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Abstract 

Control of the depth of anaesthesia is a difficult undertaking. Progress has been made during 
recent years by use of different methodologies and monitoring systems that suggest the safe 
amount of an anaesthetic drug, considering the condition of an individual patient. Despite these 

improvements, anaesthetists still rely heavily on persona1 experience when suggesting the anaes- 
thetic dosage during surgical operations. The purposes of this paper are twofold. One is a 
description of the design of an anaesthetic agent control system using a qualitative modelling and 
simulation methodology called Fury Inductive Reasoning (FIR). A comparison with a system 

developed for the same application using a neural network approach is also presented. The second 
purpose is a discussion of the problem of separating system-generic from patient-specific 
behaviour in the context of inductive modelling using the FIR methodology. In order to be useful, 
the model generated by FIR should reflect upon system-generic behavioural characteristics 
exclusively, while suppressing patient-specific behavioural patterns. A technique based on com- 
bining knowledge obtained from different patients is designed that makes it possible to derive a 
single model characterizing a specific class of similar patients undergoing similar operations, 
preserving the common characteristics of all these patients while filtering out the specific 
behavioural patterns of any one of the individual patients from whom the data were obtained. 
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1. Introduction 

Both sleep and general anaesthesia are states of unresponsiveness which vary in 

depth. While sleep is healthy, natural and repeats itself rhythmically once every 24 h, 
anaesthesia is an artificial state maintained by the continuing presence of chemical 
agents in the brain. 

Anaesthetic agents affect the respiratory system, the cardiovascular system, the 

central nervous system, and the muscles. The use of anaesthetic agents can produce 
severe complications and side effects, which, under extreme conditions, may even cause 

the death of the patient. It is therefore essential that the dose of anaesthetic agents is 

limited to the minimum amount necessary for proper anaesthesia thereby reducing 
undesired side effects and minimizing the risk to the patient. 

Monitoring devices can be used to record the values of indicator variables, to reason 

about the consistency of these values, and suggest to the anaesthetist an appropriate dose 
of anaesthetic agent. Research results have recently been reported in the area of monitor 
integration that enhance the clinical robustness of such monitoring devices by improving 

their reasoning capabilities through the detection of critical events and by means of 
enhancing their alarm accuracy [I 11. 

Several new results have been reported in the past few years relating to the control of 

the depth of anaesthesia. Both open-loop and closed-loop techniques have been explored 
[5,8,12,16]. 

One of these studies resulted in the development of a computer-based on-line expert 
system called RESAC (Real-time Expert System for Advice and Control) [9]. RESAC 
comprises a rule-based backward chaining inference engine with about 400 rules and 

makes use of fuzzy logic and Bayesian reasoning. The rule-base was obtained through 

knowledge acquisition in consultation with expert anaesthetists [.s]. The major problem 
of this approach is the formidable size of the resulting rule-base. Obviously, this has to 
be a real-time expert system in order to be of any practical use. 

Triggered by the aforementioned difficulties, another study was carried out by the 
same group that promised to enhance the run-time efficiency of the monitoring system. 
The new system, ANNAD, involves an Artificial Neural Network for Anaesthetic Dose 

determination [lo]. ANNAD is a feedforward neural network trained through back-prop- 
agation. This work is reviewed in the next section. 

As an alternative, a Fuzzy Inductive Reasoning model for Anaesthetic Dose, FIRAD, 

has been developed at the Technical University of Catalonia [13], which is discussed in 
this paper. The same data that were used to drive ANNAD have also been used with 

FIRAD in order to be able to compare the results from the two approaches. 

2. Background: ANNAD 

The artificial neural network approach was chosen due to its inherent ability to learn 
the input/output behaviour of a system in situations where it is possible to specify the 
inputs and outputs, but where it is difficult to define analytically a relationship between 
them. This is precisely the situation in biomedical applications, such as anaesthesia, 
since clinical signals are readily available through measurements, but no precise 
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Anaesthetic OK 

Anaesthetic Light 

Anaesthetic Deep 

Fig. 1. Feedback loop involving patient simulator and drug controller. 

analytical relationships are known between them, and variations between patients are 
large. Also, neural networks are inherently parallel in nature, and are therefore well 

suited for real-time environments. 
The clinical variables comprising heart rate (HR), respiration rate (RR), systolic 

arterial pressure (SAP), gender, age and weight of the patient were selected as the key 
clinical indicator signals to be used for suggesting an anaesthetic dose (control signal). 

A patient model and a controller model were independently synthesised by means of 
the neural network methodology. The control loop was then closed as shown in Fig. 1. 

2.1. Artificial neural network patient model 

An Artificial Neural Network (ANN) patient model was obtained using a back-propa- 
gation algorithm applied to a set of data measured on a patient during a surgical 
operation. 

Three separate neural networks were trained, one for each output: HR, SAP, and RR. 
The inputs for the training networks were the Dose, older (delayed) values of the Dose, 
as well as delayed values of HR, SAP, and RR. Each neural network employed two 
hidden layers. 

2.2. Artificial neural network controller 

An ANN controller model (ANNAD) was obtained using a back-propagation algo- 
rithm applied to another set of data collected from a second patient during a similar 
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surgical operation as for the patient model. In this case, a neural network with three 

hidden layers was found to be optimal (showing the smallest deviation from the 
measured data after training). The inputs for this neural network were Gender, Age, 

Weight, RR, SAP, HR and the desired values of the latter three variables. while the 
output was the anaesthetic agent, Dose. 

2.3. Closed-loop control 

As shown in Fig. 1, the control loop was then closed by connecting ANNAD with the 

ANN patient model. The results of this experiment demonstrate the stability of the 

control loop. ANNAD was able to replicate satisfactorily the advice that was obtainable 
from RESAC. ANNAD also produced good control performance when coupled to a 

patient simulator. Contrary to RESAC, which was actually used during surgical opera- 

tions, ANNAD has not yet undergone real-life testing. 

For a deeper insight into this work, the reader is referred to [5,16]. 

3. FIRAD 

The motivation for the research described in this paper was to investigate how the 

fuz+~ inductive reasoning (FIR) methodology performed in comparison with the neural 

network approach when applied to the identification of dynamic processes from the soft 
sciences. To this end, we first tried to develop a FIR model for the patient, and then to 

find a FIR model for the controller. The controller model is called FIRAD (Fuzzy 
Inductive Reasoning for Anaesthetic Dose). The insights gained during this research 
effort are detailed in the following subsections. 

3.1. The methodology 

As is the case of neural networks, the inductive reasoning methodology has the 

ability to describe (model) systems that are not well understood, that is, systems for 
which physical laws are only partially or not known. Contrary to the neural network 
approach, the inductive reasoners contain information about the likelihood of any 
particular state transition. This is important for model validation purposes. If the 
accumulated likelihood of a particular state drops below a level that can be specified by 
the user, forecasting will come to a halt. In this manner, the technique guarantees that 
the model will not forecast behaviour beyond a time for which the available data are 
insufficient to substantiate the prediction. Also, this technique is able to enumerate all 
possible system behaviours that are consistent with the available knowledge (data), and 
can assign a measure of likelihood of occurrence to each of them. 

In the FIR approach 161, the qualitative systems are represented (modeled) by a 
special class of finite state machines called optimal musks, and their episodical 
behaviour is inferred (simulated) by a technique called fiazyforecusting. 

Since FIR, just like all other qualitative reasoning approaches, bases its decisions on 
discrete (qualitative) variables, it is necessary to discretise continuous variables by 
means of a technique called fuzzy recoding (a fuzzification technique), before the 
identification of a qualitative model can be attempted. 

The fuzzy recoding technique converts quantitative values into qualitative triples. The 
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Fig. 2. Membership functions of the temperature. 

first element of the triple is the class value, the second element is the fuzzy membership 
value, and the third element is the side value. The class value represents a coarse 
discretisation of the original real-valued variable. The fuzzy membership value denotes 
the level of confidence expressed in the class value chosen to represent a particular 
quantitative value. Finally, the side value tells us whether the quantitative value is to the 
left or to the right of the peak value of the associated membership function. The side 
value, which is a specialty of our methodology since it is not commonly introduced in 
fuzzy logic, is responsible for preserving the complete knowledge in the qualitative 
triple that had been contained in the original quantitative value. Fig. 2 shows the fuzzy 
recoding of a quantitative variable (the temperature) into the five classes ‘Cold’, ‘Fresh’, 
‘Moderate’, ‘Warm’, and ‘Hot’, using, in the shown example, popular knowledge to 
determine the so-called landmarks, i.e., the borders between neighbouring classes. A 
quantitative value of temperature = 18.0 would in this case be recoded into a class value 
of ‘Moderate’, a membership value of 0.938, and a side value of ‘left’. Evidently, the 
qualitative triple contains exactly the same information as the original quantitative value. 

After the fuzzification process has been completed, the quantitative trajectory be- 
haviour has been converted into a qualitative episodical behaviour. The episodical 
behaviour is stored in a qualifafiue data model. It consists of three matrices of identical 
size, one containing the class values, the second storing the membership information, 
and the third recording the side values. Each column represents one of the observed 
variables, and each row denotes one time point, i.e., one recording of all variables, or 
one recorded state. 

In the process of modelling, it is desired to discover finite automata relations among 
the fuzzified variables that make the resulting state transition matrices as deterministic 
as possible. If such a relationship is found for every output variable, the behaviour of the 
system can be forecast by iterating through the state transition matrices. The more 
deterministic the state transition matrices are, the higher is the likelihood that the future 
system behaviour will be predicted correctly. 

A possible relation among the qualitative variables for a five-variables system 
example could be of the form: 

y,(t) =T(YY3(+w>u*(t- Gt),y,(t- aq,u,(t)) (1) 

where f”denotes a qualitative relationship. Notice that f does not stand for any (known 
or unknown) explicit formula relating the input arguments to the output argument, but 
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only represents a generic causality relationship that, in the case of the FIR methodology, 
will be encoded in the form of a tabulation of likely input/output patterns, i.e., a state 
transition table. In SAPS-II (our implementation of the FIR methodology), Eq. (1) is 

represented by the following matrix: 

t\* 

t - 2& 

t - st 

t 

(2) 
The negative elements in this matrix are referred to as m-inputs. m-inputs denote input 
arguments of the qualitative functional relationship. They can be either inputs or outputs 

of the subsystem to be modeled, and they can have different time stamps. The above 
example contains four m-inputs. The sequence in which they are enumerated is 

immaterial. They are usually enumerated from left to right and top to bottom. The single 
positive value denotes the m-output. The terms m-input and m-output are used in order 
to avoid a potential confusion with the inputs and outputs of the plant. In the above 
example, the first m-input corresponds to the output variable y3 two sampling intervals 

back, y3(t - 26r), whereas the second m-input refers to the input variable u2 one 
sampling interval into the past, u,(? - at>, etc. 

In the FIR methodology such a representation is called a mask. A mask denotes a 

dynamic relationship among qualitative variables. A mask has the same number of 
columns as the episodical behaviour to which it should be applied, and it has a certain 

number of rows, the depth of the mask. 
How is a mask found that, within the framework of all allowable masks, represents 

the most deterministic state transition matrix? This mask will optimise the predictiveness 
of the model. In SAPS-II, the concept of a mask candidate matrix has been introduced. 
A mask candidate matrix is an ensemble of all possible masks from which the best is 
chosen by a mechanism of exhaustive search. The mask candidate matrix contains ‘ - 1’ 
elements where the mask has a potential m-input, a ‘ + 1’ element where the mask has 
its m-output, and ‘0’ elements to denote forbidden connections. Thus, a good mask 
candidate matrix to determine a predictive model for variable y, in a five-variable 

system example might be: 

(3) 
Corresponding mask candidate matrices are used to find predictive models for y, and 

Y3. 
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Each of the possible masks is compared to the others with respect to its potential 
merit. Ihe optimality of the mask is evaluated with respect to the maximisation of its 

forecasting power using the Shannon entropy measure. 
Once the optimal mask is found, it is possible to derive a state transition matrix from 

the optimal mask and the available data. The state transition matrix is a finite-state 

machine that lists, for each input state (i.e., each combination of input values), all 

possible output states together with an assessment of the likelihood of their occurrences. 

Once the state-transition matrix has been found, a qualitative simulation can be 
performed by applying the forecasting function of the inductive reasoning methodology. 

In the process of forecasting the mask is simply shifted further down beyond the end 
of the raw data matrix (that is the matrix that contains the original continuous data), the 

values of the m-inputs are read out from the mask, and the behaviour matrix is used to 

determine the future value of the m-output, which can then be copied back into the raw 
data matrix. The membership and side functions of the new input state are compared 

with those of all previous recordings of the same input state contained in the behaviour 

matrix. The one input state with the most similar membership and side functions is 

identified. 
The regenerate function of SAPS-II is responsible for converting the qualitative 

predicted episode back into a quantitative output trajectory. It is the inverse operation of 
the previously described recode function. It performs the dejiwifzcation operation. 

For a deeper and more detailed insight into this methodology, the reader is referred to 

Refs. [l-4,7,17]. 

3.2. SAPS patient model 

The patient model should be determined by the qualitative relationship between its 
input variable, the administered Dose and its output variables, the clinical signals of the 
patient that reflect his or her body reaction to the amount of agent applied (SAP, HR and 
RR). 

In order to determine the patient model, we worked with the data of two different 
patients. The available measurement data are plotted in Fig. 3. 

These plots reveal that the input variable, Dose, varies very little. It is ‘high’ in the 
beginning of the experiment, ‘medium’ for most part of the experiment, and goes ‘low’ 
only at the very end of the experiment. It is quite clear that, in the meantime, the output 

variables react in various ways that are obviously not driven by the input directly, since 
the input does not change at all. The changes in the output variables were caused by 
other extraneous factors that were not recorded, and therefore, the variations in the 

output variables look like noise to the inductive reasoner. In fact, the recorded data do 
indeed contain considerable digitisation noise, since all variables were recorded as 
integers only. 

For this reason, the FIR methodology could not find a good mask that models the 
patient system. The best mask synthesised did not forecast correctly. ‘Ibis was not the 
case when using the neural network methodology. It turns out that, at least for one of the 
data files, the neural network gave reasonable responses for the patient model. 

As for all inductive techniques, inductive reasoners need a lot of data to work with. It 
is not possible to generate meaningful and reliable inductive models without ample and 
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Fig. 3. Patient model measurement data 

rich data. This is equally true for the neural network approach (another inductive 
modelling technique). However, while the neural network will always predict something, 

the inductive reasoner will not predict anything that cannot be validated on the basis of 
the available data. SAPS, our inductive reasoner, simply declines to predict anything 
when confronted with the patient model data, since no prediction can truly be justified 
given the available facts. 

Here, we observe one of the strengths of the FIR methodology. It will not generate 
models that are not justifiable from the given data. The neural network methodology 
generates models for any data, irrespective of whether they are justifiable or not. While 
SAPS contains an inherent model validation mechanism inside the modelling methodol- 
ogy, the neural network approach does not. The fact that the neural network was able to 
produce a reasonable response for one of the data sets does not mean that the model is 
validated. The fact that it was unable to produce a reasonable response for the other data 
set proves just the opposite. Since inductive models necessarily lack physical insight, we 
believe it to be absolutely essential for any inductive modeller to contain an intrinsic 
model validation mechanism that is inseparable from the modelling tool itself. Our fuzzy 

inductive reasoner, SAPS, does precisely that. 

3.3. SAPS controller model 

The controller model is determined by the qualitative relationship between its three 
input variables, SAP, HR and RR, and its single output variable, the administered Dose. 
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Fig. 4. Controller model measurement data. 

For the controller model, we were able also to obtain two data sets from two different 

patients. These data are plotted in Fig. 4. 
Looking at the plots, we can see that the output variable, Dose, varies here 

considerably more than in the data sets for the patient model. The patient model data are 
purely clinical data, i.e., data measured in the operating theater. The human anaesthetist 

didn’t find the variations in the biological variables O-IR, RR and SAP) alarming, and 
therefore, reacted very little during the entire operation. In contrast, the controller model 
data were obtained from RESAC, i.e., the true biological variables that had been 
observed during surgery were fed into RESAC, which, in turn, proposed a value for 
Dose. RESAC had been validated by showing the proposed Dose to several anaes- 
thetists, who concluded that RESAC’s recommendations were clinically meaningful. 

Fortunately for us, RESAC was more ‘industrious’ than a human anaesthetist would 

ever be, and reacted to small variations in the biological variables by recommending a 
slightly modified Dose of the anaesthetic drug. Therefore, there now exists a direct 

causal relationship between the observed biological data and the recommended Dose, 
and it should, therefore, be possible to correlate the administered Dose with the 
biological variables, and come up with a causal inductive model that can be used to 
replace the anaesthetist (or RESAC) in his or her (its) decision making process. 

The two data sets contain 163 and 185 records, respectively. They were sampled once 
per minute. According to information obtained from two anaesthetists whom we 
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consulted, the slowest time constant of interest in our system is in the order of IO 
minutes, and the fastest time constant of importance is in the order of 1 minute. 

In accordance with Shannon’s sampling theorem, the data should thus have been 

sampled at least twice a minute. However, by the time, the data were received by us, it 
was too late to do anything about the problem. Before starting to identify an optimal 

model, we decided to use a Spline interpolation to find one new data record per interval, 

located exactly in the middle between the two neighbouring measurement data records. 

Thereby, the length of the data records was enhanced to 325 and 369 records, 
respectively. This helped satisfy the data hungriness of the method, but of course, could 

not recover the information that had already been lost through sampling with too slow a 

sampling rate. 
It was then decided to recode (fuzzify) the variables SAP, HR, and Dose into three 

qualitative levels (classes), whereas RR was recoded into two qualitative levels only. 

Here, the landmarks (borders between neighbouring classes) were determined such that 
each class should contain the same number of recorded data points, rather than relying 

on expert knowledge. 
Due to the difference between the slowest and the largest time constants of impor- 

tance, we decided to use a mask candidate matrix of depth 21 with nine zero rows in 

between rows that contain potential inputs. 

t\= 

t - 20St 

t - 196t 

t - 11th 

t - 10&t 

t - 9&t 

t - st 

t 

SAP HR RR DOSE 

-1 -1 -1 -1 

0 0 0 0 

0 0 0 
-1 -1 -1 

0 0 0 

0 0 0 

-1 -1 -1 

0 

-1 

0 

0 

+1 

(4) 

In this way, one new forecast is produced every 0.5 min to satisfy Shannon’s sampling 
theorem, and yet, the inductive reasoner looks at input values 5 min and 10 min back to 
capture the slowest time constant. This technique has proven successful in the past [4]. 

The first 270 (320) rows of the data matrix were used as past history data to compute 
the optimal mask. Fuzzy forecasting is used to predict new qualitative class and fuzzy 
membership values for Dose for the last 5.5 (49) rows of the raw data matrix, 

respectively. 
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For the first data set, the optimal mask obtained was the following: 

t\ SAP HR ~ 

t - 2061 ‘0 0 

t - 19& 0 0 

t - 11st 0 0 

t - lOi3 0 0 

t - 9& 0 0 

t - St 0 0 

t i-2 0 

RR DOSE 

0 0 

0 0 

0 0 

0 -1 

0 0 

0 0 

0 -t-l 

This mask denotes the relationship: 

Dose(t) =f((f- lOGr),SAP(t)) 

For the second data set, the optimal mask obtained was: 

t\= 

t - 206t 

t - 19st 

t - 11St 

t - 1061 

t - 9st 

t - St 

t 

SAP HR 

0 0 

0 0 

0 0 

-1 0 

0 0 

0 0 

0 -3 

RR LIOSE 

0 0 

0 0 

0 0 

0 -2 

0 0 

0 0 

0 +1 

This masks denotes the relationship: 

Dose(t) =f(SAP(t- lOSr),Dose(t- lOSt),HR(t)) 

157 

(5) 

(6) 

(7) 

(8) 
It turns out that the two masks obtained are different. Although RESAC used the same 
causal reasoning, SAPS decided that, by proposing a different causal relationship in the 
two cases, the quality of the forecast can be enhanced. The proposed controller is thus 
different for each of the two patients. 
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Fig. 5. Comparison RESAC/FIRAD. 

One fact that is common to both optimal masks is that the output of the controller 
model depends on the amount of previously administered anaesthetic agent. This is 
clinically plausible since the chemical substance accumulates in the patient for some 
time. The anaesthetic agent used in all these operations was isoflurane. The forecast 
results for the two data sets are shown in Fig. 5. 

The results are quite acceptable. The optimal masks contain sufficient information 
about the behaviour of the anaesthetist (or RESAC) to be used as a valid controller of 
the dosage of isoffurane given to the patient. In contrast, the neural network gave good 
responses for the controller model for only one of the data files. 

From these results, we can conclude that the SAPS methodology is fairly robust, i.e., 
it consistently generates a satisfactory inductive model whenever the data allows it to, 
and it categorically will not generate a model if the available data do not permit to 
validate an inductive model. 

The neural network approach is different in this respect, since it uses a gradient 

technique (backpropagation) for optimisation in the original (i.e., continuous) search 
space, whereas SAPS uses an exhaustive search in a reduced (discrete) search space. 
Therefore, it is perfectly feasible that the neural network does not converge (as it 
happened with one of the data records), whereas SAPS will come up with the ‘best 
possible’ model (within the framework of the discrete search space) whenever the data 
justifies a model. 

Would it have been possible then to simply invert the data, i.e., use the same data 
records to generate a patient model as well as a controller model? The answer to this 
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question is no. Causal modelling is an extension to the concept of univalued functions. 
Given the function y = sin(x), it is always possible to find a unique value of y for any 
given value of x, because sin( x> is a univaluedfinction. On the other hand, x = sin- ‘( y> 
is multivalued, and therefore, it is not possible to conclude a unique value of x given a 
value of y. It therefore makes sense to call a univalued function a causal function, 
whereas a multivalued function is a non-causal function. 

Causal modelling is an extension of this concept. Causal models are univalued 
functions that accept, as inputs, not only current values of its input variables, but also 
past values of all its inputs as well as its outputs. The controller model is obviously a 
causal model, since the anaesthetist (or RESAC) bases his or her (its) decision making in 
a semi-deterministic (fully-deterministic) fashion on the available inputs. The reverse, 
however, is not true. It is not evident that it is possible to conclude the current (and 
future) value(s) of the few recorded physiological signals in a unique fashion from 
measurements of their own past, and from current (future) as well as past Dose values, 
and SAPS indeed concludes that this is not a meaningful proposition. Considerably more 
recordings of various physiological signals would be needed to base a valid patient 
model upon. 

4. Comparison of results from the two modelling methodologies 

Before comparing the results obtained from ANNAD, and FIRAD, we wish to make 
a comment about the SAPS methodology. The original idea was that FIRAD should 
forecast the Dose during 63 min in order to obtain the same plot length as was shown in 
the previously published ANNAD report [16]. This was not possible because SAPS 
seemingly needed more data points (training data) than the neural network methodology 
to identify a model. 

Previous investigations involving SAPS have led to a recommendation with respect to 
the minimum number of data records to be used in the identification of an inductive 
model. This rule is based on statistical considerations, and states that, in any class 
analysis, each (discrete) state should be recorded at least five times. Thus: 

where nrec denotes the total number of recordings, i.e., the total number of observed 
states, i is an index that loops over all variables and ki denotes the number of levels 
(i.e., discrete class values) of the variable i. 

In the given application and using the first data stream, the number of suggested 

.2) = 270 (10) 

Consequently, the first 270 data records should be used for model identification, which 
leaves us with only 55 records, or 27 min worth of measurement data for forecasting. 

To improve the situation, tests were made to find the minimum number of records 
needed to identify the same controller model that was found using the set of 270 records. 
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Comparison of RESAC, ANNAD, and FIRAD 
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Fig. 6. Comparison RESAC/ANNAD/FIRAD 

It was determined that, if at least 240 records were used for identification, the same 
controller model could still be found. This then allows us to forecast the system over the 
last 43 min of the recorded data. This forecast can be compared with the forecast 
obtained from ANNAD and with the original Dose recommendations made by RESAC. 
The comparative results are given in Fig. 6. 

As can be seen from this plot, FIRAD forecasts the Dose quite well, in fact 

considerably better than ANNAD. Thus, the FIR methodology has been shown to be 
able to synthesise inductive biomedical models at least as well as a neural network in 
this application. 

5. Elimination of patient-specific behaviour 

In the previous section, it was demonstrated that the FIR methodology is indeed able 
to obtain a qualitative model for controlling the anaesthetic agent to be administered to a 
particular patient. However, is this of practical use for the physician? 

It does not make much sense, from a medical point of view, to first have to identify a 
model for a given patient during surgery to be able to predict his or her behaviour at 
some later time. A reliable model must be ready for use before surgery begins. It is 
therefore important to be able to synthesise a generic model that is valid for a specific 
type of patient undergoing a given kind of surgery. 

This section presents a knowledge combination technique that allows to merge the 
knowledge stemming from different patients in order to obtain a general knowledge 
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base. This knowledge base can then be used for the prediction of future states of a new 
patient with characteristics similar to those of the patients used for obtaining the 

knowledge base. 

5.1. Combination technique 

In order to combine information stemming from different patients, their data sets are 

concatenated one behind the other. Since the research focuses on models of dynamic 
behaviour, the advocated methodology searches for causal relationships between vari- 

ables measured at different points in time. Therefore, if the data set stemming from one 

patient is placed immediately adjacent to the data set stemming from another patient, 
fake causal relationships will be created at the seam of the two data streams. These fake 

relationships can cause a severe degradation of the forecasting power of the derived 

qualitative model. The solution is to add gaps of ‘missing data’ [ 151 between neighbour- 

ing data streams stemming from different patients, thereby preventing the methodology 
from extracting from the combined data set contaminated data records containing mixed 

information from different data sources. 
An important factor to take into account when data sets stemming from different 

patients are combined is the normalisation of the data. Usually, different patients will 

have different mean values for each variable. Therefore, if data stemming from such 
patients are to be combined, it is necessary to normalise the data. This process is called 
prefiltering of the data. Both linear and nonlinear prefiltering procedures are known, but 

only linear prefiltering should be applied in order to prevent a degradation of the 
relevant correlation functions. In this paper, the mean value of each variable is 

subtracted from all elements of the corresponding trajectory. This simple normalisation 

procedure is applied to the data of each patient separately, prior to concatenating their 
data records. 

In order to improve the quality of the prediction and reduce the risk of coming up 

with entirely incorrect forecasting values, a voting procedure is adopted [14]. Instead of 
working with a single optimal mask, as was done in the earlier parts of this paper, the 
three best masks are evaluated, and three different state transition matrices are obtained. 

In the forecasting process, three separate forecasts are obtained using the three state 
transition matrices. 

Let M,, M, and M, be the three best masks. Each of these masks leads to a different 
forecast. Let them be called F,, F, and F,. Three distance measures are computed in the 
following way: 

D, = abs( IT, - Fb) + abs( F, - F,) (11) 
D,=abs(F,-F,)+abs(F,-F,) (12) 
D, = abs( F, - Fa) + abs( F, - Fb) (13) 

Once the distance measures have been computed, the predicted value with the largest 
distance measure is refused. The new forecast value will be the mean value of the two 

predicted points obtained with the two remaining masks. For instance, if D, > D, and 
D, > D,, then forecast F, is rejected, and the new forecast is computed as: 

F, + F, F=- 
2 (14) 
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This technique offers a systematic way to compute predictions for all patients in the 
patient/operation class. 

5.2. Combination technique applied to FIRAD 

As was shown in the first part of this paper, the two qualitative models that were 

obtained for the two patients were distinct. It was not possible to apply either of the two 

qualitative models to the other patient and obtain meaningful predictions of that patient’s 
future behaviour. 

Therefore, it was decided to combine the data from the two patients in order to 
extract a set of models that are able to offer acceptable predictions for both patients. The 
two individual data sets contain 325 and 369 records, respectively. A gap of 40 ‘missing 

values’ were inserted connecting the two data sets. Consequently, a single data set of 

734 values resulted to be used in identifying a set of three suboptimal masks. 

Miss _ data 
I_ _ _ !?‘Y_A - - --(I* * * * * * * * *)I- - - ‘“‘““‘! - - _( 

I 325 140 1 369 

As was to be expected, the mean values of the data sets from the two patients were 
different, thus, it was necessary to normalise the data in the manner previously 

described. 
At this point, the data were ready to start the model identification process. As before, 

the variables SAP, HR and Dose were recoded into three qualitative classes each, 
whereas RR was recoded into two qualitative classes only. 

The first 291 rows of patient A combined with the gap of ‘missing values’ together 
with the first 334 rows of patient B were used as past history data to compute the 

optimal mask. 
Past history data 

Miss-data Patient B 
I_ _ _ !?“‘A - - -_I)* * * * * * * * *)I_ - - - - - - - _I 

I 291 140 I 3.14 

The optimal mask obtained for the combined data set was the following: 

t\” 
t - 20& 

t - 19& 

t - 11st 

t - 10f5t 

t - 9st 

t - & 

t 

SAP HR RR Dose ’ 

0 -1 0 0 

0 0 0 0 

0 

0 

0 

0 

-3 

0 

-2 

0 

0 

-l-l 

(15) 
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This mask denotes the relationship: 

Dose(t) =f(HR(r-206t),Dose(t- lOGt),SAP(t)) (16) 

Notice that the optimal mask is different from either of the two optimal masks found for 
the two patients separately. 

Fuzzy forecasting was then used to predict new qualitative class and fuzzy member- 
ship values for variable Dose for the last 34 rows of each patient. It turned out that the 
prediction obtained using this optimal mask alone was not good enough, and therefore, 
the previously described voting method had to be applied. 

To this end, a set of three suboptimal masks had to be defined. One of the three 
masks is the optimal mask obtained for the combined data set. The other two masks 
could be chosen as suboptimal masks from the mask history. However, a different 
approach was taken. The second mask was obtained using ‘common sense’. It has been 
shown that the two optimal masks obtained for the two patient data sets separately were 
different. Whereas one reaches the best forecast for patient A, the other does the same 
for patient B. However, neither of them gave acceptable results for the other patient. It 
makes sense to think that if the input patterns of the two masks are combined, a good 
forecast for both patients could be encountered. Following this reasoning, the second 
mask was constructed as the superposition of the individual masks found earlier in this 
paper: 

t\= 

t - 2052 

t - 19st 

i - ll& 

t - lost 

t - 96t 

1 - St 

SAP HR RR Dose 

0 0 0 0 

0 0 0 0 

. . 

0 0 0 0 

-1 0 0 -2 

0 0 0 0 

. . 

0 0 0 0 

-3 -4 0 $1 

(17) 
This mask denotes the relationship: 

Dose(r) =f7SAP(r- lOSr),Dose(r- 106t),SAP(t),HR(r)) (18) 
This mask, when used alone gives worse results than the previous one, but in concert 
with the other two voting masks, it turns out to be acceptable. 

Finally, the optimal mask obtained for the second patient when the two data sets were 
treated separately was chosen as the third mask in the voting set. 

The forecasting results for the two data sets using the voting scheme are shown in 
Fig. 7. 
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2.4 Results for Data Set A (Combined model 

~:~~~_ 

1.4 
0 5 10 15 20 25 30 35 

Sample Number 

1.2 Results for Data Set B (Combin& model) 
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2 
s I ( 

l- : : 

0.2l I 
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Fig. 7. Prediction results using combined models 

As can be seen, the prediction curve follows the real curve in an acceptable way. The 

predictions are not as good as those obtained from the individual models shown in Fig. 
5, but they are clinically meaningful. 

Computing the least square error of the predictions for the two patients, the following 

results are obtained: 
- The forecast Dose to be applied to patient A when the individual model is used has 

an error of 0.4886, whereas the error is 0.5449 when the combined model is used. 
. The forecast Dose to be applied to patient B when the individual model is used has 

an error of 1.4156, whereas the error is of 1.8224 when the combined model is used. 

Therefore, it is clear that the predictive power has decreased, but not to an unacceptably 

large extent. 

6. Conclusions 

The results shown in this paper confirm the ability of the FIR methodology to 
produce good control performance of the anaesthetic agent delivery system. The FIRAD 
system not only replicates the advice from RESAC, but it performs better, more reliably, 
and more consistently than the ANNAD system for the given application. 

As demonstrated in this paper, one of the strengths of SAPS is that it contains an 
inherent model validation mechanism inside the modelling methodology, which the 
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neural network approach does not. This is why the SAPS methodology would not 
generate a patient model that was not justifiable from the given data. We consider this 
intrinsic model validation mechanism a distinctive advantage in comparison with the 

neural network methodology, especially in the context of soft sciences. 
The FIR methodology needs large amounts of rich data to work with. This is 

necessary in order to be able to record, in the past experience data base, all physically 

feasible behavioural patterns so that they may later be recognised when they are met 

again. Evidently, it is important that the data stem from a causal system, i.e., that the 
outputs of the perceived ‘system’ are indeed causally related to its inputs. 

For the controller model, two different masks have been found from two different 

data sets. This is not of much practical use from a medical point of view. In order to 
eliminate patient-specific behavioural patterns from the measurement data, and thereby 

be able to derive a single model characterizing a specific class of similar patients 

undergoing similar operations, a technique based on the combination of data stemming 
from different patients has been presented. 

Using the FIR methodology, it has now become feasible to generate a single 

qualitative model that can be used to predict the future behaviour of patients within an 
entire class of similar patient/operation pairs. The predictions are not as good as those 
obtained from individual models, but they are still clinically meaningful. 
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