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Abstract— The paper describes a new approach to multi-
resolution prediction of time series using Fuzzy Inductive Reason-
ing (FIR). The time series is decomposed into a trend series and
another series describing the deviation from the trend. The two
time series are then predicted independently of each other, and
the two predictions are superposed in the end. The trend series
is obtained by means of a moving average, whereas the deviation
series is obtained by a process of de-trending using “daily return”
calculations. The paper deals both with interpolation and with
extrapolation problems.

I. I NTRODUCTION

Multi-resolution time series are series that contain both low-
frequency and high-frequency components. They are difficult
to predict, because the high-frequency component of the
series forces the prediction algorithm to use small time steps,
whereas the low-frequency component of the series calls for a
large time horizon. Thus, the prediction must be carried across
many steps, in which prediction errors may be accumulated.

The CATS time series used in this paper is shown in Fig.1.
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Fig. 1. CATS time series

The CATS time series is a synthetic time series, consisting
of 5000 data records containing five gaps of 20 records
each. The data values from 981–1000, 1981–2000, 2981-3000,
3981–4000, and 4981–5000 are missing. The CATS time series
was proposed as a prediction contest for the 2004 IJCNN
Conference.

The series is a multi-resolution series as it exhibits a very
irregular high-frequency oscillation superposed over a fairly
irregular low-frequency oscillation. The aim is to fill the five

gaps with predicted values, predicting simultaneously the low-
frequency component and the high-frequency component of
the series. The first four of the gaps represent an interpolation
problem, whereas the final gap represents an extrapolation
problem.

II. T HE PREDICTION PROBLEM

Most of the more advanced prediction techniques can be
subdivided into two separate tasks. In a first step, themodeling
step, the algorithm uses a set of training data to identify
a model of a process, from which the training data could
have been obtained. In a second step, thesimulation step,
the algorithm uses the previously identified model to make
predictions outside the training data set.

The modeling algorithm can either attempt to identify the
true structure of the system, from which the training data were
obtained, or it can content itself with identifying any process
able to explain the training data set. In the former case, we
talk about adeep model, whereas models in the latter category
are referred to asshallow models.

The identified model can be either aquantitativeor a qual-
itative model. A quantitative model operates on the measure-
ment data directly, whereas a qualitative model first discretizes
the measurement data, and then reasons about the discrete
classes only.

The model can be either aparametric modelor a non-
parametric model. A parametric model maps the knowledge
contained in the training data set onto a set of model pa-
rameters. During the simulation phase, the training data are
no longer needed, since the information contained in them is
now stored in the parameter values. A non-parametric model
only classifies the training data during the modeling phase,
and refers back to these classified training data during the
simulation phase.

III. F UZZY INDUCTIVE REASONING

The Fuzzy Inductive Reasoning (FIR) methodology offers a
model-based approach to predicting either univariate or multi-
variate time series [1], [2]. A FIR model is a qualitative, non-
parametric, shallow model based on fuzzy logic.



In a first step, the available measurement data are fuzzified.
Thereby, the real–valued quantitative data values are mapped
onto qualitative triples, consisting of a class value, a fuzzy
membership value, and a side value. The process is illustrated
in Fig.2 by means of a variable, called ambient temperature.
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Fig. 2. Fuzzification in FIR

The ambient temperature is mapped onto five discrete
classes, calledcold, fresh, normal, warm, and hot. Each of
these classes is associated with its own fuzzy membership
function, a function with values in the range[0.0, 1.0]. The
fuzzy membership functions can either be Gaussian distribu-
tions or triangular distributions. The side function can assume
values of eitherleft, center, or right. Within each fuzzy class,
values to the left of the maximum of the fuzzy membership
function have associated a side value ofleft, etc. Hence, an
ambient temperature of 23 degrees Centigrade is classified as
normal, with a fuzzy membership value of 0.8, and a side
value of right.

Most dialects of fuzzy logic associate qualitative doubles
rather than triples with each quantitative value. They ignore
the side value, yet allow multiple doubles to represent the
same quantitative value. Hence an ambient temperature of 23
degrees Centigrade would be classified as(normal , 0.8) and
as (warm, 0.05). The FIR dialect of fuzzy logic uses fuzzy
triples, yet only records the most likely triple, i.e., the one
associated with the largest fuzzy membership value.

No information is being lost in the process of fuzzification.
The qualitative triple can be mapped unambiguously onto a
single quantitative value by means of de-fuzzification.

The FIR modeling engine reasons only about the class
values. In the case of a univariate time series, the next value
of the variable,x(t + ∆t), must be a function of previous
recordings of that same variable:

x(t + ∆t) = f(x(t), x(t−∆t), x(t− 2∆t), ...) (1)

The FIR modeling engine does not try to identify the
function, f . It only determines, which subset of previous
recordings is most useful in determining the next value of
the variable,x, e.g.

x(t + ∆t) = f(x(t− 5∆t), x(t− 2∆t), x(t)) (2)

which would be represented as a so-calledoptimal mask:

mask = [−1, 0, 0,−2, 0,−3,+1] (3)

where the+1 element denotes the position of the output within
the time series, whereas the negative values in the mask denote
the relative positions of the three inputs. In the above example,
the1st input is six time steps in the past relative to the output.

The FIR modeling engine searches through all possible
masks up to a given mask depth, creating for each mask
an input/output table of class values. The optimal mask is
the one that makes the map from the set of input classes to
the single output class as deterministic as possible. The FIR
modeling engine optimizes the information content of the map
by minimizing the Shannon entropy measure.

The FIR modeling engine allows the specification of miss-
ing data values, as required for the application at hand [3].

Once the optimal mask has been found, FIR stores the
training data for later retrieval in anexperience data base
consisting of an alpha-numerically sorted list of input/output
data, whereby each quantitative input/output data record is
converted into a record of qualitative triples.

The FIR simulation engine predicts values of the output
variable beyond the end of an episode of recorded data values.
It uses the previously found optimal mask. The inputs to the
mask are inside the known episode, i.e., have known values.
They are fuzzified, and a qualitative input record is created that
can be compared with the records in the experience data base.
The five nearest neighbors are retrieved, and the output value
is predicted as a qualitative triple representing a weighted
average of the output values of the five nearest neighbors in
the experience data base.

If multiple steps are to be predicted, the newly found value
is added to the episode of known values, the mask is shifted
one data point to the right, and the process is repeated, until
the gap has been filled.

IV. L OW-FREQUENCYPREDICTION

In order to produce a low-frequency prediction, a process
of smoothing was applied to the original time series. To this
end, a moving average was computed for every10th data point
consisting of the mean value of the data point itself and its
nine nearest neighbors to the left and to the right.

The low-frequency time series consists of 500 data points.
It still contains five gaps, but each gap is now only three
data points wide. The low-frequency time series is depicted
in Fig.3.
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Fig. 3. Low-frequency CATS time series

A FIR model was identified for the low-frequency CATS
time series, and the missing values in the five gaps were



predicted using time steps of 1 unit in the low-frequency time
series, corresponding to time steps of 10 units in the original
time series.

The interpolation problem was handled a little differently
from the extrapolation problem. Rather than predicting only
three values for each gap, we predicted four values. The fourth
value ought to coincide with the first measurement value of
the next episode. If it wasn’t, we applied a linear correction
to the predicted values in the gap to make that value coincide
with the next measurement data point. Of course, in the case
of the last gap, we could not apply this correction, since we
were dealing with an extrapolation problem.

V. H IGH-FREQUENCYPREDICTION

We could have applied the same technique to the original
data set, thereby producing directly the high-frequency pre-
diction. We tried this, but the results were not very good. The
trend of the curve seemed to be in the way. There were not
enough nearest neighbors in the experience data base to come
up with good high-frequency predictions.

Thus, we used a de-trending technique, called the “daily
return” method. The name comes from the stock market, where
this technique is frequently used. The daily return of a time
series is another time series, defined as:

y(t) =
x(t)− x(t−∆t)

x(t)
(4)

The new time series,y(t), is quasi-stationary. Since the
original time series had both positive and negative values, we
first normalized the original time series to a mean value of
3.0, and a standard deviation of 1.0, using the formula:

ξ(t) =
x(t)− µ

σ
+ 3.0 (5)

whereµ denotes the mean value of the original time series, and
σ denotes its standard deviation. The new mean value of 3.0
was chosen such that the normalized time series should have
values in the range[1.0, 5.0]. We then applied the daily return
formula to the normalized time series,ξ(t). Fig.4 depicts the
high-frequency time series,y(t).
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Fig. 4. High-frequency CATS time series

Unfortunately, the high-frequency time series looks almost
like white noise. It doesn’t contain much information, thus we
shouldn’t expect to get too much out of it, as white noise is
exceedingly hard to predict! Yet, we should hopefully at least
be able to get the frequency right.

The high-frequency time series contains six gaps. The first
data point of the series is missing, then there are four gaps
with a width of 21 points each, and a final gap with a width
of 20 points.

We created the optimal FIR model. It was a model of depth
17 with 6 inputs in different locations. We then used that model
to predict the first 10 values of each gap, e.g. from point 981–
990. We then undid the transformations:

ξ(t + ∆t) =
ξ(t)

1.0− y(t + ∆t)
(6)

and:
x(t) = (ξ(t)− 3.0) · σ + µ (7)

This provided a forecast of the points 981–990 of the original
time series. We then treated the value at point 990 from the
low-frequency prediction as a measurement data point, and
applied a linear correction to get the predicted value from the
high-frequency prediction to coincide with that of the low-
frequency prediction. We repeated this for all five gaps.

We then de-trended the augmented time series once more,
and calculated another high-frequency prediction, using the
same model and even the same experience data base, but a
different immediate past to predict another 10 data points for
each of the five gaps. Since we already had a predicted value
for time 5000, each of the sub-gaps could now be treated as
an interpolation problem.

VI. RESULTS

The next three figures show the vicinity of the five gaps,
after the predicted values have been filled in.
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Fig. 5. Predictions of gaps 1 and 2

It seems that the high-frequency prediction worked in so
far as getting the frequency of the high-frequency oscillation
about right. The amplitudes may be a bit flat. Interesting is
the last prediction. It looks like the curve corrected itself
upward between points 4970–4980. Yet, the low-frequency
model predicted another decline thereafter.
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Fig. 6. Predictions of gaps 3 and 4
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Fig. 7. Prediction of gap 5

VII. VALIDATION

To validate the models, we created other gaps of width 20,
for which we already knew the correct values, and applied our
methodology to make predictions. Evidently, the predictions
should be better than the trivial prediction of connecting the
last known value before the gap with the first known value
after the gap by a straight line. On average, our predictions
were slightly better, but unfortunately, not by much.

The problems are formidable. The low-frequency model is
too irregular with too few data points to create high-quality
predictions, and the high-frequency model is essentially look-
ing at white noise.

For this reason, we are doubtful that any model can do much
better than ours, except possibly by an accidental hit. Highly
sophisticated prediction techniques, such as FIR, work very
well if the data are fairly regular. They can effectively and
efficiently identify nonlinearities, and produce high-quality
predictions that a simpler technique could not even dream to
produce.

Yet, the more irregular the data are, the better will simple
techniques fare by comparison. For the given time series,
straight-line approximations are almost as good as predictions
using sophisticated models.

VIII. C ONCLUSIONS

In this paper, we have presented a new two-layered approach
to forecasting multi-resolution time series by decomposing
the time series into a smooth low-frequency series and a de-
trended high-frequency series that are then predicted indepen-
dently of each other.

The individual predictions were made using two separate
FIR models. However, the two-layered approach to multi-
resolution forecasting is essentially independent of the under-
lying forecasting algorithm. The same approach could also be
combined with any other forecasting technique.

Why did we choose FIR as the underlying forecasting
algorithm? The reason was not that FIR is necessarily the best
technique to predict the time series at hand. The time series is
so irregular that a simpler prediction algorithm may work just
as well. Our reason for using FIR was simply to be able to
compare FIR, which is a methodology that we developed over
the past 20 years, with other approaches that other researchers
may have come up with, in particular with neural network-
based approaches.

Our experience has been that FIR works well, when feed-
forward neural networks work well, and vice-versa. FIR has
some advantages and some disadvantages over feed-forward
neural networks. On the one hand, its predictions are a bit
more reliable, because it refers back to the training data during
simulation. Thus, FIR is incapable of making wild predictions.
On the other hand, FIR may not be able to generalize as well
as a neural network could, and for precisely the same reasons.
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