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ABSTRACT

This paper deals with a new extension of the Fuzzy In-
ductive Reasoning (FIR) methodology that makes use
of the estimate of the prediction error generated by
FIR for automated dynamic model selection during the
simulation run. FIR can choose among several models
available in the model library, and dynamically selects
the model that is currently most appropriate for the
task of making inductively future predictions of system
behavior on the basis of observed earlier behavior1.

Keywords: Fuzzy Systems, Inductive Reasoning, Dy-
namic Model Allocation.

INTRODUCTION

At the last ICQFN conference in Budapest, it was
shown that FIR [Cellier et al., 1996a; Escobet et al.,
1999] can make statistically signi�cant estimations of
its own prediction error [Cellier et al., 1996b]. In fact,
this intrinsic feature may easily be FIR's most impor-
tant characteristic [L�opez, 1999]. However, it was not
attempted to come up with an estimate of the true pre-
diction error directly. Instead, an indirect assessment
was obtained in the form of a con�dence measure.

It can be argued that a direct attempt at estimat-
ing the prediction error must be futile as long as FIR
does its job, because if it were possible to estimate the
prediction error directly, then this estimate could be
subtracted from the prediction, leading to an improved

1The research presented in this paper was supported by the
TAP-96-0882 CICYT project

prediction. Such a na��ve scheme can obviously never
work, as long as FIR exploits all of the information
available in the measurement data for making its pre-
dictions.

However, any estimate of the prediction error, even
an indirect one, can in principle, be used to improve
the accuracy of a prediction made. After all, such an
estimate does provide additional information about the
prediction, an information that should be exploitable.
This paper presents one approach to exploiting this
information for improving the quality of predictions
made.

The same approach can also be used to tackle yet
another problem, namely that of dealing with vari-

able structure systems. Some systems are time{varying.
They change their behavioral patterns over time.

Many such systems operate in a number of di�erent
prede�ned regimes, i.e., during some period of time,
they exhibit similar behavioral patterns, and then, they
suddenly switch from one operational mode to another.
A car may serve as an example. It is in �rst gear dur-
ing some period of time. Suddenly, the driver (or an
automatic controller) decides to shift into second gear.
The car now behaves di�erently from before.

Other systems are truly time{variant. They exhibit a
continuous range of operational patterns. Here, an ap-
proach that classi�es the behavioral patterns into dis-
crete regimes is only an approximation of the true sys-
tem complexity, yet, it may still be an e�ective way of
enabling a person to make predictions of such a system.

In this paper, it will be shown that FIR, together



with the proposed methodology of dynamic mask al-

location, can be used to deal with any and all of the
above scenarios in a robust fashion.

DYNAMIC MASK ALLOCATION

The idea behind dynamic mask allocation is straight-
forward. In [Cellier et al., 1996a], it was shown that
FIR, in its qualitative modeling module, proposes an
optimal mask, i.e., a set of m{inputs that best charac-
terize the output to be predicted.

Two separate quality measures were used to deter-
mine the optimalmask: the entropy reduction measure,
Hr, that e�ectively measures the quality of information
available, and an observation ratio measure, OR, that
determines the quantity of information available. The
mask quality was then determined as the product of
the entropy reduction measure and the observation ra-
tio measure:

Q = Hr �OR (1)

The optimal mask is the one that exhibits the largest
Q value.

Yet, the selection of the optimalmask is by no means
unique. There usually exist many masks of quite simi-
lar mask qualities (with similarQ values). Any of these
masks can be used to make decent predictions. In fact,
the foptmask routine of SAPS{II, the current imple-
mentation of FIR, returns not only the optimal mask,
but the best mask of each complexity, in order to give
the user a choice. Furthermore, a mask evaluation re-

port can be requested that lists each mask that was
tried together with its Q value.

It is quite reasonable to make multiple predictions
in parallel using di�erent masks of high quality. Un-
til now, this was never done, because the user had no
means to judge, which of the predictions obtained is
the best. Using either of the two con�dence measures
introduced in [Cellier et al., 1996b], this is now possi-
ble. Each of the predictions made using di�erent masks
comes with its own con�dence estimate. It is then rea-
sonable to accept, in each step, the one prediction that
exhibits the largest con�dence value.

Figure 1 demonstrates the algorithm. The switch at
the left symbolizes the process of sampling, i.e., the
passing of time. At each time step, n di�erent FIR
models (di�erent masks) are used to make predictions
in parallel. The variable yi represents the predicted
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Figure 1: Dynamic Mask Allocation

output using mask mi, and ci represents the estimated
con�dence in the prediction made. The di�erent con�-
dence values are then passed on to a max selector that
determines the index, i, of the currently best mask:

i = index of fcig; ci = max! (2)

The predicted outputs are fed into a switch selector that
also receives the index of the currently best mask from
the max selector. The switch selector passes through
the yi associated with the selected ci:

y = yi (3)

The mask allocation is dynamic, because in each step,
a di�erent mask may be selected.

DMAFIR AND QDMAFIR

The algorithm explained in the previous section has
been namedDMAFIR, denoting Dynamic Mask Alloca-

tion for FIR. The algorithm does not take into account
the relative quality of the selected mask.

It might make sense to punish the use of masks of
lower quality. To this end, a new quality measure is
introduced:

Qreli =
Qi

Qopt
(4)

where Qi is the mask quality of the selected mask,
mi, and Qopt is the mask quality of the optimal mask.
Clearly, Qreli quali�es as a quality measure, since the



value ofQreli is in the range [0:0; 1:0]with a larger value
denoting the selection of a higher{quality mask. Qreli

is a static mask quality measure, as neither Qi nor Qopt

change their values over time for any given mask, mi.

Using this qualitymeasure, the dynamic mask quality

can be de�ned as:

Qdyn(t) = Qreli(t) � confsim(t) (5)

where confsim(t) is the con�dence value using the sim-
ilarity measure at time t. Here, Qreli(t) is indeed a
function of time, because during each step, a di�erent
mask, mi, may be chosen.

The so modi�ed algorithm has been named QD-

MAFIR, denoting Quality{adjusted Dynamic Mask Al-

location for FIR.

In the sequel, the two algorithms, DMAFIR and QD-
MAFIR, shall be applied to the water demand series
of the city of Barcelona [L�opez et al., 1996] to check
whether dynamic mask allocation might help in ob-
taining better predictions. The rationale behind this
experiment is that the water demand is quite di�erent
during weekends than during work days. Thus, if a
mask is o�ered to FIR that makes better predictions
for holidays, and another mask is provided that makes
better predictions for working days, then FIR might
automatically and dynamically choose the best mask
in each case, o�ering overall better predictions than ei-
ther of the individual masks might be able to generate.

BARCELONA WATER DEMAND PREDIC-

TION

In [L�opez et al., 1996], a time series had been intro-
duced that represents the water demand of the City of
Barcelona. It had been shown that FIR can success-
fully predict the future behavior of this series.

Unfortunately, there are not enough data points
available to train a model that predicts particularly
well during weekends. Hence it was decided to o�er to
DMAFIR and QDMAFIR the top masks of complexi-
ties 2, up to 8, as proposed by the mhis matrix of the
foptmask routine of SAPS{II. These masks, together
with their qualities, are listed in Table 1.

The best mask is a mask of complexity 4. It uses
the values one day back, one week back, and two weeks
back for its prediction. This is reasonable because of
the weekly cyclic behavior of the time series. The sec-
ond best mask is a mask of complexity 5. The masks of

Table 1: Suboptimal Masks and Their Qualities for
Barcelona Time Series

Mask Mask Qual.

y = ~f (y(t � �t); y(t � 7�t); y(t � 14�t)) 0:4539

y = ~f (y(t � �t); y(t � 3�t); y(t � 7�t);
y(t � 12�t)) 0:3997

y = ~f (y(t � �t); y(t � 7�t)) 0:3879

y = ~f (y(t � 7�t)) 0:2993

y = ~f (y(t � �t); y(t � 3�t); y(t � 5�t);
y(t � 11�t); y(t� 14�t)) 0:2280

y = ~f (y(t � �t); y(t � 3�t); y(t � 5�t);
y(t � 7�t); y(t� 11�t)); y(t� 14�t)) 0:0988

y = ~f (y(t � �t); y(t � 3�t); y(t � 5�t);
y(t � 7�t); y(t� 11�t)); y(t� 13�t);
y(t � 14�t)) 0:0374

yet higher complexity o�er a considerably lower quality,
because the amount of available data does not justify
their use.

The mask quality is a compromise measure between
two competing components. The entropy reduction

measure, Hr, assesses the uncertainty associated with
a prediction, i.e., it is a measure of the quality of infor-

mation available. The observation ratio measure, OR,
judges the quality of neighbors, i.e., it is a measure of
the quantity of information available.

Because of the lack of available training data, FIR
cannot justify to always use a mask of high complex-
ity. However, if at any point in time, there happen to
be good neighbors available, then a mask of high com-
plexity may o�er a higher local quality, because it is
associated with less uncertainty.

Both DMAFIR and QDMAFIR allow to exploit this.



At any point in time, FIR will look for the proximity
(or similarity) of its nearest neighbors, and it will pick
the mask of highest complexity that o�ers neighbors
that are su�ciently close.

Figure 2 compares the prediction errors of FIR when
using only the optimal mask with that of FIR using
the DMAFIR algorithm, once with the similarity con�-
dence measure, and once with the proximity con�dence
measure [Cellier et al., 1996b].
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Figure 2: Comparison of FIR and DMAFIR for
Barcelona Time Series

The independent axis shows the number of days in
the future for which a prediction is made, whereas the
dependent axis shows the average prediction error ob-
served for that day using a formula with four separate
components. The �rst two punish deviations in mean
and standard deviation, whereas the other two compo-
nents punish the absolute and dissimilarity errors be-
tween the normalized curves, i.e., after normalizing the
mean of both curves to zero and their standard devia-
tion to one [L�opez, 1999].

There is a dramatic reduction in prediction errors.
The proximity and similarity measures [Cellier et al.,
1996b] o�er similar error reductions, with the similarity
measure being slightly better on average.

Figure 3 compares the prediction errors of FIR when
using only the optimal mask with that of FIR using the
QDMAFIR algorithm, once with the similarity mea-
sure, and once with the proximity measure.
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Figure 3: Comparison of FIR and QDMAFIR for
Barcelona Time Series

The results are quite similar to those found above.
However in this case, the similarity measure o�ers a
consistently larger error reduction than the proximity
measure.

From now on, only the similarity measure will be
used, because it was shown experimentally to be the
better overall measure of the two.

Figure 4 compares the prediction errors of FIR when
using only the optimalmask with that of FIR using the
DMAFIR and QDMAFIR algorithms together with the
similarity measure.
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Figure 4: Comparison of FIR, DMAFIR, and QD-
MAFIR for Barcelona Time Series

It turns out that the DMAFIR algorithm o�ers bet-
ter results than the QDMAFIR algorithm. This is un-
derstandable. QDMAFIR gives a preference to masks
that are close to the optimal mask in complexity. This
hampers the ability of the algorithm to pick the mask of
highest complexity that locally o�ers good neighbors.

The improvement of the forecasting quality obtain-
able by using a dynamic mask allocation algorithm is
quite remarkable. Hence the fact that FIR o�ers a self{
assessment capability is pivotal to its success in mak-
ing predictions about the future behavior of time series.
Prediction methods that do not o�er a self{assessment
capability are therefore severely disadvantaged.

MULTIPLE REGIMES

In this section, it will be demonstrated that the
DMAFIR algorithm can be used to predict time series
that operate in multiple regimes, i.e., where the behav-
ioral patterns change between time segments. To this
end, a new time series is introduced: the Van{der{Pol
oscillator series.

The Van{der{Pol oscillator is described by the fol-
lowing second{order di�erential equation:

�x� � � (1� x2) � _x+ x = 0 (6)



By choosing the outputs of the two integrators as two
state variables:

�1 = x (7)

�2 = _x

the following state{space model is obtained:

_�1 = �2 (8)
_�2 = � � (1� �21) � �2 � �1

y = �2

The �2 variable is used as output of the time series.

This is a synthetic time series, generated by a simula-
tion model. Therefore, the data set can be made as long
as needed. The Van{der{Pol oscillator is characterized
by a stable limit cycle, i.e., already after the transitory
period that is caused by the initial conditions imposed
on the model has died down, a single limit cycle (one
period of the oscillation) will su�ce to characterize the
time series completely. The series is thus as active as
it can ever be.

The behavioral patterns of the series depend on the
choice of the parameter �. A time series operating in
multiple regimes can be created by toggling between
di�erent values of � in the course of the simulation.

To start the experiment, three di�erent models were
identi�ed using three di�erent values of �, namely
� = 1:5, � = 2:5, and � = 3:5. The �rst 80 data
points of each time series were discarded, as they rep-
resent the transitory period. The next 800 data points
were used to learn the behavior of each series, and the
subsequent 200 data points were used as testing data.
With a sampling rate of 0:05, 200 data points corre-
spond roughly to one oscillation period, i.e., four limit
cycles were used for training the model, and one limit
cycle was used for testing. The mask depth was chosen
to be 50. All variables were classi�ed into �ve classes
with the landmarks �7:0, �0:5, �0:25, +0:25, +0:5,
and +7:0. The same landmarks were used for all three
time series, such that the results of the predictions can
be more easily compared with each other.

The models obtained in this way are shown in Ta-
ble 2.

The mask qualities are very high because of the
strictly deterministic nature of the series. The opti-
mal masks for � = 2:5 and � = 3:5 are identical, yet

Table 2: Optimal Masks and their Qualities for Van{
der{Pol Series

Regime Optimal Mask Mask Qual.

� = 1:5 y = ~f (y(t � �t); y(t� 47�t)) 0:9342

� = 2:5 y = ~f (y(t � �t)) 0:9085

� = 3:5 y = ~f (y(t � �t)) 0:9146

the input/output behaviors will be di�erent because of
the di�erent training data used by the two models.

Figure 5 compares the true time series with their
predictions for each of the three models.
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Figure 5: One{day Predictions of the Van{der{Pol Se-
ries Using FIR Without Dynamic Mask Allocation

The top graph in Figure 5 compares the true Van{
der{Pol cycle for � = 1:5 with the FIR predictions
obtained using the model obtained for the same series.
The graph below compares the Van{der{Pol data for
� = 2:5 with the FIR predictions obtained using the
corresponding FIR model, etc.

Because of the completely deterministic nature of
this time series, the predictions should be perfect. They
are not perfect due to data deprivation. Since 800 data
points were used for training, the experience data base
contains only four cycles. Thus, when FIR, during the
prediction, looks for �ve good neighbors, it only en-
counters four that are truly pertinent.

Figure 6 shows the predictions obtained when apply-
ing the model (optimal mask plus training data) ob-
tained for the time series with � = 1:5 to the other two



time series.
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Figure 6: One{day Predictions of the Van{der{Pol Se-
ries Using FIR With � = 1:5 Model

The model cannot predict the peaks of the time series
with � = 2:5 and � = 3:5 correctly, because it has never
seen such tall peaks. FIR can only predict behaviors
that it has seen before.

Similar results are obtained when using the other two
time series with the wrong models. Table 3 summarizes
the errors obtained.

Table 3: Prediction Errors for Van{der{Pol Series

Series � = 1:5 � = 2:5 � = 3:5

Model (� = 1:5) 2.6292 6.7597 10.3922
Model (� = 2:5) 2.9645 0.9747 4.6463
Model (� = 3:5) 4.2691 2.5744 1.8272

The results are as they would have been expected.
The values along the diagonal are smallest, and the
values in the two remaining corners are largest. It also
makes sense that the model obtained for � = 3:5 is
more capable of predicting the series with � = 1:5 than
the other way around.

Next, a time series shall be constructed, in which the
variable � assumes a value of 1:5 during one segment,
followed by a value of 2:5 during the second time seg-
ment, followed by yet another time segment, in which
� = 3:5. The multiple regimes series consists of 553
samples.

Figure 7 shows the results of predicting the multiple
regimes series using the three models independently.

The model obtained for � = 1:5 cannot predict the
higher peaks of the second and third time segment very
well, therefore its error must be largest. The model
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Figure 7: One{day Predictions of the Van{der{Pol
Multiple Regimes Series

obtained for � = 3:5 does a decent job at predicting all
three segments. Thus, its error must be smallest.

Figure 8 shows the results of predicting the multiple
regimes series using DMAFIR together with the simi-
larity con�dence measure. The three individual models
(optimal masks plus training data sets) are o�ered to
the DMAFIR algorithm to choose from.
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Figure 8: One{day Predictions of the Van{der{Pol
Multiple Regimes Series Using DMAFIR

The top plot shows the prediction obtained by
DMAFIR. The bottom plot shows, which of the three
models was chosen at any point in time. The value
plotted is the �{value of the chosen model. During the
�rst time segment, consisting of the �rst 178 samples,
the \average" �{value is �avg = 1:9831. During the
second segment, the average �{value is �avg = 2:4831.
Finally, during the third time segment, the average �{
value is �avg = 3:0871. Thus, on average, FIR indeed
picks more often than not the correct model.



Table 4 lists the prediction errors obtained for the
di�erent simulations using the modi�ed error formula.

Table 4: Prediction Errors for Multiple Regimes Van{
der{Pol Series

error
Model for � = 1:5 5.8759
Model for � = 2:5 2.2978
Model for � = 3:5 1.9317
DMAFIR 1.1195

As was to be expected, the model obtained for � =
3:5 shows the smallest of the individual errors. How-
ever, the error obtained using DMAFIR is still consid-
erably smaller. This demonstrates that DMAFIR can
indeed be successfully applied to the problem of pre-
dicting time series that operate in multiple regimes.

VARIABLE STRUCTURE SYSTEMS

In this section, it will be shown that the DMAFIR algo-
rithm can be successfully employed for predicting time{
varying systems. Whereas a system that operates in
multiple regimes exhibits a �xed number of di�erent
behavioral patterns, a time{varying system exhibits an
entire spectrum of di�erent behavioral patterns.

To demonstrate DMAFIR's ability of dealing with
time{varying systems, the Van{der{Pol oscillator is
used once again. This time, a series was generated,
in which � changes its value continuously in the range
[1:0; 3:5]. The time series contains 953 records sam-
pled using a sampling interval of 0:05. The value of �
changes once per sample.

Figure 9 shows the results of predicting the time{
varying series using the three models independently.

Each peak is of slightly di�erent amplitude, i.e., the
time{varying Van{der{Pol oscillator series is no longer
completely deterministic. As expected, the model ob-
tained for � = 3:5 works best, because it has no dif-
�culty predicting the high{amplitude peaks. Also the
model obtained for � = 2:5 works very well, because
the system has low{pass characteristics. Although �

varies in the range [1:0; 3:5], the extremely small and
extremely large peaks characteristic of very small and
very large � values never show up in the simulation re-
sults. The model obtained for � = 1:5 is least suitable,
because it cannot predict high{amplitude peaks that it
has never seen during the training phase.
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Figure 9: One{day Predictions of the Van{der{Pol
Time{Varying Series

Figure 10 shows the results of predicting the time{
varying Van{der{Pol series using DMAFIR together
with the similarity con�dence measure. The three indi-
vidual models (optimal masks plus training data sets)
were o�ered to the DMAFIR algorithm to choose from.
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Figure 10: One{day Predictions of the Van{der{Pol
Time{Varying Series Using DMAFIR

The prediction is close to perfect. As expected,
DMAFIR makes the prediction more robust, and re-
duces the prediction error to a level that is below that
obtainable by either of the individual models.

Table 5 lists the prediction errors obtained for the
di�erent simulations using the modi�ed error formula.

Table 5: Prediction Errors for Time{Varying Van{der{
Pol Series

error
Model for � = 1:5 5.7431
Model for � = 2:5 1.4864
Model for � = 3:5 1.8791
DMAFIR 1.2997



The experiment shows that DMAFIR is indeed ca-
pable of dealing with variable structure system predic-
tions. Although such systems do not have a �nite set
of individual behavioral patterns, it is useful to dis-
cretize the spectrum of behavioral patterns, identify
individual models for each of these patterns, and then
let DMAFIR choose among them during the variable
structure system prediction.

CONCLUSIONS

In this paper, a methodology was introduced that al-
lows to exploit the con�dence measure of FIR, an in-
direct prediction error estimate, for improving the pre-
dictions made.

Since a direct error estimate coupled with an error
subtraction scheme does not work, con�dence measures
had been introduced in [Cellier et al., 1996b] as a means
to indirectly assess the quality of predictions made.
The present paper has shown how this indirect infor-
mation can be exploited to improve the quality of the
predictions made by FIR. It was shown that the self{
assessment capability of FIR is pivotal to its capability
of making high{quality predictions of time series.
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