather information about which are the most

important input variables, at given delays, related with the output. In this approach each

variable trajectory is considered as the realisation of a stochastic process, i.e. the measure of a

physical variable given by a (noisy) sensor in a possible noisy environment. The spectral

coherence function is computed for each pair of input–output trajectories and from it, the

most important delays are deduced. Although, only information from 2 to 1 delays can be

gathered, an important computation reduction is achieved proposing FIR a unique sparse

candidate mask.

The second approach can be combined with the first one, obtaining, with the latter, a sparse

depth 2 candidate mask, and with the former, information about delays from 2 to 1, leading,

together, to a unique sparse candidate mask. This operation has been performed in “Reducing

the mask search space using quantitative data”, achieving a considerable reduction on the

FIR model computation cost.
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APPENDIX A

The process analysed in this work is a thermal incinerator. The description given here is a

general description of the functioning of these kinds of systems (Valle et al., 1999). In this

unit, high temperature and chemical reactions burn up process fumes, and change them into

harmless carbon dioxide and water vapours, which are then released through a stack into the

atmosphere. The fumes processed in the incinerator are commonly called NOx fumes, and

mainly consist of: nitric oxide (NO), nitrogen dioxide (NO2), and nitrous oxide (N2O).

Hydrogen cyanide (HCN) is also present. The gases are converted into nitrogen and water

vapour in a three stages combustion process. The first stage is reduction, the second is

re-oxidation, and the third is catalytic oxidation. A de-mineralised water heat exchanger is

located between the second and third combustion stages (Fig. A1).

Data were gathered up from the system at a sampling rate of 1 min and 43,200 data points

were recorded. The considered output variable for this study is the emission of NOx gas.

Table A1 gives a short description of the variables in the system that this paper deals with.

Fig. A1 shows a general diagram describing the layout of the system.

FIGURE A1 Incineration process scheme.
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The reduction section is a large natural gas (methane) furnace. The air for the combustion

is provided by the vent header (DNT), or stripper vent header (DNA). The burning of natural

gas provides all the heat required for the reduction stage. There are four major chemical

reactions that occur in the reduction section furnace:

1. Burning of natural gas

CH4 þ 2O2 ) 2H2O þ CO2

2. NOx gas is destroyed by

CH4 þ 2NO2 ) N2 þ 2H2O þ CO2

3. Additional fuel is added without air to increase the reaction between natural gas and the

NOx, and to remove any trace of oxygen in the system

CH4 þ 4NO ) 2N2 þ 2H2O þ CO2

4. CO2 gas is destroyed by

CH4 þ CO2 ) 2CO þ 2H2

The hot gases leaving the reduction furnace thus consist of: carbon monoxide, nitrogen,

hydrogen, water vapour, carbon dioxide, NOx (below 200 ppm), and HCN (below 500 ppm).

After the reduction furnace hot gases are quenched by mixing them with cooler recycled

stack gas. The quenched gas then flows into the stage section called the re-oxidation stage.

This section is not used for NOx abatement, but to convert CO and H2, the combustibles from

the reduction furnace into CO2 and water vapour. In this section fuel gas is not used, and a

TABLE AI Variable description in the garbage incinerator plant

Variable Physical meaning

1 (input) DNT unit one vent (SCFM)
2 (input) DNT unit two vent (SCFM)
3 (input) A column overhead (F)
4 (input) C column overhead (F)
5 (input) DNT vent rate (SCFM)
6 (input) Stack gas recycle (ACFM)
7 (input) Stack gas recycle (F)
8 (input) Strip vent rate (SCFM)
9 (input) DNT vent head VA (WC)
10 (input) Column A top pressure (inch W)
11 (input) Column B top pressure (inch W)
13 (input) Column D top pressure (inch W)
14 (input) DP on A column (PSIG)
15 (input) DP on B column (PSIG)
16 (input) DP on C column (PSIG)
17 (input) DP on D column (PSIG)
18 (input) Excess O2 in stack (%)
19 (input) Reduction furnace (F)
20 (output) NOx, (PPM)
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blower adds ambient air to the section. Two additional reactions occur:

2CO þ 2O2 ) O2 þ 2CO2 2H2 þ O2 ) 2H2O

The hot gases from the re-oxidation section then flow through an economiser where they

are cooled by de-mineralising water. The hot de-mineralised water (DMW) is then routed to

the plant. Gases exiting the economiser flow through a honeycomb grid of platinum catalyst,

where the CO and the organics are converted to inert flue gases before their discharge from

the stack to the atmosphere:

CO þ 2HCN þ C6H5CH3 þ O2 ) CO2 þ H2O þ N2

Analyser probes in the stack monitor the oxygen, CO, CO2, and NOx levels.

APPENDIX B

There are two main reasons that increase the computation time of the FIR models, one is the

number of masks to compute and the other is the data matrix size. In this paper, the data

matrices used to compute the masks are quite big ð36; 720 £ 20Þ so the process of calculating

masks is quite slow. All the simulations presented in this paper were performed in an Ultra

Sparc II Workstation running sunOs 5.7.

The total number of models that have to be computed when a mask candidate

with n elements set to “ 2 1” and the maximum allowed complexity is c, is given by the

formula:

n

c

2
4
3
5 ;

n

1

2
4
3
5þ

n

2

2
4
3
5þ · · · þ

n

c 2 1

2
4

3
5

For example, when a full depth-10 candidate mask is used, there are 199 possible 21

elements. If the maximum allowed complexity is 5, the number of models to compute is:

199

5

2
64

3
75 ;

199

1

2
64

3
75þ

199

2

2
64

3
75þ

199

3

2
64

3
75þ

199

4

2
64

3
75

¼ 199 þ 19; 701 þ 1; 293; 699 þ 63; 391; 251 ¼ 64; 704; 850

There are 199 models of complexity 2; 19,701 models of complexity 3, and so on, leading

to a total number of models of almost 65 millions.

APPENDIX C

The depth mask 211 used in the last step of the algorithm is presented in this Appendix. This

new mask candidate can be derived directly from Table X, using, again, a discriminator value
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set to the 6%.

mcan¼

21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 21 21

0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 21

21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 0

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 21

0 0 0 0 0 0 21 0 0 0 0 0 21 0 0 0 0 0 0 0

0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 21 0

0 21 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 21

0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

In this mask there are 49 “ 2 1” elements out of 119 possible. The obtained results are

shown in Table XII. For this simulation the qualities of the masks no longer increased, they

stayed at the same value than in the previous simulation. No more tables are constructed

because no new information would be added.

Just to assess the results obtained with the given algorithm some more simulations, up to

depth 16, were performed. No increase in the mask qualities was obtained in any of those

simulations, only a little fluctuation of the complexity-5 model quality was observed in the

depth-15 models. Finally, Fig. C1 shows the behaviour of the mask quality versus the depth

FIGURE C1 Quality versus depth of the mask.
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of the mask. Continuous line is for complexity 4 and dotted line for complexity 5 masks.

Those qualities for the one depth masks are not represented in order the y-axis scale o the

figure to be clearer.
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depending of the UPC and the Spanish Council of Scientific Research

(CSIC). His main scientific interests concern modelling and

simulation methodology and the design of advanced simulation

VARIABLE SELECTION PROCEDURES 497



environments. Its present research focus qualitative modelling and simulation and its

application to dynamic systems fault detection and diagnosis. He has been involved as

research engineer or research head in projects with the spanish industry, the Comisión

Interministerial de Ciencia y Tecnologı́a (CICYT), the CSIC, the European Space Agency

and the U.S. National Science Foundation. Prof. Huber has authored or co-authored more

than forty technical publications and edited two books related with continuous system

modelling.

J.M. MIRATS I TUR et al.498


