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Abstract

The cardiovascular system is composed of the hemodynamical system and the central nervous system (CNS)
control. Whereas the structure and functioning of the hemodynamical system are well known and a number of
quantitative models have already been developed that capture the behavior of the hemodynamical system fairly
accurately, the CNS control is, at present, still not completely understood and no good deductive models exist that
are able to describe the CNS control from physical and physiological principles. The use of qualitative methodologies
may offer an interesting alternative to quantitative modeling approaches for inductively capturing the behavior of the
CNS control. In this paper, a qualitative model of the CNS control of the cardiovascular system is developed by
means of the fuzzy inductive reasoning (FIR) methodology. FIR is a fairly new modeling technique that is based on
the general system problem solving (GSPS) methodology developed by G.J. Klir (Architecture of Systems Problem
Solving, Plenum Press, New York, 1985). Previous investigations have demonstrated the applicability of this approach
to modeling and simulating systems, the structure of which is partially or totally unknown. In this paper, five separate
controller models for different control actuations are described that have been identified independently using the FIR
methodology. Then the loop between the hemodynamical system, modeled by means of differential equations, and the
CNS control, modeled in terms of five FIR models, is closed, in order to study the behavior of the cardiovascular
system as a whole. The model described in this paper has been validated for a single patient only. © 1998 Elsevier
Science Ireland Ltd. All rights reserved.
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Fig. 1. Simplified diagram of the cardiovascular system model, composed of the hemodynamic system and the CNS control.

1. Introduction

In this paper, a model of the human cardiovas-
cular system is described. It consists of a quantita-
tive highly non-linear ordinary differential
equation-based detailed model of the hemody-
namical system, described earlier in [1], and a
qualitative inductive reasoning-based model of the
central nervous system (CNS) control, developed
in this paper. A simplified diagram of the cardio-
vascular system is shown in Fig. 1.

As the hemodynamic model is not central to the
research effort discussed in this paper, it is only
briefly being touched upon in Appendix A to this
paper. For more detail, the reader is referred to
[1,2].

The overall CNS model is composed of five
separate qualitative models describing the heart
rate, peripheric resistance, myocardiac contractil-
ity, venous tone, and coronary resistance con-
trollers to be described in detail in this paper.

The cardiovascular system model has been vali-
dated by means of experimental data obtained
from patients carrying out so-called Valsalva ma-
neuvers [1]. The measured output variables of the
cardiovascular system considered are the right
auricular pressure, PAD, the aortic pressure, PA,
the coronary blood flow, FA, and the heart rate,
HR. Patients having been catheterized for a differ-
ent purpose were asked whether they would agree
to perform several Valsalva maneuvers for the
purpose of this study. The Valsalva manoeuvre
was chosen because, under this scenario, all con-



A. Nebot et al. / Computer Methods and Programs in Biomedicine 55 (1998) 127–155 129

trol mechanisms that pertain to the central ner-
vous system control operate in a significant way,
causing hemodynamical changes in a short time
span.

The four phases that comprise the Valsalva
maneuver are usually referred to as phases I, II,
III, and IV. Phase I occurs just after the onset of
the maneuver, phase II takes place just before the
effort is concluded, phase III corresponds to the
ending of the maneuver, and finally, phase IV
occurs shortly after the maneuver has been com-
pleted. The model validation is done by compar-
ing the four simulated output variables with the
same quantities available from measurements
prior to the onset of the Valsalva maneuver (the
Pre-Valsalva phase), as well as during phases II
and IV of the Valsalva maneuver.

The qualitative modeling methodology used in
the research described in this paper is the fuzzy
inductive reasoning (FIR) approach that had first
been reported in [3]. Another biomedical applica-
tion of this modeling methodology for the pur-
pose of modeling the control of an anaesthetic
agent (isoflurane) was previously reported in [4].
FIR proved to be excellently suited for modeling
observed input/output behavior of systems for
which no quantitative model is available. FIR
models are synthesized rather than trained, which
drastically speeds up the modeling phase in com-
parison with other inductive modeling techniques,
such as neural networks (NN) or NARMAX
(Nonlinear AutoRegressive Moving Average with
eXternal inputs). The models obtained by the FIR
methodology are characterized by a high quality
of their predictions. In addition, the methodology
offers an important self-assessment capability that
prevents it from overgeneralizing, i.e. from mak-
ing predictions that are not justified on the basis
of the available facts.

In this paper, the FIR models will be compared
with NARMAX models obtained for the same
five subsystems, and the two modeling method-
ologies will be compared with each other.

The models described in this paper have been
validated for a single patient only. No attempts
have been made to achieve a generalization that
would allow the models to be used for other
patients as well. This facet of the research effort

will be reported in a separate publication at some
later time.

2. The cardiovascular system

2.1. The hemodynamical system

Over the years, the mathematical models de-
scribing the hemodynamical system have grown in
size and complexity, proportional to the computa-
tional capacity of the available computers and
progress made in cardiovascular system clinical
research. Elaborate models of the arterial, vein,
and cardiac systems that together form the hemo-
dynamical system have been developed by re-
searchers such as Beneken, Rideout, Sagawa, and
Snyder [5–7]. They are in compliance with the
laws of fluid mechanics.

A recent, and very detailed, hemodynamical
model was developed in [2], and more recently
reported in [1]. In this model, the heart is com-
posed of four chambers, modeled from the rela-
tions between pressure, volume, and elasticity
variables. This model is primarily influenced by
the publications of Leaning et al. [8], as well as
Suga and Sagawa [9]. A summary of the hemody-
namical model used in the research reported in
this paper is presented in Appendix A to this
paper.

The hemodynamical system has been widely
studied, and its mechanisms are quite well under-
stood. They are not fundamentally different from
those of a hydro-mechanical pump. However,
there exist much larger parameter variations from
one specimen to the next than would be the case
among hydro-mechanical pumps.

It does not make much sense to use a qualita-
tive methodology to identify a hemodynamical
model, since no new knowledge can be acquired
in this way. The available quantitative models
offer a fairly high degree of internal validity, and
are therefore suitable for the task at hand. Conse-
quently, the quantitative hemodynamical model
presented in [2], described through a set of highly
non-linear ordinary differential equations, has
been adopted in this study.
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2.2. The central ner6ous system control

The central nervous system controls the hemo-
dynamical system, by generating the regulating
signals for the blood vessels and the heart. These
signals are transmitted through bundles of sympa-
thetic and parasympathetic nerves, producing
stimuli in the corresponding organs and other
body parts.

The functioning of the central nervous system is
of high complexity and not yet fully understood.
This is the reason why many of the cardiovascular
system models developed so far have been de-
signed without taking into account the effects of
CNS control.

Although the central nervous system control is,
at present, still not completely understood, indi-
vidual differential equation models for each of the
hypothesized control mechanisms have been pos-
tulated by various authors [8,10,11]. However,
these models offer a considerably lower degree of
internal validity in comparison with the models
used to describe the hemodynamical system.

The use of inductive modeling techniques with
their reduced explanatory power but enhanced
flexibility for properly reflecting the input/output
behavior of a system may offer an attractive
alternative to these differential equation models.
Furthermore, as shall be shown in this paper, they
may offer a self-assessment capability that makes
some of these models more robust than the differ-
ential equation models. This is particularly true
for the FIR methodology advocated in this arti-
cle.

It is the aim of this paper to apply the FIR
methodology to find a qualitative model of the
CNS control that accurately represents the input/
output behavioral patterns of the CNS control
that are available from observations of a particu-
lar patient.

The work described in [2] was taken as a start-
ing point. In the research effort reported in [2],
two separate CNS control models, a differential
equation model and a NARMAX model were
developed. The differential equation model repre-
sents an enhancement of many individual previ-
ous research efforts described by various authors
[2,5–7,9,12], and represents one of the most com-

plete deductive CNS control descriptions cur-
rently available. The NARMAX model is an
inductive model that shares many of the advan-
tages and shortcomings of NN models. Just like
the NN models, the NARMAX model is basically
a quantitative model with slow training capabili-
ties but easy adaptation possibilities. Neither NN
nor NARMAX models have any inbuilt self-vali-
dation capabilities. They will predict output val-
ues even when presented with input stimuli for
which they have not been trained.

The signals obtained from the simulation of the
CNS control modeled with differential equations
were used by Vallverdú as initial data for the
identification of NARMAX models for a set of
different patients. These NARMAX models share
the same structure for each of the identified pa-
tients, but are characterized by different parame-
ter values. The same signals were also used as
initial data for the identification of the five FIR
models for a single patient.

The CNS control model is composed of five
separate controllers: the heart rate controller
(HRC), the peripheric resistance controller (PRC),
the myocardiac contractility controller (MCC),
the venous tone controller (VTC), and the coro-
nary resistance controller (CRC). All five con-
troller models are single-input/single-output
(SISO) models driven by the same input variable,
namely the carotid sinus pressure as shown in Fig.
1. However, the carotid sinus pressure was not
one of the measured variables. It is a variable that
has been extracted from the differential equation
model describing the hemodynamics of the car-
diovascular system.

The five output variables of the controller mod-
els are not even amenable to a physiological inter-
pretation, except for the HRC variable, which is
the inverse heart rate, measured in seconds be-
tween beats.

Why were these variables chosen as the inter-
face points between the quantitative and qualita-
tive parts of the model? Would it not have been
more meaningful to rely on measured quantities
as interface variables? The answer to the last
question must clearly be yes! It would have made
more sense to proceed in this way. However, by
the time this research started, measurements had
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already been made, and the structure of the over-
all model with its decomposition into a hemody-
namical and a CNS subsystem including the
interface variables as shown in Fig. 1 had already
been determined. Under those circumstances, it
was deemed more reasonable to continue with the
previously established model structure, because
this approach allowed us to inherit the hemody-
namics model without need for a further modifi-
cation, made new measurements unnecessary, and
furthermore enabled us to compare our results
with those obtained previously.

Clearly, the drawback of this solution is the
fact that the qualitative models must rely on the
previously made differential equation model, and
therefore, it cannot be expected that the FIR
models will perform better than the differential
equation models on which they are based. How-
ever, it is important to notice that this drawback
is not a deficiency of the proposed methodology
itself, only one of the adopted model structure as
it refers to the unmeasured and even non-physical
character of the interface variables between the
quantitative and qualitative parts of the overall
model.

It is always a virtue to work with the simplest
models possible that explain the available data in
order to make potentially necessary patient-spe-
cific adjustments to the models as quick and
painless as possible. It serves no purpose whatso-
ever to carry in the models highly sophisticated
parameters that are conceptually satisfying, the
values of which are, however, impossible to deter-
mine either through direct measurements or
through indirect parameter identification tech-
niques. The NARMAX models are extremely sim-
ple in their internal structure, and therefore satisfy
the requirement for simple models. The FIR mod-
els are less simple, but they are non-parametric
anyway, and setting up a new FIR model can be
done easily and quickly. Both types of inductive
models are much more manageable than the dif-
ferential equation model, they were derived from.

The input and output signals of the CNS con-
trol, shown in Figs. 2 and 3, have been recorded
with a sampling rate of 0.12 s from simulations of
the purely differential equation model. The model
had been tuned to represent a specific patient

suffering from at least 70% coronary arterial ob-
struction, by making the four different physiologi-
cal variables: right auricular pressure, aortic
pressure, coronary blood flow, and heart rate of
the simulation model agree with the measurement
data taken from the patient.

In the modeling process, the normalized mean
square error (in percentage) between the simu-
lated output, ŷ(t), and the system output, y(t), is
used to determine the validity of each of the
models. The error equation is given in Eq. (1).

MSE=
E [(y(t)− ŷ(t))2]

yvar

· 100% (1)

where yvar is the variance defined as:

yvar=E [y2(t)]−{E [y(t)]}2 (2)

This error measure will also be used to compare
the quality of the models obtained for a single
patient using the NARMAX and FIR methodolo-
gies.

3. The FIR methodology

The FIR methodology is based on the general
system problem solver (GSPS) [13], a tool for
general system analysis that allows to study the
conceptual modes of behavior of dynamical sys-
tems. FIR is a qualitative modeling and simula-
tion methodology that is based on observation of
input/output behavior of the system to be mod-
eled, rather than on structural knowledge about
its internal composition. FIR has two main tasks.
The first task is to identify qualitative causal
relations between the system variables that are
available from observations. In this task, a quali-
tative model of the observed system is being con-
structed. The second task is to predict the future
behavior of the system from past observations. In
this task, the previously constructed model is be-
ing used in a qualitative simulation. FIR is a
powerful technique, suitable for modeling and
simulating systems, for which no or only very
limited a priori structural knowledge is available,
such as in biomedicine, biology, and the economy.

Fig. 4 shows the two main tasks of the FIR
methodology in a schematic way, namely the
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Fig. 2. Carotid sinus pressure, heart rate, and peripheric resistance control signals used to obtain inductive NARMAX and FIR
models.
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Fig. 3. Myocardiac contractility, venous tone, and coronary resistance control signals used to obtain inductive NARMAX and FIR
models.
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Fig. 4. Schematic representation of the two primary engines of the FIR methodology: qualitative modeling and qualitative
simulation, as well as of the two interface engines: fuzzification and defuzzification.

identification of a qualitative model, and the use
of that model in a qualitative simulation for the
purpose of predicting future behavior of the sys-
tem under study.

The FIR is fed with data that are measured
from the system under study. These are usually
quantitative, i.e. real-valued time-stamped data,
such as blood pressure, body temperature, etc.
However, FIR bases its decisions on qualitative,
i.e. discretized, data. Consequently, the measure-
ment data must first be converted from quanti-
tative to qualitative data streams. In order not
to lose information in this process, the dis-
cretization is not done in a crisp, but rather in a
fuzzy sense. In Fig. 4, this process is called
fuzzification.

The predictions made by the qualitative simu-
lation engine of FIR are qualitative predictions.
It may be desirable to use these predictions sub-
sequently as driving functions (inputs) to a
quantitative model. To this end, the qualitative
predictions need to be converted back to quanti-
tative data streams. This is accomplished by the
defuzzification engine shown in Fig. 4.

The four engines that comprise the FIR
methodology are described in more detail in the
subsequent sections of this paper.

3.1. Fuzzification

The fuzzification engine converts quantitative
values into qualitative triples. The first element of
the triple is the class value, the second element is
the fuzzy membership value, and the third ele-
ment is the side value. The class value represents
a coarse discretization of the original real-valued
variable. The fuzzy membership value denotes the
level of confidence expressed in the class value
chosen to represent a particular quantitative
value. Finally, the side value indicates whether the
quantitative value is to the left or to the right of
the peak value of the associated membership func-
tion. The side value, which is a specialty of the
FIR technique since it is not commonly used in
fuzzy logic, is responsible for preserving, in the
qualitative triple, the complete knowledge that
had been contained in the original quantitative
value. Fig. 5 illustrates the process of fuzzification
by means of an example. A temperature of 23°C
would hence be fuzzified into the class ‘normal’
with a side value of ‘right’ and a fuzzy member-
ship value of 0.89.

Most fuzzy inferencing approaches preserve the
total knowledge by associating with each quanti-
tative data value multiple fuzzy rules consisting of
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tuples of class and membership values. They
would thus represent the temperature of 23°C as
being ‘normal’ with likelihood 0.89 and being
‘warm’ with likelihood 0.05. FIR accomplishes
the same by associating with each quantitative
data value a single fuzzy rule consisting of a
qualitative triple.

In the current implementation of the FIR
methodology, in the form of a Matlab [14] tool-
box called SAPS-II [3], class values are repre-
sented by positive integers, i.e. in the above
temperature example, by the numbers ‘1’ repre-
senting ‘cold, ‘2’ denoting ‘fresh, ‘3’ symbolizing
‘normal’, ‘4’ standing for ‘warm’, and ‘5’ mapping
‘hot’. Similarly, the side values are implemented
as ‘−1’ instead of ‘left, ‘0’ representing ‘center’,
and ‘+1’ corresponds to ‘right’. In the continua-
tion of this paper, we shall make use of the
numeric representations of these quantities, espe-
cially in formulae.

3.2. Qualitati6e modeling

The qualitative behavior is stored in a qualita-
tive data model. It consists of three matrices of
identical sizes, one containing the class values, the
second storing the membership information, and
the third recording the side values. Each column
represents one of the observed variables, and each
row denotes one time point, i.e. one recording of
all variables, or one recorded state.

In the process of modeling, it is desired to
discover finite automata relations among the class
values that make the resulting state transition
matrices as deterministic as possible. If such a

relationship is found for every output variable,
the behavior of the system can be forecast by
iterating through the state transition matrices.
The more deterministic the state transition ma-
trices are, the higher is the likelihood that the
future system behavior will be predicted correctly.

A possible relation among the qualitative vari-
ables of a five-variable system example could be
of the form:

y1(t)= f0 (y3(t−2dt), u2(t−dt), y1(t−dt), u1(t))
(3)

where f0 denotes a qualitative relationship. Notice
that f0 does not stand for any (known or un-
known) explicit formula relating the input argu-
ments to the output argument, but only represents
a generic causality relationship that, in the case of
the FIR methodology, will be encoded in the form
of a tabulation of likely input/output patterns, i.e.
a state transition matrix.

In SAPS-II, Eq. (3) is represented by the fol-
lowing so-called ‘mask’ matrix:

t/x
t−2dt
t−dt

t

: u1

0
0

−4

u2

0
−2

0

y1

0
−3
+1

y2

0
0
0

y3

−1
0
0

;
(4)

The negative elements in this matrix are referred
to as m-inputs. m-inputs denote input arguments
of the qualitative functional relationship. They
can be either inputs or outputs of the subsystem
to be modeled, and they can have different time
stamps. The above example contains four m-in-
puts. The sequence in which they are enumerated
is immaterial. They are usually enumerated from
left to right and top to bottom. The single positive
value denotes the m-output. The terms m-input
and m-output are used in order to avoid a poten-
tial confusion with the inputs and outputs of the
system. In the above example, the first m-input, i1,
corresponds to the output variable y3 two sam-
pling intervals back, y3(t−2dt), whereas the sec-
ond m-input refers to the input variable u2 one
sampling interval into the past, u2(t−dt), etc.

In the FIR methodology, such a representation
is called a mask. A mask denotes a dynamic
relationship among qualitative variables. A mask

Fig. 5. Gaussian membership functions of a quantitative vari-
able representing ambient temperature.
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Fig. 6. Process of flattening dynamic relationships into pseudo-static relationships using a mask.

has the same number of columns as the qualita-
tive behavior to which it should be applied, and it
has a certain number of rows, the depth of the
mask. The mask can be used to ‘flatten‘ dynamic
relationships into ‘pseudo-static‘ relationships.
This process is illustrated in Fig. 6. The left side
of Fig. 6 shows an excerpt of the class value
matrix, one of the three matrices belonging to the
qualitative data model. It shows the numerical
rather than the symbolic class values. In the ex-
ample shown in Fig. 6, the first and second vari-
ables, u1 and u2, were discretized into two classes,
whereas the remaining variables, y1, y2, and y3

have been discretized into three classes each. The
dashed box symbolizes the mask that is shifted
downwards along the class value matrix. The
round shaded ‘holes‘ in the mask denote the
positions of the m-inputs, whereas the square
shaded ‘hole‘ indicates the position of the m-out-
put. The class values are read out from the class
value matrix through the ‘holes’ of the mask, and
are placed next to each other in the input/output
matrix that is shown on the right side of Fig. 6.
Here, each row represents one position of the
mask along the class value matrix. It is lined up

with the bottom row of the mask. Each row of the
input/output matrix represents one pseudo-static
qualitative state or qualitative rule. For example,
the shaded rule of Fig. 6 can be read as follows: If
the first m-input, i1, has a value of ‘2’ (corre-
sponding to ‘medium’), and the second m-input,
i2, has a value of ‘1’ (corresponding to ‘low’), and
the third m-input, i3, has a value of ‘2’ (corre-
sponding to ‘medium’), and the fourth m-input,
i4, has a value of ‘2’ (here corresponding to
‘high’), then the m-output, o1, assumes a value of
‘3’ (corresponding to ‘high’).

The qualitative rules can be invoked during
qualitative simulation to predict new qualitative
outputs. Clearly, these rules can be written in any
order, i.e. the sequencing of the rows of the
input/output matrix has become irrelevant. They
can be sorted alphanumerically. The sorted input/
output matrix is called state transition matrix.

From the way, in which the state transition
matrix is constructed, it is clear that the same
input pattern, a so-called input state can be asso-
ciated with different output values, i.e. a different
output state. If the relationship between input
states and output states is non-deterministic, there
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will be uncertainty associated with predictions
made. Thus, it is advantageous to make the state
transition matrix as deterministic as possible.

How is a mask found that, within the frame-
work of all allowable masks, represents the most
deterministic state transition matrix, i.e. optimizes
the predictiveness of the model? In SAPS-II, the
concept of a mask candidate matrix has been
introduced. A mask candidate matrix is an ensem-
ble of all possible masks from which the best is
chosen by either a mechanism of exhaustive
search of exponential complexity [3] or by one of
various suboptimal search strategies of polyno-
mial complexity as described in [15,16]. The mask
candidate matrix contains ‘−1’ elements where
the mask has a potential m-input, a ‘+1’ element
where the mask has its m-output, and ‘O’ ele-
ments to denote forbidden connections. Thus, a
good mask candidate matrix to determine a pre-
dictive model for variable y1 in a five-variable
system example might be:

t/x
t−2dt
t−dt

t

: u1

−1
−1
−1

u2

−1
−1
−1

y1

−1
−1
+1

y2

−1
−1

0

y3

−1
−1

0

;
(5)

Corresponding mask candidate matrices are used
to find predictive models for y2 and y3.

Each of the possible masks is compared to the
others with respect to its potential merit, i.e. the
degree of determinism associated with the state
transition matrix constructed from it. The opti-
mality of the mask is evaluated with respect to the
maximization of its forecasting power.

The Shannon entropy measure is used to deter-
mine the uncertainty associated with forecasting a
particular output state given any legal input state.
The Shannon entropy relative to one input state is
calculated from the equation:

Hi=%
Öo

p(o � i ) · log2 p(o � i ) (6)

where p(o � i ) is the ‘conditional probability’ of a
certain m-output state o to occur, given that the
m-input state i has already occurred. The term
probability is meant in a statistical rather than in
a true probabilistic sense. It denotes the quotient

of the observed frequency of a particular state
divided by the highest possible frequency of that
state.

The overall entropy of the mask is then com-
puted as the sum:

Hm= −%
Öi

p(i ) ·Hi (7)

where p(i ) is the probability of that input state to
occur. The highest possible entropy Hmax is ob-
tained when all probabilities are equal, and a zero
entropy is encountered for relationships that are
totally deterministic.

A normalized overall entropy reduction Hr is
defined as:

Hr=1.0−
Hm

Hmax

(8)

Hr is obviously a real-valued number in the range
between 0.0 and 1.0, where higher values usually
indicate an improved forecasting power. The
masks with highest entropy reduction values gen-
erate forecasts with the smallest amounts of un-
certainty.

One problem still remains. The size of the in-
put/output matrix increases as the complexity of
the mask grows, and consequently, the number of
legal states of the model grows quickly. Since the
total number of observed data records remains
constant, the frequency of observation of each
state shrinks rapidly, and so does the predictive-
ness of the model. The entropy reduction measure
does not account for this problem. With increas-
ing complexity, Hr simply keeps growing. Very
soon, a situation is encountered where every state
that has ever been observed has been observed
precisely once. This obviously leads to a totally
deterministic state transition matrix, and Hr as-
sumes a value of 1.0. Yet the predictiveness of the
model will be dismal, since in all likelihood al-
ready the next predicted state has never before
been observed, and that means the end of fore-
casting. Therefore, this consideration must be in-
cluded in the overall quality measure.

From a statistical point of view, every state
should be observed at least five times [17]. There-
fore, an observation ratio, Or, is introduced as an
additional contributor to the overall quality mea-
sure [18]:
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Or=
5 ·n5× +4 ·n4× +3 ·n3× +2 ·n2× +n1×

5 ·nleg

(9)

where: nleg=number of legal m-input states; n1×

=number of m-input states observed only once;
n2× =number of m-input states observed twice;
n3× =number of m-input states observed thrice;
n4× =number of m-input states observed four
times; n5× =number of m-input states observed
five times or more.If every legal m-input state has
been observed at least five times, Or is equal to
1.0. If no m-input state has been observed at all
(no data are available), Or is equal to 0.0. Thus,
Or can also be used as a quality measure.

The overall quality of a mask, Qm, is then
defined as the product of its uncertainty reduction
measure, Hr, and its observation ratio, Or:

Qm=Hr ·Or (10)

The optimal mask is the mask with the largest Qm

value.

3.3. Qualitati6e simulation

Once the best model is obtained by means of
computing the quality measure presented above,
future output states can be predicted using the
inference engine that is at the heart of the qualita-
tive simulation module inside FIR. Using the
five-nearest-neighbors (5NN) fuzzy inferencing al-
gorithm [3,19], the membership and side functions
of the new input are compared with those of all
previous recordings of the same qualitative input.
The input with the most similar membership and
side functions is identified. For this purpose, a
normalized defuzzification:

posi=classi+sidei · (1.0−Membi) (11)

is computed for every input variable of the new
input set, and these posi values are stored in a
vector, pos. The index i represents the ith input
variable in the input state of the current observa-
tion. Membi, is the membership value, and classi

and sidei are the numeric class and side values
associated to those inputs, respectively. The posi-
tion value, posi, can be interpreted as a normal-
ized defuzzification of the ith input variable.
Irrespective of the original values of the input

variable, posi assumes values in the range (1.0–
1.5) for the lowest class, (1.5–2.5) for the next
higher class, etc.

The defuzzification is repeated for all previous
recordings of the same input state:

posij=classij+sideij · (1.0−Membij) (12)

where the index j denotes the jth previous obser-
vation of the same input state. Also the posij

values are stored in a vector, posj. Then, the L2

norms of the difference between the pos vector of
the new input state and the posj vectors of all
previous recordings of the same input state are
computed:

disj=
' %

N

i=1

(posi−posij)2 (13)

where N is the number of m-inputs.
Finally, the previous recording with the

smallest L2 norm is identified. The class and side
values of the output state associated with this
input state are then used as forecasts for the class
and side values of the new output state.

Forecasting of the new membership function is
done a little differently. Here, the five previous
recordings with the smallest L2 norms are used (if
at least five such recordings are found in the
input/output matrix), and a distance-weighted av-
erage of their fuzzy membership functions is com-
puted and used as the forecast for the fuzzy
membership function of the current state. This is
done in the following way.

The distances of each of the five nearest neigh-
bors is limited from below by e, the smallest
number that is distinguishable from 1.0 in addi-
tion:

dj=max([disj, e ]) (14)

sd is the sum of all dj values:

sd= %
5

j=1

dj (15)

Relative distances are then computed as:

drelj
=

dj

sd

(16)

Absolute weights are then computed as follows:
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wabsj
=

1.0
drelj

(17)

Using the sum of the absolute weights:

sw= %
5

j=1

wabsj
(18)

it is possible to compute relative weights:

wrelj
=

wabsj

sw

(19)

The relative weights are numbers between 0.0 and
1.0. Their sum is always equal to 1.0. It is there-
fore possible to interpret the relative weights as
percentages. Using this idea, the membership
function of the new output can be computed as a
weighted sum of the membership functions of the
outputs of the previously observed five nearest
neighbors:

Memboutnew
= %

5

j=1

wrelj
·Memboutj

(20)

3.4. Defuzzification

The defuzzification engine of the FIR method-
ology is responsible for converting each qualita-
tive predicted output triple back to a quantitative
output value. It is the inverse operation of the
previously described fuzzification engine. Since
the qualitative triples retain complete knowledge
of the quantitative variables they represent, the
defuzzification operation is unambiguous.

In a mixed quantitative and qualitative simula-
tion, the fuzzification and defuzzification modules
play the roles of interface points between the
quantitative and qualitative submodels.

For a deeper and more detailed insight into the
FIR methodology, the reader is referred to [18–
21].

4. The qualitative CNS controller models

The method used for deriving the FIR heart
rate controller model shall be demonstrated in
detail in this paper. Since the other four qualita-
tive controller models are obtained in exactly the
same fashion, it does not serve any purpose to

repeat the same explanations several times over.
The heart rate controller design can serve as a
valid example for all of them. Only the final
results obtained shall be given for the other four
controllers. Details of their design can be found in
[21].

The five controllers that compose the CNS,
named heart rate, peripheric resistance, myocar-
diac contractility, venous tone, and coronary re-
sistance controllers are all single-input/
single-output (SISO) systems. They all have the
carotid sinus pressure as their input variable.
They differ in their respective output variables.
The common input and the five controller outputs
are shown on Figs. 2 and 3.

4.1. FIR model of the heart rate controller

The input and output variables of the heart rate
controller subsystem were fuzzified into three
qualitative classes each. Three classes are suffi-
cient to obtain a good qualitative model of the
system, and consequently, it was not necessary to
work with more complex models.

For the heart rate controller, the optimal mask
found was the following:

t/x
t−2dt
t−dt

t

:CSP
0

−1
−3

HRC
0

−2
+1

;
(21)

i.e. although a mask depth of three was initially
proposed, the qualitative modeling (optimization)
algorithm reduced the mask depth from three to
two. The optimal mask denotes the qualitative
relationship:

HRC(t)= f0 (CSP(t−dt), HRC(t−dt), CSP(t))
(22)

Notice that dt=0.24, i.e. only every second data
point was used by the qualitative model.

The data used in the identification process (Fig.
2) constitute only a subset of the data available
from the studied patient. The model was validated
by using it to forecast six data sets that had not
been employed in the model identification process,
i.e. using data that the model had never seen
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Fig. 7. Heart rate control: FIR worst data set forecast and NARMAX forecast for the same data set.

before. Each one of these six data sets, with a size
of about 600 data points each, contains signals
representing specific morphologies, allowing the
validation of the model for different system be-
haviors. Data set c1 represents two consecutive
Valsalva maneuvers of 10 s duration separated by
a 2 s break, data set c2 shows two consecutive
Valsalva maneuvers of 10 s duration separated by
a 4 s break, and data set c3 exhibits two consec-
utive Valsalva maneuvers of 10 s duration sepa-
rated by an 8 s break. Data set c4 shows a single
Valsalva maneuver of 10 s duration with an inten-
sity (pressure) increase of 50% relative to the
previous three data sets. Data set c5 describes a
single Valsalva maneuver of 20 s duration with
nominal pressure. Finally, data set c6 character-
izes a single Valsalva maneuver of 10 s duration
with nominal pressure. Data set c6 is called the
reference data set, since it represents a standard-
ized Valsalva maneuver, from which all the other
variants are derived by modifying a single
parameter.

The upper portion of Fig. 7 shows a compari-
son of the output obtained by forecasting data set
c1 using the FIR model (dashed line) with the
true measured output (solid line). The data exhibit

high frequency oscillations modulated onto a low
frequency signal. The FIR model is capable of
properly forecasting both the low-frequency and
the high-frequency behavior of this signal. There
is only a short interval where the FIR model
evidently was unable to predict how the signal is
supposed to continue.

The mean square error (MSE) for this signal is
2.86%. It should be noted that the forecast shown
in Fig. 7 is the worst result obtained for any of
the six data sets. Since even this forecast is fairly
good, the model can be accepted as valid. The
mean square errors obtained for the six model
validation data sets are given in the HRC column
of Table 1. Data sets c5 and c6 lead to almost
perfect forecasts. In those cases, the dashed line
cannot be distinguished at all from the solid line
by the naked eye. Each of the other four data sets
contains a short segment where the forecast tem-
porarily is of much lower quality.

4.2. FIR models of the other CNS controllers

The same identification procedure has been
used in order to obtain FIR models of the other
four controllers. Each of those resulted in a differ-
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Table 1
MSE errors obtained for the six validation data sets using FIR to predict the HR, PR, MC, VT and CR control variables

MCC (%) VTC (%)HRC (%) PRC (%) CRC (%)

2.22 0.021.771.06Data set 1 2.86
0.05 0.04Data set 2 1.43 0.03 0.08

0.16 4.34Data set 3 1.10 2.71 0.02
0.550.14 0.480.07Data set 4 2.61

4.88 5.69 1.86 0.01Data set 5 0.09
0.20 0.23Data set 6 0.12 0.17 0.00

1.41 1.47 0.091.49Average Error 1.37

ent optimal mask. Simulation results of the model
validation runs for the other four qualitative con-
troller models are presented in the upper portions
of Figs. 8–11. The worst predictions for the pe-
ripheric resistance and myocardiac contractility
controller models were obtained with data set
c5. The worst prediction for the venous tone
controller was obtained when using data set c3.
Finally, the worst behavior was exhibited by the
coronary resistance controller when using data set
c4. Figs. 8–11 show the worst predictions ob-
tained by each of the five controller models.

The computation of the MSE errors of the
peripheric resistance, myocardiac contractility,
venous tone, and coronary resistance controller
models are also presented in Table 1. The table
shows that the average errors obtained for the six
validation data sets are all smaller than 1.5%.
Hence, the FIR qualitative modeling methodol-
ogy has been shown to work exceedingly well
when confronted with cardiac data.

5. Comparisons of NARMAX and FIR controller
models

In this section, a comparison of the five con-
troller models obtained for a given patient using
two different modeling methodologies is pre-
sented. These methodologies are the NARMAX
quantitative inductive modeling technique and the
previously introduced FIR qualitative inductive
modeling technique.

Both methodologies used the same data sets
presented in Figs. 2 and 3 for model identifica-

tion. In the model validation process, the same six
validation data sets that had previously been de-
scribed were used by both the NARMAX and
FIR methodologies.

5.1. NARMAX models of the CNS controllers

In this section, the NARMAX models of the
five controllers that compose the CNS cardiovas-
cular control are described.

The NARMAX model of five terms that best
represents the HRC for the given patient is de-
scribed in Eq. (23).

HRC(t)

=0.0346+7.9151 ·10−4�CSP(t)

+0.7612�HRC(t−1)+0.1133�HRC(t−7)

−1.5930 ·10−6�CSP(t)�CSP(t−3) (23)

The model shown in Eq. (23) is different from
that presented in [2], because it is specialized for
the given patient, whereas the model presented in
[2] is a more general NARMAX model that can
be used to reflect the behavior of a variety of
different patients with similar morphologies.

The prediction of this model for the data set
c1 is shown in the lower portion of Fig. 7. In the
upper portion of the same plot, the forecast re-
sults obtained by the corresponding FIR model
are presented for the same data set. Hence, a
direct comparison between the two graphs can be
made.

The NARMAX model follows the low-fre-
quency behavior fairly well, but does not reflect
the high-frequency oscillations faithfully. Conse-
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Fig. 8. Peripheric resistance control: FIR worst data set forecast and NARMAX forecast for the same data set.

quently, its MSE error is more than four times as
large as that of the corresponding FIR model.

The NARMAX model of three terms that best
represents the peripheric resistance control behav-
ior of the given patient is described in Eq. (24).

PRC(t)

=0.0489+0.9851�PRC(t−1)

−2.0074 ·10−6�CSP(t−1)�CSP(t−7) (24)

The prediction of this model for data set c5 is
shown in the lower portion of Fig. 8. It should be
noted that the upper portion of Fig. 8 shows the
worst FIR prediction obtained for any of the six
validation data sets, whereas the lower portion
shows the best of the NARMAX predictions. This
time, the NARMAX model does not make any
attempt at predicting the high-frequency compo-
nent of the signal at all. The FIR model exhibits
a fairly large time segment where its prediction is
of reduced quality, whereas during the remainder
of the time, the prediction is right on the mark.

The NARMAX model of three terms that best
represents the myocardiac contractility controller
is described in Eq. (25).

MCC(t)

=0.0177+0.9897�MCC(t−1)

−6.5093 ·10−7�CSP(t−1)�CSP(t−7) (25)

The prediction of this model for data set c5 is
shown in the lower portion of Fig. 9. As in the
previous case, data set c5 corresponds to the
worse forecast using the FIR model and to the
best forecast using the NARMAX model. Yet, the
MSE error is still slightly larger for the NAR-
MAX model than for the FIR model.

The NARMAX model of three terms that best
represents the venous tone controller is given in
Eq. (26).

VTC(t)

=0.01374+0.9897�VTC(t−1)

−5.6402 ·10−7�CSP(t−1)�CSP(t−7) (26)

The prediction of this model for data set c3 is
shown in the lower portion of Fig. 10.

Finally, the NARMAX model of six terms that
best represents the coronary resistance controller
is shown in Eq. (27).
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Fig. 9. Myocardiac contractility control: FIR worst data set forecast and NARMAX forecast for the same data set.

CRC(t)

=0.0215−4.6999 ·10−5�CSP(t−10)

+1.0015�CRC(t−1)

−9.4519 ·10−7�CSP(t−6)�CSP(t−8)

+3.0283 ·10−7�CSP(t−10)�CSP(t−10)

−1.0381 ·10−4�CSP(t−10)�CRC(t−1) (27)

The prediction of this model for data set c4 is
shown in the lower portion of Fig. 11. In this
case, the results correspond to the worst forecasts
obtained from both the FIR and NARMAX
models.

Comparing the FIR and NARMAX models of
the five controllers, it becomes evident that the
FIR modeling technique provides considerably
better results in situations, such as in cardiology,
where lots of data are available to train the model
with, and where the signals are fairly repetitive in
nature.

The normalized mean square errors, MSE, of
the five CNS controller models have been com-
puted for each of the six validation data sets

individually, and also for all data sets together.
These results are presented in Tables 1 and 2.

Comparing the MSE errors obtained for each
controller using the NARMAX models (Table 2)
with those obtained using the FIR models (Table
1), it becomes evident that the errors obtained
using the FIR models are, on average, much
smaller than those obtained by the NARMAX
models.

Yet, the NARMAX models are considerably
simpler than their FIR rivals, and moreover,
NARMAX models can be used to extrapolate
behavior, whereas FIR models can only interpo-
late behavior. Evidently, a FIR model can only
predict behavior that it has previously seen in a
similar form. Hence, FIR models have very little
extrapolative power. However, this property of
FIR may in fact be one of the greatest virtues of
this methodology. Although they reject to extrap-
olate beyond the range of previously experienced
behavioral patterns, FIR models are considerably
more robust and reliable than their NARMAX
and differential equation competitors. This issue
shall be discussed in more detail in due course.
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Fig. 10. Venous tone control: FIR worst data set forecast and NARMAX forecast for the same data set.

6. The cardiovascular closed-loop system

In this section, the loop between the hemody-
namical system, modeled by means of differential
equations, and the central nervous system control,
modeled in terms of inductive modeling tech-
niques, is closed. The complex behavior of the
overall cardiovascular system is now studied.

Real physiological data obtained from cardiac
catheterization are used for this study. These data
were obtained from the hemodynamical division
of the Hospital de la Santa Creu i de Sant Pau in
Barcelona. The data stem from a patient with
coronary arterial obstruction of at least 70%. The
measured physiological variables are: the right
auricular pressure, PAD(t), the aortic pressure,
PA(t), the coronary blood flow, FC(t), and the
heart rate, HR(t). The physiological variables
were recorded during all five phases of the Val-
salva maneuver.

From the trajectories of the right auricular
pressure, the aortic pressure, the coronary blood
flow, and the heart rate, mean values were com-
puted for each of the five phases of the maneuver.
PADM denotes the average right auricular pressure
during a given phase, PAM stands for the mean

aortic pressure, FCM is the average coronary
blood flow, and HRM signifies the average heart
rate during any one of the phases.

The measurement results obtained through car-
diac catheterization for the studied patient are
summarized in Table 3. Only the mean values
computed for the pre-Valsalva phase, the Valsalva
phase II, and the Valsalva phase IV are shown in
the table, because these are the most significant
data.

The mean values presented in the first column
of Table 3 were obtained from real measurements.
They will consequently be used as reference values
in the model validation process. In order for a
model to pass the acceptance test, none of the
four key variables, i.e. the average right auricular
pressure, the mean aortic pressure, the mean coro-
nary blood flow, and the average heart rate must
deviate from the reference values by more than
910% during any of the three key phases of the
Valsalva maneuver, i.e. the pre-Valsalva phase,
the Valsalva phase II and the Valsalva phase IV.

In [2], two different cardiovascular system mod-
els were studied; a model described solely by
means of differential equations (second column of
Table 3), and another model whose hemodynami-
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Fig. 11. Coronary resistance control: FIR worst data set forecast and NARMAX forecast for the same data set.

cal subsystem was modeled using differential
equations and whose central nervous system con-
trol was modeled by means of the NARMAX
methodology (fourth column of Table 3).

The simulation results obtained from either of
the two cardiovascular system models was found
to lie inside the 910% error margin permitted,
and therefore, both models were considered to be
valid for the task at hand.

Looking at the results obtained with the purely
deductive differential equation model presented in
the second column of Table 3, it can be seen that
the largest negative relative deviation from the
measurement values is −5.19%, whereas the
largest positive relative deviation is +5.93%.
Thus, all the indicators are clearly within the
requested 910% margin. The average relative
deviation from the measurement values is 2.52%.

At this point, the question to be raised is
whether a mixed model of the cardiovascular
system, whereby the hemodynamical subsystem is
described by means of differential equations and
the CNS control is described using a FIR model
also generates results inside the 910% error mar-
gin permitted and can therefore also be consid-
ered a valid model for the task at hand.

The differential equation model of the hemody-
namical system was implemented using the ad-
vanced continuous simulation language (ACSL)
[22], a convenience software tool for the descrip-
tion of ordinary differential equation-based state-
space models, whereas the qualitative central
nervous system control was realized using SAPS-
II [18–21]). ACSL was chosen as the implementa-
tion language for the hemodynamical system
primarily because an interface between ACSL and
SAPS-II had already been developed [3]. A sim-
plified scheme of the simulation structure is
shown in Fig. 12.

The hemodynamical system, modeled and simu-
lated in a strictly quantitative fashion, is imple-
mented in full within ACSL. Its differential
equations are implemented as a continuous pro-
cess within ACSL to be integrated across time
using one of the standard integration algorithms
offered by ACSL. The CNS control, on the other
hand, is implemented inside the ACSL program
as a discrete process to be executed once every
0.24 s.

The simulation process operates in the follow-
ing way. The hemodynamical system generates a
continuous-time trajectory representing the
carotid sinus pressure. This variable is sampled by
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Table 2
MSE errors obtained for the six validation data sets using NARMAX to predict the HR, PR, MC, VT and CR control variables

MCC (%) VTC (%)HRC (%) PRC (%) CRC (%)

20.19 23.67Data set 1 10.77 42.0920.47
8.84 21.027.528.62Data set 2 7.62

9.20 8.18 9.15Data set 3 19.077.08
44.0846.9051.5238.25Data set 4 11.64

3.97 43.03Data set 5 13.07 3.88 6.07
8.81 20.87Data set 6 8.60 8.91 9.77

14.89 17.21 16.89Average Error 31.699.80

the discrete process once every 0.24 s and is
immediately being fuzzified into three qualitative
classes using the SAPS fuzzification engine that is
coupled to ACSL through an interface routine.
The discrete process then calls five times upon the
SAPS fuzzy forecasting routine to predict qualita-
tive values of the five controller outputs. These
five qualitative triples are then defuzzified into
quantitative (real-valued) controller outputs using
the FIR defuzzification engine. The defuzzified
signals are then made available to the hemody-
namical system for use within the differential
equation model. The overall effect of the qualita-
tive CNS control model is that of a single-input
multi-output (SIMO) digital controller with sam-
ple-and-hold (ZOH) circuitry at each of the five
controller outputs. The qualitative processes,
fuzzification, prediction, and defuzzification, are
executed inside SAPS-II, reducing the ACSL im-
plementation of the CNS control to a mere inter-
face.

The simulation results obtained from the mixed
quantitative and qualitative cardiovascular system
model using fuzzy inductive reasoning for the
description of the CNS control are summarized in
the third column of Table 3.

As can be seen from Table 3, the largest nega-
tive relative deviation from the measurement val-
ues is −5.093%, and the largest positive relative
deviation is +7.79%. Thus, all the indicators are
again within the requested 910% margin, and in
accordance with the requirements, also this model
is to be accepted as a valid representation of
reality for the task at hand. The average relative
deviation from the measurement values is 2.78%.

Consequently, the average deviation from the
measurement data is here a little larger than in the
purely deductive differential equation model.

The results obtained from the mixed differential
equation and NARMAX model are summarized
in the fourth column of Table 3. It is necessary to
point out that these results have not been ob-
tained using the specialized NARMAX models
presented in the previous section of this paper.
These are the results reported in [2], where NAR-
MAX models were identified with a structure
common to all patients analyzed. Only the
parameters of the NARMAX models were iden-
tified for each patient separately.

Here, the largest negative relative deviation
from the measurement values is −4.06%, and the
largest positive relative deviation is +6.09%.
Thus, all the indicators are again within the re-
quested 910% margin. The average relative devi-
ation from the measurement values is 1.48%.
Since the average deviation is a little smaller than
in the case of the differential equation model, the
mixed differential equation and NARMAX model
can be considered to be of higher quality than the
pure differential equation model. These results
were obtained by post-optimizing the NARMAX
model parameters in closed loop to get the best
possible fit with the real measurement data.

It should be recalled how the FIR model was
created, namely as a replica of the purely quanti-
tative differential equation model, and not as a
replica of the measurement data. Comparing the
FIR model with the differential equation model, it
is found that the largest negative relative devia-
tion between the two models is 0.0%, whereas the
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Table 3
Comparison of measurment data of the cardiovascular closed-loop system with simulation results obtained by using the FIR,
NARMAX and differential equation CNS control models

Diff. equal FIR NARMAXCathet.

4 4PADM Pre-V 44
38 383838II

5 5IV 55

110111 108107PAM Pre-V
100 99II 99 100

117117118119IV

119 118FCM Pre-V 123 128
102105105106II

125 118IV 118 125

73 71HRM Pre-V 7677
79 777882II

70 74 73 70IV

largest positive relative deviation is +2.73%. The
average relative deviation between the two models
is 0.66%.

This is an impressive similarity. The FIR model
replicated exceptionally well what it was told to
be the ‘reality’, i.e. the differential equation
model.

7. Confidence measure of the FIR methodology

Qualitative forecasting of soft-science systems is
quite different from quantitative modeling and
simulating of hard-science systems, such as elec-
tronic circuits, for example. Whereas highly accu-
rate simulation results can be expected in the
latter case, the same does not hold true for the
former.

Hence, it is important to always interpret quali-
tative simulation results with caution and a cer-
tain degree of scepticism. That the qualitative
simulations turned out so well in the example
presented in this paper is only due to the highly
repetitive nature of cardiological systems, i.e. to
the high degree of redundancy inherent in cardio-
logical measurement data.

Although the request for scepticism is a good
mandate on moral grounds, is it also a practical
demand? How should the medical practitioner

know how to judge the reliability of a prediction
made? He or she has no way of knowing how
good the predictions are. Hence, it is important to
instil scepticism into the qualitative simulation
software itself, rather than demanding it of its
users.

It should be a matter of principle that all
simulation tools used to predict the behavior of
soft-science systems contain a self-assessment ca-
pability. In other words, qualitative simulation
software should not only forecast the future be-
havior of a system, but also make a prediction of
the confidence that it has in its own prophecies,
and/or estimate the errors associated with its pre-
dictions.

The NARMAX models presented in this paper
have no self-assessment capability at all. Pre-
sented with any input sequence, they will present
something, irrespective of whether the predictions
they make have any bearing on reality or not. The
same holds true for the differential equation mod-
els.

A self-assessment capability could be instilled
into a NARMAX forecasting tool by simulating
with multiple NARMAX models in parallel, while
comparing the predictions they make with each
other. If two forecasts of the same signal are in
disagreement, it is clear that at least one of them
must be incorrect. However, it is not clear, which
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Fig. 12. Schematic showing the structure of the program used to simulate the cardiovascular system.

of them, if any, is the correct one. Moreover, if
the two forecasts agree with each other, it could
still be that both are equally incorrect. The prob-
lem is that any such scheme only provides a
relative and not an absolute measure of confi-
dence. The models are only compared to each
other rather than being compared to the original
data that were used to create these models in the
first place.

The FIR methodology operates differently. The
qualitative modeling stage only determines the
relevance of a set of given data points in the
prediction of any output variable, i.e. it rear-
ranges the available measurement data in a smart
way for future reference. However, all the mea-
surement data are at the disposal of the qualita-
tive simulation engine. In fact, qualitative
simulation simply means to relate the current
input pattern to similar patterns observed in the
past and stored in the experience data base.

Hence, it is possible to determine the relevance
of the data stored in the experience data base to
the situation currently at hand. The more relevant
the previously stored input patterns are to the
current situation, and the more unambiguous the

corresponding outputs are, the more confidence
there can be that the same input/output pattern
applies to the current situation. This mode of
reasoning can be used to determine an absolute
measure of confidence, i.e. a confidence measure
that relates the currently made prediction to the
available facts (the previously observed data),
rather than to a model that has been derived from
those facts, the validity of which may itself be
questionable.

The upper portion of Fig. 13 shows the forecast
of data set c5 for the myocardiac contractility
controller using the FIR model. It can be seen
that the prediction is excellent during the early
and late parts of the prediction period. However,
there is a time segment approximately between
samples 270 and 360 where the prediction is
rather poor. The lower portion of Fig. 13 shows
the local confidence measure computed for the
same output variable. It turns out that FIR is
perfectly capable of realizing when it is about to
make mistakes in its prediction.

The algorithm used for determining the confi-
dence of a prediction is the following. It is based
on the same absolute weights of the five nearest
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Fig. 13. FIR estimation of the confidence in its ability to forecast the myocardiac contractility controller model.

neighbors that were computed in order to esti-
mate the membership function value of the new
output, Eq. (20). The measure used in FIR to
evaluate the confidence in a prediction made is a
proximity measure based on the proximity of the
input states of the five nearest neighbors to the
new input state.

An average distance to the five nearest neigh-
bors can be computed as:

dconf= %
5

j=1

vrelj
·dj (28)

The largest possible value of the average distance,
given the chosen granularity of the discretization,
can be calculated as:

dconfmax
=
' %

N

i=1

(ncli
−1)2 (29)

where ncli
, is the number of classes used in the

fuzzification of the ith input variable.
Finally, the confidence is evaluated as:

conf=1.0−
dconf

dconfmax

(30)

conf is a quality measure, i.e. a real-valued num-
ber in the range of (0.0–1.0).

The knowledge provided by the confidence esti-
mator can be further exploited. It is possible to
make parallel predictions using two different
masks, e.g. the optimal mask and one or two
suboptimal masks of high quality. Each predic-
tion will be accompanied by a measure of confi-
dence. It would make sense to choose, at each
point in time, as the final output of the prediction
algorithm, the one prediction that is accompanied
by the highest confidence measure. Thereby, it
should be possible to eliminate the poor forecast-
ing segments almost entirely. However, this has
not been tried yet.

8. Conclusions

In this paper, a portion of the human CNS
control has been modeled using inductive model-
ing techniques, namely the portion that is respon-
sible for the functioning of the heart, and, more
generally, the blood transport through the body.

Five controller models, for a single patient,
describing different control actions related to car-
diovascular control have been identified sepa-
rately using the NARMAX quantitative inductive
modeling technique and the FIR qualitative in-
ductive modeling approach (Table 4).
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It was shown that the FIR methodology is
capable of capturing dynamic behavior of systems
much more accurately than the NARMAX ap-
proach. The resulting NARMAX models are
much simpler, but considerably less robust than
their FIR cousins.

The most important characteristic of the FIR
models is their self-assessment capability. FIR
models have a way of knowing the quality of their
own predictions, a fact that increases dramatically
the robustness of the forecasting process as well as
the confidence that the user should have in the
predictions made.

NARMAX models are parametric models.
Once their structure has been determined, the five
NARMAX models form a set of algebraic equa-
tions containing a bunch of parameters. Thus,
NARMAX models can be easily optimized by any
off-the-shelf curve-fitting algorithm. Training a
NARMAX model consists of two separate steps:
(i) determining the optimal equation structure;
and (ii) optimizing the parameters of the selected
structure. Most of the computational effort is
spent on the optimization. Thus, designing a
NARMAX model is predominantly an optimiza-
tion problem.

FIR models are non-parametric models. Train-
ing a FIR model also consists of two steps: (i)
determining the qualitative equation structure, i.e.
the optimal mask; and (ii) composing a historical
data base for holding the previous experience, i.e.
the previously observed input/output patterns.
Designing a FIR model is a synthesis procedure,
not an optimization problem. Hence, although it
is fairly simple and fast to set up a FIR model,

the methodology does not offer an easy means for
post-optimizing it.

The NARMAX approach has the advantage of
being naturally adaptive, i.e. it lends itself to
post-optimization. This does not hold true for the
FIR model. However, since setting up a new FIR
model is usually a simple and fast process, post-
optimization is not truly needed. When a FIR
model needs to be modified, it is acceptable to
simply identify a new model, since this procedure
does not require much time. Also, some adapta-
tion would be possible in the FIR approach as
well, not by optimizing parameters, but by updat-
ing the experience data base on the fly.

The NARMAX model is much simpler to im-
plement and does not require an experience data
base as is the case for the FIR model. Thus, the
NARMAX model needs much less memory, and
also the simulation is somewhat faster than using
the FIR model. However, the additional imple-
mentational effort of the FIR methodology goes
hand in hand with a much increased flexibility
and capability of replicating arbitrarily nonlinear
system behavior.

Finally, the self-assessment capability of FIR
presents a very strong argument in favor of this
approach.

To summarize, it has been demonstrated that
the qualitative non-parametric FIR model synthe-
sis technique is a powerful tool for the identifica-
tion of inductive models of the five CNS
controllers. It compares favorably with the quan-
titative parametric NARMAX model optimiza-
tion technique when used for such purpose.

The FIR methodology is definitely preferable to
NARMAX in the context of soft-systems model-
ing and simulation due to its self-assessment capa-
bility. Due to the lack of meta-knowledge related
to these systems, the end user is usually quite
ill-equipped for judging the correctness of the
simulation results obtained, and it should not be
left to him or her to do so. The robustness of the
simulation engine is paramount to instil trust in
the end user of the tool.

The computational complexity of the FIR
methodology is polynomial, except for the ex-
haustive search used originally as part of its mod-
eling stage. However, suboptimal search strategies

Table 4
Comparison of MSE errors obtained by the NARMAX and
FIR controller models

FIR (%)Controller NARMAXa (%)

1.37Heart rate 9.80
14.89 1.49Peripheric res.
17.21Myocardiac cont. 1.41

1.4716.89Venous tone
31.69 0.09Coronary res.

a Notice that the number of terms of each NARMAX model
differs as explained in the text.
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of polynomial complexity have recently been im-
plemented and experimented with as described in
[15,16]. Using these new search strategies, it has
become quite feasible to apply FIR to modeling
problems involving many input variables and a
fairly large mask depth.

Appendix A. Differential equations of the
hemodynamical and the central nervous system
models

In this appendix the differential equations of
the hemodynamical model and the differential
equations of the CNS control model are de-
scribed.

A.1. The hemodynamical model

The blood flow through the complex network
of vessels in the circulatory system has been de-
scribed using 15 compartments distributed in the
heart, thorax and abdomen. Each compartment is
an elastic reservoir with lumped hydrodynamic
parameters representing the properties of blood
vessel collection. In order to simulate the Valsalva
maneuver, intrathoracic and intraabdominal pres-
sures are added to the pressure of the arterial and
venous compartments situated in the thorax and
abdomen, respectively.

The heart, composed of four chambers (right
and left atrium, and right and left ventricle), is
modeled as a set of four unidirectional pumps.
The duration of the systole and diastole of each
chamber are described by the following equations:

TAS=0.09 ·TTOT+0.1 (31)

TAV=TAS−0.04 (32)

TVS=0.20 ·TTOT+0.16 (33)

where TAS is the duration of the atrial systole,
TAV is the time between the onset of atrial systole
and the onset of ventricular systole, TVS is the
duration of ventricular systole, and TTOT is the
total cardiac cycle.

The active pressure of each heart chamber is
given by Eq. (34), where V(t) is the time-varying
volume of each chamber, Vu is its unstressed
volume and E(t) is its time-varying elastance [9].

P(t)=E(t) · [V(t)−Vu] (34)

A half-sinusoidal pattern is used in the elastance
function for the four heart chambers during the
systole, and a constant is used throughout the
diastole [4]. Eq. (35) is the sinusoid for the right
and left atria during the time ti of a cardiac cycle,
and Eq. (36) is the sinusoid for the right and left
ventricles.

X(t)=
!sin(pt i/TAS)

0,
05 t iBTAS

TAS5 tiBTTOT

(35)

Y(t)=Í
Á

Ä

0
sin[p(t i−TAV)/TVS]

0
Ì
Â

Å
,

05 t i5TAV

TAVB tiB (TAV+TVS)
(TAV+TVS)5 tiBTTOT

(36)

The basic description of the elastance, pressure
and volume for the right atrium are given by Eqs.
(37) and (38) and Eq. (39), where the suffixes RA
and RV denote right atrium and right ventricle,
respectively.

ERA(t)=X(t) · (ERAS−ERAD)+ERAD (37)

PRA(t)=ERA(t) · [VRA(t)−VuRA]+PITH(t) (38)

VRA(t)=
& t

0

[FRA(t)−FRARV(t)] ·dt+VRA(0)

(39)

In a similar manner, equations can be written
describing the dynamics occurring in the left
atrium.

The elastance, pressure, and volume of the left
ventricle are modeled by the following equations:

ELV(t)=Y(t) · (ELVS−ELVD)+ELVD (40)

PLV(t)=ELV(t) · [VLV(t)−VuLV]+PITH(t) (41)

VLV(t)=
& t

0

[FLALV(t)−FLVA(t)] ·dt+VLV(0)

(42)

where the suffixes LA and LV denote left atrium
and left ventricle, respectively. Similar equations
are developed for the right ventricle describing the
flow through the pulmonary valve.
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The systemic arteries have been modeled taking
inertial effects and wall viscoelasticity into ac-
count. The set of equations obtained by Beneken
and De Wit [12] to describe an arterial compart-
ment are presented below:

DP(t)=R ·Fout(t)+L · dFout(t)/dt (43)

V(t)=
& t

0

[Fin(t)−Fout(t)] ·dt+V(0) (44)

P(t)= [V(t)−Vu]/C+RW ·dV(t)/dt+Pp(t)
(45)

where DP(t) is the difference of pressures between
two consecutive compartments, Fout(t) is the
outflow of the compartment, Fin(t) is the flow into
the compartment, and Vu is the unstressed volume
of the pool. R is the resistance between them, L is
the inertia, C is the compliance and RW is equiva-
lent to the wall viscosity of the pool. The in-
trathoracic or intraabdominal pressure is Pp(t),
depending on where the compartment is placed.

The pressure of the pulmonary arterial com-
partment is described similar Eq. (45), which
models the pressure in an arterial compartment,
but without considering the effects of the RW

resistance.
The systemic veins have been modeled as a

non-linear high-compliant and collapsible system.
The following equation describes a venous com-
partment:

P(t)= [V(t)−Vu]/C (46)

The venous collapse is assumed to occur whenever
the volume V(t) of a compartment becomes less
than the unstressed volume Vu. Based on the
work of Snyder and Rideout [7], the compliance
of the veins is assumed to be expressed by Eq.
(47).

C=
! CN,

20 ·CN,
V(t)]Vu

V(t)BVu

(47)

For V(t)]Vu, the veins are assumed to have a
constant compliance CN, using values obtained
from the literature [12]. For V(t)BVu, the com-
pliance is also assumed constant, but 20 times
greater. The volume V(t) is calculated in an
analogous manner to Eq. (44), although Fout(t) is
described by the following equations:

Fout(t)=
! Faux(t),

a ·Faux(t),
Faux(t)]0
Faux(t)B0

(48)

Faux(t)=DP(t) ·V2(t)/(R ·V2
u) (49)

where the venous valves are represented by the
coefficient a, and no effect of venous valves is
present when a=1. Faux(t) corresponds to the
flow between the arterial compartments.

The pressure difference between two consecu-
tive compartments of the systemic peripheral cir-
culation is described by Eq. (50):

DP(t)=R ·Fs(t) (50)

where the effects of the inertia L are not consid-
ered.

The relation between blood flow and pressure
in the lungs is modeled by Eq. (51) ([12,8])

FPAPV(t)

=
!(PPA(t)−PPV(t))/RPAPV,

(PPA(t)−7)/RPAPV,
PPV(t)\7 ·mmHg
PPV(t)57 ·mmHg

(51)

where RPAPV is the peripheric resistance of the
blood pulmonary circulation.

This set of differential equations completes the
description of the hemodynamical quantitative
model used in this article for the simulation of the
cardiovascular closed-loop system. In the next
section, a description of the set of differential
equations that model the CNS control is pre-
sented.

A.2. The central ner6ous system control model

The generic equations of the mathematical
model that describe the CNS control are listed in
this section, (Eqs. (52)–(89)). This set of equa-
tions includes blood pressure baroreceptors at the
carotid-sinus and aortic-arch. It also includes the
CNS controllers for the heart rate, HR ; peripheral
resistance, Q1(t); myocardiac contractility, Q2(t);
venous tone, Q3(t) and Q4(t); and coronary resis-
tance, Q5(t).

The model has been based upon the work of
Hyndman [10], Leaning [8] and Katona [11]. Fur-
ther development of these models has resulted in
the incorporation of the CNS control of the coro-
nary flow and the parameters l9 and l10 of the
CNS control of the heart rate [1].
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A.2.1. Baroreceptors of the carotid-sinus

f1(t)=
!dPCS(t)/dt,

0,
dPCS(t)/dt]0
dPCS(t)/dtB0

(52)

df2(t)
dt

=
f1(t)− f2(t)

t2

(53)

df3(t)
dt

=
PCS(t)− f3(t)

t1

(54)

f4(t)=l1 · ( f3(t)+l2 · f2(t)−l3) (55)

BCS(t)=
!f4(t),

0,
f4(t)]0
f4(t)B0

(56)

A.2.2. Baroreceptors of the aortic-arch

f5(t)=
!dPAA(t)/dt,

0,
dPAA(t)/dt]0
dPAA(t)/dtB0

(57)

df6(t)
dt

=
f5(t)− f6(t)

t2

(58)

df7(t)
dt

=
PAA(t)− f7(t)

t1

(59)

f8(t)=l1 · [ f7(t)+l2 · f6(t)−l3] (60)

BAA(t)=
!f8(t),

0,
f8(t)]0
f8(t)B0

(61)

The baroreceptors monitor carotid-sinus blood
pressure PCS(t) and aortic-arch pressure PAA(t),
and convey information to the CNS. The two
baroreceptors are modeled with the same block
configuration, as is described in the previous
equations. In this way, baroreceptors outputs
BCS(t) and BAA(t) are given as a positive linear
combination. It is a combination of the positive
time derivative of pressure (dP+/dt) filtered by a
first-order system, the pressure filtered by another
first-order system, and a threshold pressure l3

below which firing does not occur. The average
contribution of the positive-pressure derivative
term over one cardiac cycle is given by l2

The linear combination of carotid-sinus and
aortic-arch baroreceptors outputs, BCS(t) and
BAA(t) respectively, is the effective input, B(t), for
the CNS, and is given by the following equation:

B(t)=l4 ·BCS(t)+ (1−l4) · BAA(t) (62)

The information from the CNS input function
B(t) to the controlled heart rate, HR, is transmit-
ted by two regions characterized by the levels of
the monitored pressures. The differential equa-
tions associated to the heart rate controller fol-
low.

A.2.3. Heart rate controller

u1(t)=
!l5 ·B(t)−l6,

0,
l5 ·B(t)]l6

l5 ·B(t)Bl6

(63)

t3(t)=
!l7,

l8,
du1(t)/dt]0
du1(t)/dtB0

(64)

du2(t)
dt

=
u1(t)−u2(t)

t3

(65)

u3(t)=
! l11,

B(t),
B(t)]l11

B(t)Bl11

(66)

du4(t)
dt

=
u3(t)−u4(t)

t4

(67)

du5(t)
dt

=
u4(t)−u5(t)

t5

(68)

u6(t)=l9 · [u2(t)+u5(t)]+l10 (69)

TTOT(t)=Í
Á

Ä

2.0,
u6(t),
0.3,

u6(t)]2.0
0.35u6(t)B2.0

u6(t)B0.3
(70)

One region, u2(t), is integrated by a first-order
system that filters the input function B(t) when
elevated blood pressures are present. The other
region, u5(t), concerns the low blood pressures,
and its dynamics have been approximated by a
second-order system. The output of this controller
is a linear combination of the responses of the two
regions and a constant level l10. The total cardiac
cycle TTOT is obtained by subjecting the controller
output to a constraint.

A.2.4. Peripheral resistance controller
The differential equations associated to the pe-

ripheral resistance controller follow.

S1(t)=
!l12,

l13,
B(t)]l14

B(t)Bl14

(71)
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dS2(t)
dt

=
S1(t)−S2(t)

t6

(72)

dS3(t)
dt

=
S1(t)−S3(t)

t7

(73)

Q1(t)= (1−l15) ·S2(t)+l15 ·S3(t) (74)

The dynamics of the peripheral resistance con-
troller feature an on-off element that produces a
bang-bang action, S1(t). This response is divided
into two parallel paths, S2(t), and S3(t), where the
dynamics are approximated by a first-order sys-
tem. The linear combination of these two paths
represents a continuously varying estimate of the
peripheral resistance controller, Q1(t). This con-
trol modifies all peripheral blood flow in the
following manner:

Fout(t)=DP(t)/(R ·Q1) (75)

A.2.5. Myocardiac contractility controller
A series path formed by an on-off element and

a first-order system approximates the dynamics of
the myocardiac contractility controller, Q2(t). The
control is done directly on the systolic elastances
of the four heart chambers. The differential equa-
tions that describe the model are presented below:

r1(t)=
!l16,

l17,
B(t)]l18

B(t)Bl18

(76)

dQ2(t)
dt

=
r1(t)−Q2(t)

t8

(77)

A.2.6. Venous tone controller
The dynamics of the venous tone control are

similar to those of the myocardiac contractility
control. Two venous controls are considered, Q3

and Q4.

h1(t)=
!l19,

l20,
B(t)]l21

B(t)Bl21

(78)

dh2(t)
dt

=
h1(t)−h2(t)

t9

(79)

Q3(t)=1+l22 · [h2(t)−1] (80)

Q4(t)=1+l23 · [h2(t)−1] (81)

Q3 and Q4 modify the venous pressure in the
following way:

P(t)= [V(t)−Vu/Q4] ·Q3/C (82)

where Q3 controls the compliance and Q4 the
unstressed volume.

A.2.7. Coronary resistance controller
A mathematical model of the coronary resis-

tance control has been developed in order to
improve the coronary blood flow simulation. The
model considers an on-off element with a dead
zone and hysteresis, g1(t).

The dynamics of this controller are completed
by the combination of two branches, each ap-
proximated by a first-order system, g2(t) and
g3(t). The time constants t10 and t11 of the first-
order system are similar to the ones presented in
the peripheral resistance controller.

dg2(t)
dt

=
g1(t)−g2(t)

t10

(83)

dg3(t)
dt

=
g1(t)−g3(t)

t11

(84)

Q5(t)= (1−l31) ·g2(t)+l31 ·g3(t) (85)

When an on-off element with a dead zone and
hysteresis is considered, the following equations
are used:

If g1(0)=l30 then,

g1(t)=Í
Á

Ä

l28,
l29,
l30,

B(t)]l27

l255B(t)Bl27

B(t)Bl25

(86)

If g1(0)=l28 then:

g1(t)=Í
Á

Ä

l28,
l29,
l30,

B(t)]l26

l245B(t)Bl26

B(t)Bl24

(87)

In certain cases, the effects of the dead zone do
not appear, and therefore, a single on-off element
with hysteresis may be useful, and the following
equations apply:

If g1(0)=l30 then:

g1(t)=
!l28,

l30,
B(t)]l27

B(t)Bl27

(88)

If g1(0)=l28 then:
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g1(t)=
!l28,

l30,
B(t)]l24

B(t)Bl24

(89)
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[1] M. Vallverdú, C. Crexells, P. Caminal, Cardiovascular
responses to intrathoracic pressure variations in coronary
disease patients: a computer simulation, Technol. Health
Care 2 (1994) 119–140.
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