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Behavioural modelling of physical systems from observations of their input/output behaviour is an important task in
engineering. Such models are needed for fault monitoring as well as intelligent control of these systems. The paper
addresses one subtask of behavioural modelling, namely the selection of input variables to be used in predicting the
behaviour of an output variable. A technique that is well suited for qualitative behavioural modelling and simulation
of physical systems is Fuzzy Inductive Reasoning (FIR), a methodology based on General System Theory. Yet, the
FIR modelling methodology is of exponential computational complexity, and therefore, it may be useful to consider
other approaches as booster techniques for FIR. Different variable selection algorithms: the method of the
unreconstructed variance for the best reconstruction, methods based on regression coefficients (OLS, PCR and PLS)
and other methods as Multiple Correlation Coefficients (MCC), Principal Components Analysis (PCA) and Cluster
analysis are discussed and compared to each other for use in predicting the behaviour of a steam generator. The
different variable selection algorithms previously named are then used as booster techniques for FIR. Some of the
used linear techniques have been found to be non-effective in the task of selecting variables in order to compute a
posterior FIR model. Methods based on clustering seem particularly well suited for pre-selecting subsets of variables
to be used in a FIR modelling and simulation effort.

Keywords: Fuzzy inductive reasoning; Variable selection; Behavioural modelling; Inductive modelling; Qualitative
modelling; Input/output modelling

1. INTRODUCTION

Intelligent controllers frequently operate with look-ahead data in order to compensate for

system delays and/or improve their performance. For example, the controllers that regulate

the water distribution system of a city may, on the one hand, work with predicted values of

water flows, because the water incurs a delay from the time it is released at the reservoir until

it arrives at the city where it is to be used; and on the other hand, they may work with

predictions of water needs at the time when the water that is currently being released will
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arrive at the city. Hence, tools and techniques for predicting future values of observed

trajectory behaviour constitute important elements of intelligent control architectures.

A difficult problem when trying to model the output or outputs of a system from its inputs,

is knowing which inputs to use in order to make a good prediction of the output or outputs.

All potential inputs are not always necessary, because some may be redundant, whereas

others may not provide information that is useful for predicting the behaviour of the output or

outputs of the system being studied. The problem becomes worse when dealing with large-

scale systems, such as nuclear power plants, airplanes, or water distribution systems, since

the list of potential inputs may be formidable.

Many approaches for the selection of variables have been presented in the literature using

classical and Bayesian statistical techniques as well as other mathematical modelling tools

such as neural networks. Principal Components Analysis (PCA) has been studied with this

aim by Jolliffe (1972; 1973), applied to artificial as well as real data sets. In Allen (1971),

variable selection is performed using the mean square error of prediction of different possible

regression models. In Mansfield et al. (1977), a regression model based on principal

components is suggested, in which one variable is temporarily eliminated at a time

computing the least square error for each of these regression models. The model offering the

smallest least square error is then selected, and the corresponding variable is permanently

discarded. The procedure is repeated until the smallest least square error becomes too big.

The admissible procedures to perform variable selection when a regression model is used are

analysed and discussed by Kabaila (1997). Different regression methods are compared in the

task of selecting variables by Hoeting et al. (1996), McShane et al. (1997) and Adams and

Allen (1998). Chipman et al. (1997) and Hoeting and Ibrahim (1998) used other approaches

such as Bayesian and heuristic techniques with the purpose of selecting variables of a system.

The canonical correlation analysis is explained and used to select variables in a study of

Al-Kandari and Jolliffe (1997). Also, work has been reported in this area using neural

networks (Lisboa and Mehri-Dehnavi, 1996; Muñoz and Czernichow, 1998).

In this paper, a qualitative modelling methodology, called Fuzzy Inductive Reasoning

(FIR) (Cellier, 1991), is investigated with the aim of providing forecasts of trajectory

behaviour of measured variables for control purposes. In particular, the paper deals with the

problem of pre-selecting a set of candidate input variables in order to reduce the model

search space of FIR. This is important since FIR employs an algorithm of exponential

computational complexity in the identification of the best qualitative input/output model.

Section 2 provides a brief review of this modelling technique and applies it to compute both

dynamic and static models of an industrial steam generator process.

Then, different procedures are applied to first, model the steam generator process, and,

afterwards, perform variable selection as a booster technique for FIR. The method of the

unreconstructed variance for the best reconstruction, described by Dunia and Qin (1998) in a

different context, is one of the methods presented for the purpose of selecting which input

variables to use to model a given system output. This technique is reviewed in Section 3 of

the paper, while in Appendix A, a brief review of its mathematical underpinnings is given.

Section 4 discusses the use of statistical methods, based on regression coefficients, for the

purpose of selecting input variables. Section 5 provides a brief overview of other variable

selection methods advocated in the open literature. All statistical techniques presented in this

paper employ only static models so the predictions made by those techniques, as presented in

Sections 3–5, are obviously worst when compared against the prediction made by the

dynamic FIR model in Section 2.

Yet, the purpose of this paper is not to compare the different predictions of the steam

generator data the advocated methods are capable to give. The purpose is to find a set of

bootstrapping techniques for FIR that, with little computational effort, can encounter subsets
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of variables to be considered in a FIR optimal mask search. In Section 6 the different variable

selection approaches presented in earlier sections, used to find static models, are applied to

the problem of qualitatively modelling the behaviour of a steam generator (boiler) of a

chemical process using FIR. To this end, the sets of proposed inputs obtained by the different

variable selection algorithms are offered to the modelling engine inside FIR, and the

predictions obtained by the FIR dynamic qualitative models when using the so obtained static

sets are compared to each other.

2. FUZZY INDUCTIVE REASONING

2.1. Methodology Review

A very brief verbal review of the FIR methodology is provided in this section. For a deeper

insight into the methodology, the reader is encouraged to review the referenced publications.

Inductive reasoning (IR) is an inductive modelling technique designed by Klir as part of

his General System Problem Solving (GSPS) framework (Klir, 1985). A first implementation

of IR was made available by Uyttenhove as part of his Ph.D. dissertation (Uyttenhove, 1979).

This implementation was called Systems Approach Problem Solver (SAPS). An improved

version of the original SAPS program was developed by Cellier and Yandell (1987), and later

extended in Li and Cellier (1990) to offer fuzzy reasoning capabilities. Accordingly, the

enhanced methodology is now called FIR (Cellier et al., 1992). In the sequel, a number of

different authors used FIR to qualitatively model and simulate different kinds of systems and

time series, while constantly improving the methodology (Mugica, 1995; de Albornoz, 1996;

López 1999; Mirats Tur and Huber 1999). The most recent comprehensive description of the

FIR methodology can be found in Nebot et al. (1998).

FIR operates on observations of input/output behaviour of a system, or on observations of

time series. In order to qualitatively reason about these observed behaviours, real-valued

trajectory behaviour needs to be fuzzified, i.e. mapped into a set of fuzzy classes. In FIR, the

process of fuzzification is called recoding. In this process, real-valued data are mapped into

qualitative triples, consisting of a class value, a fuzzy membership value, and a side value.

The side value is a speciality of the FIR methodology. It describes whether the original real-

valued data point lies to the left, at the centre, or to the right of the maximum of the Gaussian

membership function governing the chosen class. The side value makes it possible to

defuzzify qualitative triples into real-valued quantitative data without information loss.

In FIR, quantitative data are usually recoded into either three or five classes using equal

frequency partitioning to determine the landmarks (borderlines) between neighbouring

classes. Once the landmarks have been found, the Gaussian fuzzy membership functions

associated with each class are automatically determined by letting them assume a maximum

value of 1.0 in the centre between the two landmarks that limit the class, and by letting them

decay to a value of 0.5 at the two landmarks themselves.

FIR operates initially on a real-valued raw data matrix. Each column of this matrix

contains one equidistantly sampled trajectory of an observed variable, whereas each row

contains one time-stamped record of all the observed variables. In the process of recoding,

the raw data matrix is converted to three separate matrices: a multi-valued qualitative class

matrix, a real-valued fuzzy membership function matrix with values ranging between 0.5 and

1.0, and a ternary side matrix.

Once the observed data have been recoded, FIR attempts to find behavioural patterns

among the observations, using the information stored in the class values. To this end, it tries to

find relationships among these class values that are as deterministic as possible. For example,
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a set of observations may contain five variables named x1, x2, x3, x4, and y. A qualitative

model is to be determined that is capable of predicting future values of y as a function of past

values of y as well as past and future values of x1, x2, x3, and x4. FIR may determine that the

most successful predictions of y at the current time can be made by making use of x3 two time

steps back, x1 and x4 one time step back, as well as y one time step back. Such a relationship

can be written as

yðtÞ ¼ f {x3ðt 2 2Þ; x1ðt 2 1Þ; x4ðt 2 1Þ; yðt 2 1Þ}

where f is a qualitative tabular function specified by the observations made, i.e. by means of

the training data.

In FIR, such a qualitative relationship is encoded in the form of a so-called mask. A mask

is a matrix that contains as many columns as there are observed variables, and as many rows

as the qualitative relationship covers time instants. Inputs of the qualitative relationship

(so-called m-inputs ) are encoded as negative integers, whereas the mask output (the

so-called m-output ) is encoded as þ1. The mask corresponding to the previously introduced

qualitative relationship is shown below.

x1 x2 x3 x4 y

t � 2dt

t � dt

t

0 0 21 0 0

22 0 0 23 24

0 0 0 0 1

0BB@
1CCA

Possible mark

FIR searches for the best qualitative relationship (qualitative model) by either an

exhaustive search or one of several heuristics applied to a set of mask candidates. The set of

mask candidates is encoded in the form of a so-called candidate mask that contains 21

elements at the locations of potential m-inputs, and a þ1 at the location of the m-output.

A possible candidate mask for the five-variable system is shown below.

x1 x2 x3 x4 y

t � 2dt

t � dt

t

�1 �1 �1 �1 �1

�1 �1 �1 �1 �1

�1 �1 �1 �1 1

0BB@
1CCA

Candidate mask

The index used to compare the masks is an entropy-based measure called the quality of the

mask in the FIR context. The Shannon entropy measure is used to determine the uncertainty

associated with predicting a particular output given any legal input state. The optimality of

the mask is evaluated with respect to the maximisation of its predictive power. Details of

how the quality of each mask is determined can be found in Cellier (1991) and Nebot et al.

(1998). The optimal mask represents a compromise between predictiveness and specificity of

the model. A simpler mask, i.e. a mask with a smaller number of m-inputs, makes it easier to

make predictions, but the predictions obtained in this way are not very specific. On the other

hand, a more complex model, if applicable, can make highly specific predictions, but often,

there may not be enough evidence gathered from the training data to justify such a prediction.

Once the optimal mask has been found, it can be used to flatten dynamic relations into

static ones. To this end, the mask is shifted along the data matrix during k time intervals

in order to construct the so-called behaviour matrix embracing the behaviour of the system
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(the behaviour of the system is learnt by means of the optimal mask). In fact, there are three

separate matrices making up the behaviour: a class, a membership and a side matrix. In the

behaviour matrix, columns represent the m-inputs and the m-output of the mask, and rows

represent fuzzy rules that can be linguistically sorted. Hence, the behaviour matrix

constitutes a fuzzy rule based that FIR automatically synthesizes from the training data and

the optimal mask.

Once the fuzzy rule base has been synthesized, it is possible to make predictions. To this

end, a new record of m-inputs (a testing data record) is compared with the m-input records

contained in the fuzzy rule base. The five nearest neighbours are found. The predicted

m-output is then computed as a weighted average of the m-outputs of the five nearest

neighbours among the training data, whereby the weights are determined based on the

relative relevance (proximity or similarity) of each of the five nearest training data to the

testing data record in the m-input space.

The high quality of predictions obtainable using the FIR methodology has been

demonstrated in many publications. In addition, FIR has been compared both qualitatively

and quantitatively to other competing methodologies in López (1999). The results obtained

by López show that FIR is indeed among the very best qualitative forecasting tools available

today.

The problem with the methodology lies in the computational complexity of its algorithms.

The exhaustive model search algorithm is of exponential complexity, and even the currently

implemented heuristics are of polynomial complexity, and therefore quite slow. Whereas FIR

works exceedingly well when applied to a five-variable system, it is doomed to failure when

dealing with a 50-variable system.

The purpose of the ongoing investigation is to find variable pre-selection algorithms of

lower computational complexity than FIR that would permit to automatically extract a subset

of variables from the total set of available sensory information that would contain good

candidates of m-inputs that, in a subsequent FIR analysis, would lead to qualitative models

with high predictiveness and specificity.

2.2. FIR Model of a Steam Generator

Data from a steam generator process will be used throughout the report as an example, in

order to compare the results obtained using different methods of variable selection. Using a

sampling interval of 5 min, 632 data points were collected during a period of significant

change in the boiler throughput so as to cover a wide range of the process behaviour. Figure 1

shows a schematic of the boiler process. Although no methodology can be fully tested if it is

only applied to just one data set, the given process can be seen as a fairly generic process in

the industry. When working with industrial processes we normally find big plants with lots of

variables to measure, somehow related between them usually under the rules of determinate

physical laws. This is the case of the studied process.

The variable to be predicted is the NOx content sampled from the boiler stack. Eight input

variables are considered to have influence on the NOx emission level. Table I shows the

considered variables.

A FIR dynamic model was constructed using 85% of the gathered data. The remaining

15% of the measurement data were used to validate the model. Since the system under

investigation contains only nine variables, the FIR approach can be used directly to model

the system under study, and to select a group of input variables to predict the output of the

boiler.

It was decided to recode each of the nine variables separately into three classes using equal

frequency partitioning to determine the landmarks. A mask candidate matrix of depth 5 was
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proposed, postulating that significant m-inputs may not lag more than 20 min behind

the m-output. All elements of the mask candidate matrix were preset to 21, except for the

element (5,9), which was set to þ1, as it represents the location of the m-output. The

optimisation problem was solved using exhaustive search, except that the maximum allowed

complexity of the mask (the maximum number of mask elements different from 0) was

limited to five. The set of best masks of each complexity was retained as promising masks to

be investigated further.

The retained masks are shown below. The mask of complexity 4 exhibits the highest

quality, followed by the mask of complexity 5, followed by that of complexity 3. The mask of

complexity 3 treats the NOx level as a univariate time series, since it proposes that the future

behaviour of the NOx level can best be predicted taking into consideration its own past

behaviour only.

m4 ¼

0 0 0 0 0 0 0 0 0

0 0 21 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 22 0 0 0 0 0 0 23

0 0 0 0 0 0 0 0 1

0BBBBBBB@

1CCCCCCCA

FIGURE 1 Schematic for the boiler process.

TABLE I Variables of the boiler system

Variable Physical meaning

1 (input) Airflow (KPPH)
2 (input) Fuel flow (Pct)
3 (input) Stack oxygen (%)
4 (input) Steam flow (KPPH)
5 (input) Economiser inlet temp. (F)
6 (input) Stack pressure (in H2O)
7 (input) Windbox pressure (in H2O)
8 (input) Feedwater flow (KPPH)
9 (input) NOx, PPM
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m5 ¼

0 0 21 0 0 0 0 22 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 23

0 0 0 0 0 0 0 0 0

0 0 24 0 0 0 0 0 1

0BBBBBBB@

1CCCCCCCA

m3 ¼

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 21

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 22

0 0 0 0 0 0 0 0 1

0BBBBBBB@

1CCCCCCCA

None of the masks made use of any variables except variables 2, 3, 8, and 9. Hence, any

successful variable pre-selection algorithm should retain these same variables, filtering out

the ones that FIR would not consider in an optimal mask analysis.

FIR can itself be used as a variable pre-selection algorithm, as long as the overall number

of variables is not too large. In the example presented here, it is not evident that a mask depth

of five suffices to capture the best possible masks. Yet, a candidate mask of greater depth

would already in the case of a 9 variable system lead to unacceptably large optimisation cost.

Hence, the previously obtained results were used to postulate a new candidate mask, this time

of depth 16 spanning a time period of 75 min, in which the variables 1, 4, 5, 6, and 7

were disabled by presetting all elements of the mask candidate matrix located in those

columns to 0.

The same optimisation approach was used as before to determine the set of best masks.

Evidently, the masks found earlier are still within the search space, i.e. if other masks are

retained, they must be better than those found earlier. The three retained models are as

follows:

complexity 5: y ¼ f {x3ðtÞ; x3ðt 2 15Þ; x8ðt 2 9Þ; yðt 2 1Þ}

complexity 4: y ¼ f {x2ðt 2 1Þ; x3ðt 2 15Þ; yðt 2 1Þ}

complexity 3: y ¼ f {yðt 2 1Þ; yðt 2 5Þ}

None of the retained masks is identical to any of the ones found earlier, i.e. the larger mask

depth indeed paid off. As before, FIR chose an autoregressive model in the case of the mask

of complexity 3.

Figure 2 shows the output data validation set, i.e. the last 15% of the available data in

continuous line, and the prediction of the output variable, depicted in dashed line, using the

three retained masks. To this end, another facet of the FIR methodology is being used. In a

prediction, i.e. a qualitative simulation, FIR not only forecasts future values of the m-output;

in addition, it generates estimates of the quality of these predictions in the form of a

confidence value. How FIR estimates the confidence in its own predictions is explained

in detail in López (1999). The predicted value at each time instant is determined as follows.

In each simulation step, the three masks are used to compute three separate predictions
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of the m-output value. Each prediction is accompanied by a confidence value. Here, the

prediction with the highest confidence value has been retained as the true prediction for that

step. Of course, the true prediction could have been established using other approach as for

example weighting all the obtained predictions by their confidence, but how the prediction is

to be obtained lies beyond the scope of this paper.

The reader may notice that no NOx value beyond 29.7 PPM was ever predicted, i.e.

whereas the lower NOx levels are predicted (dashed line) fairly accurately, the higher values

are not. The reason is that the training data do not contain any NOx levels beyond 29.7 PPM.

FIR can only predict patterns that it has observed before. Since it has never seen such high

NOx levels, it cannot predict their existence. The MSE error of this forecast is 0.5522.

It may be important to note that, for all other methods presented in this report, the original

data have to be normalised to zero mean and unit variance. With the FIR methodology, this is

not necessary. This explains why the ordinate axis in Fig. 2 has a different scale than for all

other methods. In order for the prediction errors to be comparable, it is necessary to divide

the FIR MSE value by the variance of the output. The normalised FIR MSE error assumes a

value of 0.2817.

2.3. FIR Models Excluding Temporal Relations

In order to be able to compare the quality and the computing reduction achieved when using

different variable selection techniques, static FIR models of the boiler are needed, that is,

models excluding temporal relationships. The candidate mask of depth 1 proposed for this

FIGURE 2 Original (continuous line) and predicted (dashed line) validation set for the output using FIR.
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purpose is:

mcan ¼ ð21 21 21 21 21 21 21 21 1 Þ

Table II shows the retained masks for each of the allowed complexities, as well as the

normalised MSE value of the prediction using each one of them.

Since the search space is now much smaller, the optimal masks can be found much more

rapidly. However, the information obtained is also less valuable. FIR concludes that variables

1 and 6 can be safely discarded, whereas all other variables need to be retained for the time

being. All static models found are of fairly low quality, and the MSE values resulting from

their use are consequently rather high.

Notice that, in the FIR methodology, the quality of masks can only be truly compared to

each other as long as their complexities are the same. Moreover, for a given mask, the MSE

value depends on the validation data set, and both considerations must be taken into account

when attempting to extract conclusions from Table II.

3. METHOD OF THE UNRECONSTRUCTED VARIANCE FOR THE BEST

RECONSTRUCTION

The method described in this section was developed at the University of Texas in Austin

(Dunia, 1997; Dunia and Qin, 1998; Qin and Dunia, 1998). It was previously used to select

the number of principal components to keep in a PCA model, based on the best

reconstruction of the variables. The purpose of the PCA model was to identify faulty sensors

in a system, and to reconstruct sensor data values from measurements of sensors attached to

other signals, exploiting the redundancy inherent in multiple sensor data streams. The

methodology had not been designed as a tool for finding an input/output model of a system,

though the two tasks are evidently related to each other.

When a PCA model is used to reconstruct missing or faulty values, the reconstruction error

is a function of the number of intervening principal components. In order to determine the

number of principal components (PCs) to be used, the methodology proposes making use of

the variance that the model cannot reconstruct; that is, it uses the variance of the

reconstruction error.

Prior to determining the number of PCs to be retained in the model, the available

measurement data are analysed to determine what variables are well reconstructed from

which others. For the PCA analysis to be applicable, the data must first be normalised to zero

mean and unit variance. Given a system with k variables, every variable is reconstructed from

the other k 2 1 variables, and its unreconstructed variance is computed as a function of the

number of retained principal components. The results are tabulated as shown in Table III for

the case of the boiler data. In order to obtain a fair comparison, only the training data were

used in the analysis.

The method then proceeds by summing up the unreconstructed variances of each column.

The number of PCs for which the sum of the unreconstructed variances is a minimum is

TABLE II FIR models without temporal relations

Complexity Model Quality MSE

2 (0 0 0 0 0 0 0 21 1) 0.1532 1.1510
3 (0 0 0 0 0 0 2 l 22 1) 0.1523 1.2087
4 (0 0 21 22 0 0 0 23 1) 0.1418 1.0974
5 (0 21 22 0 23 0 0 24 1) 0.0900 0.8234
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determined. It turns out that, in this system, only one PC needs to be retained. The method

then throws out those variables that exhibit, for the optimal number of retained PCs,

unreconstructed variances that are bigger than the value that would be obtained if the

measurement data for those variables were replaced by their mean values. Due to

normalisation, the theoretical threshold value is 1. In practice, it may be better to throw out

variables with an unreconstructed variance above 0.8 or 0.9.

In the boiler example and looking at the 1 PC column of Table III, it can be seen that

variable 3 needs to be thrown out. This means that any variable of the system, except for

variable 3, can be reconstructed using a PCA model with a single PC that is made up from the

information available through all variables except for variable 3, which should be ignored.

The mathematical underpinnings of the methodology outlined in this section are

summarized in Appendix A.

3.1. Modelling NOx Output Using the Unreconstructed Variance Method

It can be seen from Table III that reconstructing the NOx level (variable 9) from the other

variables is considerably more difficult than reconstructing any of the other signals with the

exception of variable 3. Yet, the approach suggests that it is meaningful to construct a PCA

model for variable 9, using a single PC made up from variables 1, 2, 4, 5, 6, 7, and 8.

The results of the analysis are shown in Fig. 3. The continuous line shows the validation

data of the NOx measured variable. The dashed line shows the predictions made by the

PCA model made up from the training data using a single PC composed from the variables

1, 2, 4, 5, 6, 7, and 8. The MSE value obtained from this model for the training data period

is 0.7073, and for the validation period, the one depicted in the figure, it is 0.9979. The

reader may notice that the prediction is indeed better for the training data than for the

validation data.

The MSE value is considerably higher than in the case of the FIR model. The reason is that

the PCA model makes no attempt at replicating the high frequency oscillations exhibited by

the real data. The model has clearly low-pass characteristics. Hence, even if the prediction

looks good to the naked eye, the distances between the prediction and the real data are large

most of the time, and consequently, the MSE value cannot be made small.

Did the reconstructed variance analysis do a good job at deciding which variables to retain

in the PCA analysis? To answer this question, a second PCA model was made, also

consisting of a single PC, but made using the variables 2, 3, and 8, as proposed by FIR. The

results of this prediction are shown in Fig. 4. This time, the MSE values are 0.5703 for the

training data set, and 0.8306 for the validation data set.

TABLE III Unreconstructed variance

Var \ #PC 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs 8 PCs

X1 0.0128 0.0128 0.0047 0.0036 0.0033 0.0025 0.0024 0.0062
X2 0.0190 0.0118 0.0078 0.0074 0.0063 0.0047 0.0036 0.0107
X3 0.9957 18.2113 1.4427 1.0621 1.0522 1.0407 0.8821 6.8374
X4 0.0109 0.0079 0.0050 0.0038 0.0036 0.0032 0.0019 0.0019
X5 0.0305 0.0304 0.0286 0.0283 0.0551 0.0538 0.0357 0.0508
X6 0.0338 0.0335 0.0229 0.0189 0.0190 0.2857 0.2253 0.3810
X7 0.0307 0.0306 0.0121 0.0120 0.0105 0.0107 0.0266 0.0278
X8 0.0688 0.0676 0.0630 0.2825 0.2822 1.7516 4.7219 14.4137
Y 0.5763 0.5768 2.2764 2.2718 2.2282 2.2844 12.3508 147.682
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FIGURE 3 Prediction given by a PCA model using input variables 1, 2, 4, 5, 6, 7, and 8.

FIGURE 4 NOx output predicted using a PCA model built from variables 2, 3, and 8.
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Comparing Figs. 3 and 4 with the naked eye, the predictions look kind of similar. Yet, the

MSE values of the prediction of Fig. 4 are considerably lower, i.e. the reconstructed variance

analysis did not work as well as we thought at deciding which variables need to be retained in

order to obtain a decent prediction, even if the prediction is to be made by a PCA model.

4. METHODS BASED ON REGRESSION COEFFICIENTS

Three different methods based on regression coefficients have been used to analyse how

to select a subset of variables to be kept within a model. These methods are ordinary

least squares (OLS), principal components regression (PCR), and partial least squares

(PLS). A general review of these methods can be found in Geladi and Kowalski (1986) and

Jackson (1991).

4.1. Ordinary Least Squares Method

Given n observations of an input/output system with k input or predictor variables and one

output or response variable, the traditional regression model can be written as:

y ¼ Xb þ e

where X denotes an n £ k matrix of observations of the input variables normalised to zero

mean and unit variance, y denotes an n £ 1 vector of the output also normalised, b a k £ 1

vector of regression coefficients, and e an n £ 1 vector of residuals (also called perturbations

in the literature, that is, e is the effect of all the variables that affect variable y and that are not

included in the model). The least squares solution for b is:

b ¼ ½X0X	21X0y

This expression is obtained under the following considerations about the residuals:

Their expectation is zero, E½ei	 ¼ 0; and their variance is constant, s 2.

Perturbations are independent, E½eiej	 ¼ 0; i – j; and their distributions are normal.

Applying this method to our data, the vector of regression coefficients b, is computed

using the training data set. The 95% confidence interval for each regression coefficient,

computed in accordance with Eq. (1), and the percentage that each coefficient contributes to

variable y are compute as well in order to perform a variable selection.

b̂i ^ tn2k21ða=2ÞŜR
ffiffiffiffiffi
qii

p
ð1Þ

In Eq. (1), b̂i accounts for the regression coefficients, t(a/2) is the t distribution with

n 2 k 2 1 degrees of freedom, ŜR is the estimation of the residual standard deviation, and

qii are the diagonal elements of the matrix (X0X)21.

The OLS technique is a very simple technique, and consequently, more refined techniques

should be rejected if they cannot outperform OLS. Using an OLS model, it might be expected

that the best prediction can be obtained when all variables (all regression coefficients) are

being used. Figure 5 shows an OLS prediction of the validation data of the boiler system

using all the input variables. The MSE value for the training data set is 0.6466, and for the

validation data set, it is 1.1973.

Contrary to the PCA model, the OLS model also represents the oscillatory components of

the behaviour. Yet, the MSE values are still larger than in the case of the PCA model.
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How can the regression coefficients be used to determine a subset of variables to be

retained in a simplified model? Different variable selection methods can be found in the

literature. In Peña (1989), a statistical analysis based on the t distribution is performed to

check whether the ith regression coefficient can assume a value of 0 or not with a given

probability. In Daling and Tamura (1970) and Lindgren et al. (1995), those variables with

smaller coefficients in the regression equation are discarded. These two methods are similar

to each other. When computing the confidence interval for a small coefficient, the probability

that 0 is within this interval is high. In other words, when performing a t-test on this

coefficient, the observed t value, computed in accordance with Eq. (2), will not be of

significant magnitude, and therefore, the hypothesis b̂i ¼ 0 cannot be refused. Consequently,

this variable should not be taken into consideration within the model.

tobs ¼
b̂i

ŜR
ffiffiffiffiffi
qii

p ð2Þ

The criterion adopted here has been to select those variables with significant contri-

bution to the regression equation, and to drop those with smaller contributions. The cut-off

between selected and discarded variables is set to be 5% of contribution to the total

regression line.

Applying this criterion to the previously obtained coefficients, variables 1, 2, 4, 5, and 7

are to be retained. Their regression coefficients are recomputed after eliminating from the X

matrix those columns corresponding to discarded input variables. The top portion of Fig. 6

shows the real and predicted validation output values when using a regression model

with variables 1, 2, 4, 5, and 7. The MSE value is 0.7483 when predicting the training data

FIGURE 5 OLS Prediction with all input variables.
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set, and 1.3250 when predicting the validation data set. The prediction turns out to be a little

poorer than that obtained when keeping all variables in the regression analysis.

Remembering the results obtained with the PCA model, it may be of interest to check what

happens when the variables kept in the regression model are those that FIR suggested to

retain, i.e. variables 2, 3, and 8. Again, the coefficients need to be recomputed. The bottom

portion of Fig. 6 shows the corresponding prediction. In this case, the MSE value is 0.6482

for the training data set and 1.0703 for the validation data set. The results are clearly better

than using the variables that the OLS modelling approach suggested to retain, and in the case

of the validation data set, the results are even better than keeping all variables in the

regression model.

As in the case of the PCA analysis, the OLS modelling approach resulted to be non-

effective in terms of deciding which variables should be kept in the model and which should

be discarded from it (Tables IV–VII).

4.2. Principal Components Regression Model

In this methodology, the input variables are transformed to principal components before

calculating the regression coefficients. The PCR model thus pre-processes the input data,

TABLE IV Total unreconstructed variance for each Principal Component

1.7786 18.9828 3.8633 3.6903 3.6603 5.4373 18.2502 169.412

FIGURE 6 OLS predictions using variables 1, 2, 4, 5, and 7 (top), and variables 2, 3, and 8 (bottom).
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converting them to a set of equivalent PCs. It then uses those PCs to estimate the output by

means of an OLS approach.

A PCR analysis was performed on the training data set of the boiler system, and a cross-

validation method (Wold, 1978; Osten, 1988) was used to determine the number of Latent

Variables (LVs) to be kept in the regression model. To this end, the training data were split

into 10 blocks of equal size, and the Predictive Residual Error Sum of Squares (PRESS)

value was calculated for each of them.

Analysing the results obtained, it was decided to retain four of the possible eight LVs in the

regression model, and the regression coefficients were subsequently calculated as well as the

percentage that each coefficient contributes to the regression equation. Since the PCA

analysis results in a linear transformation on the input space, it is possible to transform the

resulting regression coefficients for the four PCs back to eight equivalent regression

coefficients for the original input variables.

Figure 7 shows the predictions obtained for the validation data set using a PCR model made

of all input variables whereby the four most important PCs (LVs) were retained. The resulting

MSE values are 0.7189 for the training data set and 1.2798 for the validation data set.

It may make sense to again throw some of the input variables out from the beginning.

Using the same criterion that was applied in the case of the OLS model, we found that

variables 1 and 3 could be discarded from the model, i.e. the model retains variables 2, 4, 5, 6,

7, and 8. A PCR model for this reduced set of input variables was subsequently computed.

Cross-validation revealed that, in this case, five of the six possible LVs ought to be retained in

the regression model. The top portion of Fig. 8 shows the prediction using this PCR model.

The resulting MSE values are 0.6866 for the training data set and 1.1587 for the validation

data set. The results are slightly better than for the PCR model involving all input variables.

Just like in the previous two sections, a third PCR model was then calculated using input

variables 2, 3, and 8, as proposed by FIR. In this case, two of the possible three LVs are to be

retained. The bottom portion of Fig. 8 shows the predictions obtained. In this case, the

resulting MSE values are 0.7532 for the training data and 1.0645 for the validation data.

The results here are less good for the training data, but consistent with the results

obtained for the previous two methods, they are better in the case of the validation data set.

TABLE VI Regression coefficients for var. 1, 2, 4, 5, and 7 (left col.) and for var. 2, 3, and 8 (right col.)

Coef. 1,2,4,5,7 Coef. 2,3,8

0.7389 0.6693
0.7051 0.0844
0.7575 20.013
0.6024
22.152

TABLE V Regression coefficients using OLS

Coefficient 95% Confidence interval % Contribution

21.8925 23.0524 20.7326 20.1015
2.3633 1.3890 3.3377 25.1023
0.3493 20.1639 0.4346 3.7098
1.8467 0.5612 3.1322 19.6146
0.5028 0.0598 0.9459 5.3408
20.1847 20.6177 0.2483 1.9620
22.1369 22.7344 21.5394 22.6976
0.1385 20.0976 0.3746 1.4714

VARIABLES FOR QUALITATIVE MODELLING 449



These results could be interpreted in such a way as to suggest that statistical techniques offer

decent interpolation capabilities, but FIR exhibits better generalisation power.

4.3. Partial Least Squares Regression Method

The PLS method operates in similar ways as the PCR method. The PCR method transforms

the input space into a set of PCs. However, it does not do anything to the outputs. The PLS

method transforms both the inputs and the outputs to sets of PCs using a PCA analysis, and in

addition, takes into account the relationship between the input and the output spaces. A brief

description of the PLS technique is given in Appendix B.

The PLS technique was applied to the training data of the boiler system. Just like in the

PCR method, it is necessary to decide how many LVs are to be retained in the regression

model. Hence, cross-validation was used, splitting the available data into 10 blocks of equal

FIGURE 7 PCR model of all input variables retaining four LVs.

TABLE VII Regression coefficients for all variables when using PCR

Coefficients % Contribution

20.0404 1.5098
20.1418 5.2951
0.0618 2.3079
0.2670 9.9665
1.2325 46.0144
20.3242 12.1031
20.4718 17.6139
0.1390 5.1893
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sizes. The result of this study was that four of the possible eight LVs are to be retained in the

regression model. As in the previous method, the regression coefficients found for the four

retained PCs were then translated back to equivalent regression coefficients for the eight

original input variables.

Figure 9 shows the prediction of the validation data set for the PLS model using all input

variables and retaining four LVs. The resulting MSE values are 0.6536 for the training data

set, and 1.1192 for the validation data set.

Next, variable selection is performed. The same criterion is used as in the two previous

sections. This time, variables 2, 4, 5, 6, and 7 are selected. The PLS model for these variables

was then calculated. After performing the cross-validation test, it was decided to retain two

of the possible five LVs. The top portion of Fig. 10 shows the prediction of the validation data

set using a PLS model in the five selected variables with two LVs retained. The resulting

MSE values are 0.6967 for the training data set, and 1.2429 for the validation data set. Hence,

the results are a little poorer than in the previous case, where all variables had been used

(Tables VIII and IX).

As in the previous two sections, a comparison was made with a PLS model in variables

2, 3, and 8, as proposed by FIR. Cross-validation revealed that two of the possible three

LVs ought to be retained. The bottom portion of Fig. 10 shows the prediction obtained

using this model. The resulting MSE values are 0.7527 for the training data set, and 1.0484

for the validation data set. As in the case of the PCR analysis, the results are poorer for the

training data (reduced interpolation capability) but better for the validation data (improved

generalisation power).

FIGURE 8 Prediction of PCR model using variables 2, 4, 5, 6, 7, and 8 (top); and 2, 3, and 8 (bottom).
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5. OTHER METHODS

The results obtained using different methods of selecting variables advocated in Jolliffe

(1972; 1973) are compared in this section using the same data set. One of those methods uses

multiple correlation analysis, two methods are based on principal component analysis, and

two further methods are based on cluster analysis. As with all the other methods presented,

only the training data set was used to decide, which variables are to be retained to construct

the model.

5.1. Multiple Correlation Coefficients

The first method used is based on Multiple Correlation Coefficients (MCC). The algorithm is

named A2 in the above referenced papers. The method works as follows: Suppose there are

TABLE VIII Regression coefficients for variables 2, 4, 5, 6, 7, and 8 (left); and 2, 3, and 8 (right)

Coef. 2,4,5,6,7,8 Coef. 2,3,8

0.7260 0.3271
0.9852 0.0697
0.6313 0.3297
0.0787
21.9695
0.2074

FIGURE 9 PLS model using four LVs and all physical variables.
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p variables. The first discarded variable is the one that has the maximum multiple correlation

with the remaining p 2 1 variables. The multiple correlation of a variable is calculated as the

sum of individual correlations between that variable and any other variable. The algorithm is

repeated with the remaining variables. At each stage with q variables remaining, the variable

having the largest multiple correlation with the other q 2 1 variables is the next to be

discarded. The algorithm terminates when the maximum multiple correlation between

variables has decreased to a value below R0. According to the authors of the papers, a good

value for R0 is 0.15.

When applying this method to the boiler data, it is found that variables 2 and 3 are to

be retained. The discarded variables are, in the order of discarding them, variables 1, 7, 6,

5, 4, and 8. Notice that the last variable discarded was variable 8. Hence, with a value of

TABLE IX Regression coefficients for all variables when using PLS

Coefficients % Contribution

20.1660 2.4436
1.6099 22.6983
0.2671 3.9315
1.5364 22.6154
0.4340 6.3880
20.3468 5.1052
22.4332 35.8170
0.0001 0.0009

FIGURE 10 Predictions using PLS with physical variables 2, 4, 5, 6, and 7 (top); and 2, 3, and 8 (bottom).
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R0 slightly larger, this method would have found the same set of variables to be retained

as FIR.

5.2. Methods Based on Principal Component Analysis

The next two methods in Jolliffe (1972; 1973) are based on principal component analysis.

5.2.1. B2 Method

A principal component analysis is performed on the data. Those PCs with eigenvalues

smaller than L0 are taken into account. Then, beginning with the PC corresponding to the

smallest eigenvalue, the variable with the largest coefficient in this PC that has not been

eliminated before is discarded. The algorithm proceeds in this way with all the PCs chosen.

According to the references, a good value for L0 is 0.7.

Two versions of this method have been implemented. The first of them, named B2a, uses

the components of the PCs as they are, i.e. preserving their sign. When applying the method

to the boiler data, it is found that variables 3 and 8 must be retained, whereas variables 4, 1, 7,

2, 5, and 6 (in this order) must be discarded.

The second version, referred to as B2b, makes use of the absolute value of the coefficients.

When applying this method to the boiler data, it is found that variables 2 and 3 must be

retained, whereas variables 4, 1, 7, 6, 5, 8 (in this order) must be discarded. Notice that also

this method would have found the optimal set of variables to be retained if only a slightly

smaller value of L0 would have been chosen.

5.2.2. B4 Method

The second method based on principal component analysis is the one named B4. The basic idea

is the same as in the previous case, but operates in backward mode. A principal component

analysis is performed on the data. Those PCs with eigenvalues larger than L0 are taken into

account. Then, beginning with the vector corresponding to the largest eigenvalue, the variable

with the largest coefficient in this PC that has not been selected already before is preserved.

The method proceeds with all the PCs chosen in this way. A good value for L0 is also 0.7.

Once more, the results of two versions of this algorithm are presented. The first one, names

B4a, uses the coefficients of the PCs as they are, preserving their sign. When applying the

method to the boiler data, it is found that variables 1 and 2 (in order of acceptance) are to be

retained, while the remaining variables are to be discarded.

The second version, named B4b, uses the absolute value of the coefficients. When

applying this method to the boiler data, it is found that variables 1 and 3 must be retained with

all other variables being discarded.

5.3. Methods Based on Cluster Analysis

The two last methods to be discussed in this report are based on cluster analysis. Although

many clustering methods have been reported in the literature, only two of those methods have

been included in this paper. Before discussing the results obtained, a sketch of the four steps

of the clustering methods applied in this study is presented.

. First, it is necessary to define a measure of similarity, say RXY, between two groups of

variables X and Y. Two such metrics will be used here in order to compare the two

different clustering methods.
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The first metric is for a complete-linkage method and is given by

RXY ¼

j[Y

i[X
max rij ð3Þ

The second measure is for an average-linkage method and is given by

RXY ¼
i[X

P
j[Y

P
rij

 !
ðn1n2Þ

ð4Þ

where rij are the correlation coefficients between variables i and j; and n1 and n2 are the

number of variables contained in groups X and Y, respectively.

. Second, once the measure of similarity has been chosen, RXY is computed for each of the

p( p 2 1)/2 pairs of single variable groups of a p variable system.

. Third step: if A and B are the two groups for which RXY is a maximum, replace A and B by

the single group C ¼ A < B:
. Fourth and last step: for each group not involved in the previous step, calculate RXC and

return to the third step.

The clustering process cycles between steps three and four until the number of groups has

decreased to a sufficiently small value. Two more decisions need to be made: (1) when to stop

with the clustering algorithm, and (2) which variable to choose from each of the obtained

clusters.

A criterion for terminating the clustering algorithm is to continue with steps three and four

until all RXY between the remaining clusters fall below some level R0. In accordance with

Jolliffe (1972; 1973), a good value for R0 is 0.55, when the complete-linkage method is used,

and 0.45, when the average-linkage method is applied. Two methods of choosing variables

from each cluster have been implemented:

Inner-clustering selects one of the first two variables forming each cluster.

Outer-clustering selects the last variable that joined each cluster.

Table X summarises the results obtained when applying this method to the boiler system.

Using either the single-linkage method or the average-linkage method leads to the same

results, thus, Table X is valid for both metrics. The variables in each cluster are given in the

order in which they joined the cluster.

The reader may notice that both techniques selected a subset of the variables that FIR

proposed to retain. Combining the two methods, the optimal set of variables would have been

found in the case of the example at hand.

TABLE X Regression coefficients of PLS model for variables 2, 4, 5, 6, and 7 (left); and 2, 3, and 8 (right)

Coef. 2,4,5,6,7 Coef. 2,3,8

0.4469 0.3461
0.7674 0.0790
1.0934 0.3100
20.4233
21.2280
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6. USING SUBSETS OF VARIABLES FOR STATIC FIR PREDICTIONS

To this end, the predictions made by statistical techniques, as presented in Sections 3–5,

were compared against the much better prediction made by FIR in “Fuzzy Inductive

Reasoning” section (Fig. 2). Such a comparison is unfair, because all statistical techniques

presented in this paper employed static models only, whereas FIR made use of a dynamic

(time dependent) model. All techniques discussed in Sections 3–5 could also have been

used to generate dynamic models by simply duplicating and triplicating the sets of variables,

i.e. the columns of the data matrix, shifting them down each time by one row. The

computational work for these methods would have been enlarged, because they would have

had to deal with more variables in this way, but the predictions would certainly have been

improved.

Yet, this was not the purpose of this paper. The purpose was to find a set of bootstrapping

techniques for FIR that, with little computational effort, could encounter subsets of variables

to be considered in a FIR optimal mask search. To this end, static models, which can be

obtained easily at low computational cost, have been generated, in the hope that the variables

not used by these models would be less likely candidates also in a dynamic model search.

That is, if the performed static analysis is used in a conservative way, only throwing out the

worst variables, FIR will be able to perform a good estimate of important variables even

dynamically. Such an assumption makes sense due to the autocorrelation inherent in any

physical signal.

Table XI lists the results of employing the static methods obtained in previous sections as

bootstrapping techniques for a dynamic model search using FIR.

The first row of Table XI shows the results of performing an optimal mask search using

all nine variables and a candidate mask of depth 16. Hence, the corresponding candidate

mask contains 16·9 2 1 ¼ 143 potential inputs (“ 2 1” elements). An exhaustive search

was performed analysing the quality of masks consisting of up to four of these inputs

plus the output. To this end, 1·581·580 masks had to be evaluated. The search consumed

160 min of computation time on a Sun Ultra Sparc II Workstation. The optimal masks of

complexities 4 and 5 (columns C4 and C5) were tabulated with respect to their resulting

mask qualities (columns 3 and 4). The number of different masks visited in the process of

searching for the optimal mask of complexity 4 is listed in column 5, and the number of

masks visited in search of the optimal mask of complexity 5 is presented in column 6.

Column 7 shows the MSE error obtained in a prediction that combines the predictions

made by the optimal masks of complexities 4 and 5. As discussed in López (1999), FIR

not only makes a prediction of an output variable; it simultaneously provides a measure

of confidence in its own prediction. In the simulation leading to the MSE value reported

in column 7, predictions were made in parallel with the optimal masks of complexities

4 and 5, and in each step, the prediction accompanied by the larger confidence value

was kept.

Each of the subsequent rows tabulates one suboptimal search algorithm, making use of the

results of the static model searches performed in Sections 2–5. For example, the first of these

TABLE XI Selection of variables achieved with cluster analysis

Method Inner clustering Outer clustering

Variables kept 2,3 3,8
Clusters found 2,4,1,7,6,5,8,3 2,4,1,7,6,5,8,3
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rows tabulates a suboptimal search, whereby the variables to be considered were obtained

using the static FIR models found in “Fuzzy Inductive Reasoning” section of the paper.

Those models suggested that variables 1 and 6 are less likely candidates for input variables.

Consequently, variables 1 and 6 were discarded from the set of potential inputs. This is shown

in column 2. The mask candidate now contains 0 elements (forbidden connections)

in columns 1 and 6, and consequently, it only contains 16·7 2 1 ¼ 111 potential inputs.

The subsequent exhaustive search through all masks compatible with the mask candidate

matrix and the constraint of not having more than four inputs resulted in a search through

557,845 masks. Hence, the computational effort was about 1/3 of the one needed for the

experiment described in the previous paragraph. It consumed 53 min of execution time on a

Sun Ultra Sparc II Workstation. It turned out that FIR did a good job at discarding variables.

The resulting masks of complexities 4 and 5 are exactly the same as found using the three

times more expensive search through all possible masks.

The subsequent rows revisit every one of the techniques discussed in Sections 3–5 of the

paper. The techniques of “Method of the Unreconstructed Variance for the Best

Reconstruction” and “Methods Based on Regression Coefficients” sections were not well

suited for the task at hand. All of these techniques threw out variable 3, which turned out to

be essential in making good FIR predictions. This variable was discarded, because it exhibits

a relatively poor cross-correlation with the other variables. Consequently, these statistical

techniques considered the variable of lesser relevance. This decision let to optimal masks of

reduced quality, and as was to be expected, the use of these masks in a FIR prediction led to

substantially larger prediction errors.

Obviously, cross-correlation only evaluates the strengths of linear relationships, whereas

the FIR forecasting engine exploits also non-linear relationships among variables. Yet, this

does not fully explain the comparatively poor performance of these techniques, since even

the statistical modelling techniques of “Method of the Unreconstructed Variance for the Best

Reconstruction” and “Methods Based on Regression Coefficients” sections, using perfectly

linear regression models, exhibit better prediction results when they are applied to the set of

variables selected by FIR (which includes variable 3) than when they are based on their own

variable selection. Evidently, and in spite of its relatively poor cross-correlation with the

other variables, variable 3 still contained valuable information that could be exploited in

predictions.

The final set of rows summarizes the performance of the techniques presented in “Other

Methods” section. These techniques performed considerably better than those presented in

“Method of the Unreconstructed Variance for the Best Reconstruction” and “Methods Based

on Regression Coefficients” sections. Except for method B4A, all methods resulted in

optimal masks that were either the truly optimal ones, or at least of almost equal qualities.

In accordance with this finding, also the resulting MSE values were close to optimal. Why

did these techniques work better? The reason is that they did not attempt to eliminate

variables with poor cross-correlation to the output. Instead, they eliminate variables with

strong cross-correlation to other inputs. This makes sense, because if two inputs are strongly

correlated with each other, they contain almost identical information, and therefore, either

one of them will suffice to explain the output. This strategy works even in the case of non-

linear systems and for use by non-linear prediction algorithms.

The techniques presented in “Other Methods” section are considerably more aggressive in

throwing out variables than the algorithms presented earlier. Since the set of remaining

variables is small, the optimal mask search, for the given example, can be performed quickly.

These searches are completed on a Sun Sparc II Workstation within less than 2 min, i.e. they

execute about 100 times faster. All of these techniques exhibit another important advantage.

They sort the variables in order of increasing or decreasing importance. Hence, it would be
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easy to add one more variable and repeat the optimal mask search to check whether or not the

mask quality improves. This could still be done rather inexpensively.

The loss of prediction quality incurred when computing FIR dynamic models from the

different subsets of variables is summarized in Table XII. The columns labelled P stand for

the percentage of mask quality lost by the different variable subsets relative to that of the

exhaustive FIR model of equal complexity. P is computed as:

P ¼
QFIR dynamic 2 QMODELi

QFIR dynamic

£ 100

The columns labelled N represent the percentage of MSE error increase due to the

selection of different subsets of variables relative to that of the exhaustive FIR model. N is

computed as:

N ¼
MSEMODELi 2 MSEFIR dynamic

MSEFIR dynamic

£ 100

The values in the rows labelled C* were computed combining the predictions made by the

optimal masks of complexities 4 and 5 as explained earlier.

From Table XII, it is evident that there exists a strong positive correlation between the

percentage-wise reduction in mask quality and the corresponding increase in prediction error,

at least for the example at hand.

Table XIII shows the reduction in computing effort attained when using FIR with each one

of the proposed subsets of variables. Each column stands for the reduction in the number of

masks to compute and it has been calculated as:

R ¼
#FIR dynamic 2 #MODELi

FIR dynamic

£ 100

where # is the number of masks to be evaluated for a given complexity. The last column in

Table XIII relates to methods A2, B2a, B2b, B4a, B4b, inner and outer clustering, because

they all achieve the same reduction of the FIR model search space (Table XIV).

TABLE XII Dynamical models obtained from reduced sets of variables

Selected
Mask qualities Number of computed masks

Method variables C4 C5 C4 C5 MSE

None All 0.6080 0.6196 82160 1581580 0.5522
FIR (Static) 2,3,4,5,7,8 0.6080 0.6196 37820 557845 0.5522
Unreconstr. var. 1,2,4,5,6,7,8 0.5943 0.4290 59640 1028790 0.7324
OLS 1,2,4,5,7 0.5943 0.4258 23426 292825 0.7516
PCR 2,4,5,6,7,8 0.5943 0.4290 37820 557845 0.7324
PLS 2,4,5,6,7 0.5943 0.4258 23426 292825 0.7516
A2 2,3 0.6080 0.6167 2600 14950 0.5529
B2a 3,8 0.6057 0.6177 2600 14950 0.5845
B2b 2,3 0.6080 0.6167 2600 14950 0.5529
B4a 1,2 0.5943 0.4258 2600 14950 0.7516
B4b 1,3 0.6049 0.6123 2600 14950 0.5640
Inner clust. 2,3 0.6080 0.6167 2600 14950 0.5529
Outer clust. 3,8 0.6057 0.6177 2600 14950 0.5845
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7. CONCLUSIONS

The behaviour of systems can be predicted using either a priori knowledge (deductive

techniques) or observations (inductive techniques). Only inductive prediction techniques

were analysed in this article. All but the simplest of those techniques make predictions in two

steps. In the first step, an input/output model is created based on the observations made; in the

second step, a simulation of the previously made model is then performed with the purpose of

making predictions. All of the techniques surveyed in this paper first make a model that is

then being used in a simulation.

When creating a model, the observations can either be used directly (quantitative

modelling techniques), or they can first be discretised or at least fuzzified (qualitative

modelling techniques). All of the techniques studied in this article make use of

quantitative modelling techniques, except for FIR, which embraces a qualitative modelling

approach.

The modelling process, be it quantitative or qualitative in nature, usually occurs in two

steps. In a first step, the model structure is being identified. In a second step, the model

parameters are being estimated. Most of the techniques discussed in this paper operate in

such a fashion. The model structure determines the set of variables to be used by the model.

In the case of the techniques discussed in Sections 3–5 of the paper, these variables are then

being used, either directly or indirectly, in a linear regression model. The parameter

estimation step determines the regression coefficients. FIR also starts out by determining the

model structure, i.e. by selecting the set of variables to be used in the simulation. However,

no parameter estimation takes place, since FIR is a non-parametric technique. During its

qualitative simulation, FIR refers directly back to the training data, rather than capturing the

knowledge contained in the training data in a set of parameter values.

Models can be either dynamic or static. In a dynamic model, the current value of the output

may depend on its own past, as well as on current and past values of the inputs. In a static

model, the current value of the output only depends on the current values of the inputs. All of

the techniques advocated in this article may be used to create static or dynamic models,

though only FIR was actually used in the paper for creating dynamic models.

Since all of the techniques discussed in this article first select a set of variables to be used,

they can be arbitrarily combined with each other, i.e. any one of the techniques can be used to

select the set of variables, which can then be used by either the same or any other technique to

make predictions.

In “Fuzzy Inductive Reasoning” section of the paper, FIR was used to create both static

and dynamic models. The static FIR models suggested elimination of variables 1 and 6 of the

9-variable system used throughout the paper as an example. The dynamic FIR model, due to

its better resolution, suggested elimination of variables 4, 5, and 7 in addition to variables

1 and 6, preserving only variables 2, 3, and 8 as the most relevant inputs.

“Method of the Unreconstructed Variance for the Best Reconstruction” and “Methods

Based on Regression Coefficients” sections of the paper analysed a set of statistical

modelling and simulation techniques. All of these techniques were used exclusively for

the creation of static models. In each subsection, a technique was used to select a subset

TABLE XIV Model search space reduction attained with each of the methods

FIR (dynamic ) FIR (static ) PCR Unreconstructed variance OLS, PLS A2, B2a. . .

C4 0 53.97 27.41 71.49 96.84
C5 0 64.73 34.95 81.49 99.05
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of variables to be subsequently used in a linear regression analysis for making predic-

tions. The simulation results obtained in this way were compared against simulations

making use of the variables proposed by FIR, i.e. the first step of each technique

was replaced by a FIR model selection, whereas the subsequent parameter identification

and regression techniques were preserved from the methods discussed. It turned out

that none of these linear modelling techniques did a very good job at choosing a

pertinent subset of variables of the non-linear plant used as an example. The variables

proposed by FIR worked better, even for the purpose of being used in linear regression

models.

“Other Methods” section of the paper discussed a set of clustering techniques for the

purpose of variable selection. These are pure modelling techniques that can be combined

with any of the previously discussed simulation approaches. No simulations were performed

in “Other Methods” section. All of the techniques discussed in this section were used for

static modelling only. It turned out that the techniques advocated in “Other Methods” section

were excellently suited for the purpose of variable selection.

“Using Subsets of Variables for Static FIR Predictions” section of the paper made use of

the subsets of variables proposed by the different techniques presented in the earlier

sections for the purpose of creating dynamic FIR models to be used in subsequent FIR

simulations. The techniques proposed in “Method of the Unreconstructed Variance for the

Best Reconstruction” and “Methods Based on Regression Coefficients” sections of the

paper were least suitable for the task at hand. They eliminated important variables early

on, while keeping a fairly large set of less important variables in the model. The

techniques presented in “Other Methods” section were excellently suited for the purpose

of variable pre-selection. They are fairly fast, work well also in the case of non-linear

applications, and order the variables in terms of either increasing or decreasing

importance.

Of all the techniques discussed in this article, FIR is by far the best both in terms of its

modelling capabilities as well as the power of its simulation engine. Hence, FIR can be used

as a gauge against which the other techniques can be measured. Yet, FIR is deplorably slow

both during modelling and during simulation. FIR’s modelling engine is of exponential

computational complexity, at least if an exhaustive mask search is being used, and

consequently, FIR is unsuited for dealing with large-scale models. Only neural networks are

yet slower in terms of creating models from observations. Hence, FIR needs a booster

technique. Some of the approaches discussed in “Other Methods” section revealed

themselves as excellently suited for such purpose.

Like all non-parametric approaches, FIR is also slow during simulation, but this is

unfortunately inevitable. No booster technique can help with this problem.

Only a single application was used throughout the paper to demonstrate the advantages

and shortcomings of the various methodologies discussed. Yet, the chemical process

discussed in this paper is fairly generic, and the results obtained can indeed be generalised

beyond this single application. Other applications have been studied, and the results obtained

are consistent with those reported in this paper.
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APPENDIX A

The mathematical foundations underpinning the methodology for fault identification by

variance reconstruction, advocated in section 3 of the paper, are reviewed here. A full

description of the method can be found in Dunia (1997), Dunia and Qin (1998) and Qin and

Dunia (1998). The approach discussed in those papers makes use of a normal process model

to decompose the sample vector into two parts:

x ¼ x̂ þ ~x ð1Þ

where x1Rm represents a normalised sample vector of zero mean and unit variance. The

vectors x̂ and x̃ are the modelled and residual portions of x, respectively. PCA is used to

calculate x̂,

x̂ ¼ Pt ¼ PPTx ¼ Cx ð2Þ

where P1Rm£ l is the loading matrix, and t1Rl is the score vector. The number of PCs

retained are l $ 1: The matrix C ¼ PPT represents the projection on the l-dimensional

principal component subspace. The residual x̃ lies in the residual subspace of m-l dimensions

~x ¼ ðIðmÞ 2 CÞx ð3Þ

The PCA model partitions the measurement space (Rm) into two orthogonal subspaces: the

principal component subspace, and the residual subspace.

The sample vector for normal operating conditions is denoted by x* (unknown when a

fault has occurred). In the presence of a process fault Ji, the sample vector can be repre-

sented as:

x ¼ x*þ f ji ð4Þ

where ji is a normalised fault direction vector, and the scalar f represents the magnitude of

the fault. The fault direction vector can be projected on the two subspaces:

ji ¼ ĵi þ ~ji ð5Þ

where Jj has been assumed. Along all possible fault directions x* is reconstructed from x,

the vector xj is obtained moving x in the jj direction,

xj ¼ x 2 f jjj ð6Þ

where fj is an estimate for f. The reconstructed vector is expected to be close to x*, the

distance between xj and the principal component subspace is given by the magnitude of the

SPE for the reconstructed vector. The fault magnitude fj is obtained by minimising SPEj

along the direction jj

SPEj ; k~xk
2
¼ k~x 2 ~fj

~j
0

j k
2

ð7Þ
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dSPEjedfdfj

¼ 0 leading to ~fj ¼ ~j
0T

j ~x ð8Þ

Now the method of unreconstructed variance can be presented. If the assumed fault is the

actual fault in Eq. (8) j ¼ i;

~fi ¼ ~j
0T

i ð~x* þ ~f ~j
0

i Þ ð9Þ

the addition of Eqs. (4) and (6) illustrates the effect of fi 2 f when comparing xi with x*

kx* 2 xik
2
¼ ðf 2 f iÞ

2 ¼
~j
T

i ~x*

~j
T

i
~ji

 !2

ð10Þ

The unreconstructed variance, ui, in the direction ji represents the variance of the projection

x* 2 xi on the fault direction ji

ui ; var{jT
i ðx* 2 xiÞ} ¼ 1{kx* 2 xik

2
} ¼

~j
T

i 1{x*x* T } ~ji

ð ~j
T

i
~jiÞ

2
¼

~j
T

i
~R ~ji

ð ~j
T

i
~jiÞ

2

 !
ð11Þ

where R̃ denotes the covariance matrix of the normal residual. Minimising ui with respect to l

l
min ui ð12Þ

can be used to determine the number of principal components and the set of sensors to

keep for process monitoring. The unreconstructed variance can be projected on the two

subspaces

ui ¼ ûi þ ~ui ð13Þ

In Dunia and Qin (1998), it is shown that ũi is monotonically decreasing with respect to l,

and ûi tends to infinity as l tends to m. Figure A1 illustrates this effect. Equation (12) only

provides the optimal l for Ji, considering the set of all possible faults {Jj},

l
min qT u ¼

l
minðqT ~u þ qT ûÞ ð14Þ

where u represents the vector of unreconstructed variances for all Ji1{Jj}, and q is a

weighting vector with positive entries.

APPENDIX B

A brief description of the PLS technique is given in this appendix. For a full description, the

reader is encouraged to review the extensive literature written on this methodology, for

example Geladi and Kowalski (1986) and Jackson (1991).

The PLS (PLS based regression) technique operates in a similar form as PCR in the sense

that a set of vectors is obtained from the predictor (input) variables. The main difference is

that as each vector is obtained, it is related to the responses and the reduction of variability of

the inputs. The estimation of the next vector takes into account this relationship, and
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simultaneously, a set of vectors for the outputs it is also obtained that takes into account such

a relationship.

PLS has often been presented as an algorithm rather than a linear model, it is based on the

NIPALS algorithm (a least squares algorithm for obtaining principal components). In this

brief review of the method, the notation offered in Geladi and Kowalski (1986) has been

used.

Consider X and Y real data matrices of sizes n £ p and n £ q, respectively, representing

n observations on p input and q output variables. The first step is to normalise both X and Y

to zero mean and unit variance, then two operations are carried out together:

X ¼ TP þ EðT has size n £ k; P has size k £ p; and E has size n £ pÞ

Y ¼ UQ þ F* ðU has size n £ k; Q has size k £ q; and F* has size n £ qÞ

k # q is the number of vectors associated with X. E is the matrix of residuals of X at the kth

stage (when k ¼ p; E ¼ 0). F* is an intermediate step in obtaining the residuals for Y at the

kth stage.

In the singular value decomposition associated with PCA, matrices Q and P would be the

characteristic vectors, and matrices T and U the principal component scores. These matrices

FIGURE A1 Unreconstructed variance as the summation of ûi and ũi.
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do not have the same properties in PLS, but may still be thought of in the same vein; T and U

are referred to as X-scores and Y-scores, respectively.

It is possible to use regression to predict the output block of variables from the input one.

This is done decomposing the X block and building up the Y block. In PLS, a prediction

equation is formed by:

Y ¼ TBQ þ F

where F is the actual matrix of residuals for Y at the kth stage, and B is a transformation

matrix of size k £ k:
It is possible to calculate as many PLS components as the rank of the X matrix, but not all

of them are normally used. In order to decide how many components (also referred to as

latent variables) to use there are several methods advocated in the literature. One of them is

using the number of components that minimises a measure of PRESS (predictive residual

error sum of squares).
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